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Abstract. Modern cosmology suggests that the Universe contains two dark components –
dark matter and dark energy – both unkown in laboratory physics and both lacking direct
evidence. Alternatively, a unified dark sector, described by a single fluid, has been proposed.
Dissipation is a common phenomenon in nature and it thus seems natural to consider models
dominated by a viscous dark fluid. We focus on the study of bulk viscosity, as isotropy
and homogeneity at large scales implies the suppression of shear viscosity, heat flow and
diffusion. The generic ansatz ξ ∝ ρν for the coefficient of bulk viscosity (ρ denotes the
mass/energy density), which for ν = −1/2 mimics the ΛCDM background evolution, offers
excellent fits to supernova and H(z) data. We show that viscous dark fluids suffer from large
contributions to the integrated Sachs-Wolfe effect (generalising a previous study by Li &
Barrow) and a suppression of structure growth at small-scales (as seen from a generalized
Meszaros equation). Based on recent observations, we conclude that viscous dark fluid models
(with ξ ∝ ρν and neglecting baryons) are strongly challenged.

Keywords: Dark Matter, Dark Energy, Gravitational potential, bulk viscosity, Eckart’s
theory.

mailto:velten@physik.uni-bielefeld.de
mailto:dschwarz@physik.uni-bielefeld.de


Contents

1 Introduction 1

2 Background evolution 3

3 Density perturbations of a dissipative fluid 4

3.1 The integrated Sachs-Wolfe effect 5
3.2 Evolution of sub-horizon perturbations 6

4 Observational Constraints 8

4.1 Supernova and H(z) data 8
4.2 The integrated Sach-Wolfe effect from unified dark matter 8

4.2.1 A model for ξ(ρ) and its adiabatic counterpart 9
4.2.2 A constant coefficient of bulk viscosity 12
4.2.3 Mimicking the ΛCDM background evolution 12

4.3 Structure formation on small scales 13

5 Conclusions 15

1 Introduction

The cosmological concordance model states that the Universe is spatially flat and approxi-
mately 95% of its energy content is made up of an unknown dark sector. The remaining 5% is
known: baryonic matter, electrons, photons and neutrinos. In the context of the concordance
model a quarter of the dark sector behaves like cold dark matter (CDM), a pressureless com-
ponent that clusters. The remaining dark stuff is called dark energy and is hold responsable
for the current accelerated expansion of the Universe.

Dark energy is commonly modeled either by a scalar field or a dissipationless fluid. The
isotropy and homogeneity of the Universe at large scales, suggests that such a fluid description
makes sense, at least as an effective description. Then dark energy has negative pressure,
such that its equation of state p ∼ −ρ today. Alternatively, one might view dark matter and
dark energy as different manifestations of one single substance – unified dark matter. Its
equation of state function w ≡ p/ρ must be time-dependent in order to interpolates from the
matter dominated epoch to the current accelerated expansion.

In this work we study a single-fluid descriptions of the dark sector. As long as only
the homogeneous and isotropic evolution (the background) is concerned, this class of models
is indistinguishable from the concordance model. However, when it comes to perturbations
differences become apparent at late times. We investigate in detail their contributions to
the integrated Sachs-Wolfe effect, which probes most efficiently the large scales at late times,
and the small-scale matter power spectrum, which probes the other side of the structure
formation. We demonstrate that a generic single-fluid description of the Universe seems to
be strongly challenged from both sides.

A prominent candidate for this scenario is the Chaplygin gas, where pc = −A/ρc, and
its generalized version pgc = −A/ραgc [1]. For the case α = 1, this exotic equation of state is
motivated by string theory, where the Chaplygin gas is interpreted as an effective description
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of a gas of D-branes in a D+2-dimensional space-time [2]. For the background evolution,
α = 0 corresponds to the Λ cold dark matter model (ΛCDM).

Another popular candidate is a dissipative fluid with intrinsic bulk viscosity [3, 4]. Any
real fluid shows dissipative phenomena and thus it is well motivated to include this aspect in
cosmology as well. Typically shear viscosity is more important than bulk viscosity, however
isotropy and homogeneity of the Universe at large scales, does not allow for shear. From the
same argument diffusion and heat conduction cannot play an important role. Thus at large
scales, bulk viscosity must be the dominant dissipative effect. For an expanding universe it
gives rise to a negative contribution to pressure, pv = −ξΘ, where Θ is the volume expansion
rate of the fluid and ξ > 0 is the coefficient of bulk viscosity. In order to study the cosmic
expansion, one needs to specify ξ = ξ(t). A common ansatz, which we will adopt below, is
ξ ∝ ρν [5].

The generalized Chaplygin gas (GCG) and the viscous dark fluid (VDF) have the same
background dynamics in the one-fluid approximation [10]. However, the difference between
these fluids appears at perturbative level. While the GCG is viewed as a dissipationless
fluid, it has isentropic (the same entropy everywhere) perturbations δpgc = (ṗgc/ρ̇gc)δρgc,
the perturbative dynamics of the VDF is, by definition, nonadiabatic and it could also be
non-isentropic, δpv 6= (ṗv/ρ̇v)δρv.

As GCG and VDF are equivalent w.r.t. their background evolution, both models can
fit probes that are not sensitive to structure formation itself, e.g. SNIa data [6]. At the
perturbative level one obtains, from the matter power spectrum and from the cosmic mi-
crowave background (CMB) spectrum, very different predictions. The confrontation of the
GCG model with the matter power spectrum data, provided by the Sloan Digital Sky Survey
(SDSS) and the Two Degree Field Galaxy Redshift Survey (2dFGRS) data sets, discards
a one-fluid GCG universe [7] due to strong oscillations in its theoretical power spectrum.
However, it has been demonstrated that this problem is solved when a baryonic component
is taken into account [8] or, if ad hoc entropy perturbations are included in the GCG pertur-
bative dynamics [9]. While the former is a trivial solution, as the observed power spectrum
corresponds to the visible matter and not the dark one, the latter can be seen as a motiva-
tion to explore viscous (intrinsically nonadiabatic) cosmologies. On the other hand, the bulk
viscous model does not show the same pathologies as the GCG, thanks to its nonadiabatic
behavior [10, 11]. The GCG with α ≈ 0 agrees with CMB data [12], while, apparently, the
VDF does not, due to a huge amplification of the integrated Sachs-Wolfe (ISW) signal [13].

The authors of [13] showed that, the evolution of the gravitational potential in a VDF
model differs from the ΛCDM model at late times, implying a huge ISW effect. This is also
found for the GCG [12] and for general unified dark matter cosmologies relying on a single
scalar field [14]. However, these studies have been limited to fixed values of the cosmological
parameters and it remains unclear, if the huge ISW effect could be avoided in a different region
of parameter space. We study the dependence of the ISW effect on the model parameters of
VDF models and GCG models.

We also study the behaviour of sub horizon pertubations in the VDF and GCG models
during the matter dominated epoch. We show that structure formation can be drastically
affected in such cosmologies by comparing the growth of the unified dark matter perturbations
with a typical CDM scenario. In other words, we investigate whether dark halos, the hosts
of galaxies can form at all.

In the next section, we compare the background evolution of the GCG and VDF models
with ΛCDM. Section 3 is devoted to the study of linear perturbations. We provide an
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evolution equation for the study of the ISW effect and we obtain Meszaros-like equations
for the evolution of sub-horizon perturbations in the VDF and GCG models. In section 4
we derive quantitative results for unified dark matter cosmologies and conclude with some
remarks and open issues in the final section.

2 Background evolution

In this work, we assume a spatially flat one-fluid description of the matter content of the
Universe. This ansatz is expected to be appropriate at late times (thus radiation is negligible).
At small scales we also neglect the effects of baryonic matter, which limits the precision of
our discussion to the 10% to 20% level at small scales.

The description of relativistic viscous fluids allows for a freedom in the choice of the
comoving frame. Comoving observers could be comoving with energy transport (Landau-
frame) or with particle number transport (Eckart-frame). Both approaches are equivalent,
but one has to make a choice. Here we adopt the Eckart formalism [15]. Then, the VDF bulk
pressure is given by pv = −ξΘ. Due to the second law of thermodynamics the coefficient of
bulk viscosity ξ ≥ 0. The volume expansion rate Θ ≡ uµ;µ (Greek indices run from 0 to 3, ”;”
denotes a covariant derivative) is obtained from the fluid velocity uµ. In a homogeneous and
isotropic Universe, Θ = 3H, where H is the Hubble expansion rate. With the ansatz

ξ = ξ0

(

ρ

ρ0

)ν

, (2.1)

and assuming that the kinetic pressure p = 0, the bulk viscous pressure of the background
becomes [by means of H = H0(ρ/ρ0)

1/2]

pv = −3H0ξ0

(

ρ

ρ0

)ν+1/2

. (2.2)

The GCG model has a similar equation of state, pgc = −Aρ0 (ρ0/ρ)
α, with A and α

being dimensionless parameters.
In a perfectly homogeneous and isotropic Universe, the GCG model and the VDF are

equivalent, which is easily verified by the replacements α = −(ν + 1
2) and A = 3H0ξ0/ρ0.

Hence, both fluids show the same time evolution. Instead of ξ0 or A, it also is convenient to
use the deceleration parameter q0. This correspondence can be established by

q0 =
1

2
(1− 3A) =

1

2

(

1−
9H0ξ0
ρ0

)

. (2.3)

Once ξ0 > 0, then q0 < 1/2. The background evolution of the VDF and the GCG is governed
by (a denotes the scale factor and a0 = 1)

(

Hv

H0

)2

=

[

3H0ξ0
ρ0

+
1− 3H0ξ0

ρ0

a3(
1
2
−ν)

]

1
1
2−ν

(2.4)

and
(

Hgc

H0

)2

=

[

A+
1−A

a3(1+α)

]
1

1+α

, (2.5)
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respectively. The existence of an early matter dominated epoch, H(a ≪ 1) ∼ a−3/2, is
guaranteed for ν < 1/2 and ξ0 < ρ0/(3H0) for the VDF model and for α > −1 and A < 1 in
the GCG case. In order to obtain an accelerated epoch at late times (q0 < 0), the parameters
must obey ξ0 > ρ0/(9H0) and A > 1/3, respectively. The early and late time limits of both
models are equivalent to the ΛCDM model. The only difference is the transition from the
matter dominated phase to the accelerated epoch, which is given by the equation of state
functions

wv ≡
−3Hξ

ρ
=

−1

1 + ρ0−3H0ξ0
3H0ξ0

(1 + z)3(
1
2
−ν)

(2.6)

and

wgc =
pgc
ρ

=
−1

1 + (1−A)
A (1 + z)3(1+α)

. (2.7)

The expressions in (2.5) are analogue to the ΛCDM one,

(

HΛ

H0

)2

=
Ωm0

a3
+ 1−Ωm0, (2.8)

if we adopt q0 =
3Ωm0

2 − 1 (A = 1−Ωm0) and ν = −1/2 (α = 0) for the VDF (GCG) model.
These relations will be usefull in the next section in order to compare the perturbative
dynamics of these models.

3 Density perturbations of a dissipative fluid

In this section we study the perturbative dynamics for the VDF and the GCG models. The
differences between both models for an inhomogeneous Universe can be traced back to an
inherent nonadiabatic behavior of the viscous model. In a sense, the VDF model can be seen
as a nonadiabatic version of the GCG model.

Let us start by considering the most general dissipative fluid with energy momentum
tensor T µ

ν , including a dissipative contribution which is denoted by ∆T µ
ν . In the Eckart

frame, the most general dissipative tensor is

∆T µ
ν = −ξ∆T µ

b ν − η∆T µ
s ν − κ∆T µ

h ν , (3.1)

where ξ, η and κ are the coefficients of bulk viscosity, shear viscosity and heat conduction.
For the homogeneous and isotropic background, only the bulk viscosity contributes to the
cosmic dynamics. At first order, the heat conduction contributes only to the non-diagonal
elements of ∆T µ

ν , and thus producing negligible contributions on superhorizon scales. The
same happens with shear viscosity. In contrast to bulk viscosity, shear viscosity and heat
conduction, influence the evolution of cosmological perturbations via spatial gradients.

In the following we neglect heat conduction and shear viscosity also at the level of
perturbations and thus the cosmic fluid is described by the energy-momentum tensor

T µ
ν = ρuµuν + phµν +∆T µ

ν = ρuµuν + phµν − ξuγ;γh
µ
ν , (3.2)

where hµν = gµ ν + uµuν . More explicity, the background components of (3.2) are

T 0
0 = −ρ, T 0

i = T i
0 = 0, T i

j = peffδ
i
j =

(

p−
3ξH

a

)

δij , (3.3)
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where H = a′

a and the symbol (′) means derivative wrt the conformal time η. Latin indices
run from 1 to 3. The effective pressure peff is the sum of an adiabatic component and the bulk
viscous pressure (nonadiabatic). The VDF model is specified by p = 0 and a dissipationless
fluid is recovered with ξ = 0.

In the conformal Newtonian gauge the line element for scalar perturbations of an
isotropic and homogeneous, spatially flat universe is

ds2 = a2 (η)
[

− (1 + 2φ) dη2 + (1− 2ψ) δijdx
idxj

]

. (3.4)

The linear perturbations of the fluid 4-velocity are given by

u0 =
1

a
(1− φ), u0 = −a(1 + φ), uγ;γ =

3H

a
+ δui,i −

3Hφ

a
−

3ψ′

a
. (3.5)

For the linear perturbations of (3.2) we define the velocity scalar v, which is associated
with the peculiar velocity by δui,i ≡ −kv/a, where k is the comoving wavenumber. The
perturbed components of (3.2) read

δT 0
0 = −δρ, (3.6)

δT 0
i =

ρ

a
(1 + w + wv)δui, (3.7)

δT i
j = δpδij +

[

ξ(
kv

a
+

3Hφ

a
+

3ψ′

a
)−

3H

a
δξ

]

δij. (3.8)

δξ denotes the perturbation of the coefficient of bulk viscosity. The adiabatic speed of sound
c2S ≡ (∂p/∂ρ)S . For dissipationless fluids, c2S = p′/ρ′ for the purposes of linear perturbation
theory. For dissipative fluids in linear perturbation theory c2S = (p′/ρ′)ξ=0.

As we neglect anisotropic stresses in our model, the spatial off-diagonal Einstein equa-
tion implies φ = ψ. At first order, the (0-0), (0-i) and the (i-i) components of the perturbed
Einstein equation read (∆ ≡ δρ/ρ)

− k2ψ − 3Hψ′ − 3H2ψ =
3

2
H2∆, (3.9)

− k
(

ψ′ +Hψ
)

=
3

2
(1 + w + wv)H

2v, (3.10)

ψ′′ + 3Hψ′ − (w + wv)3H
2ψ =

3H2

2

[

δp

ρ
−
wv

3H

(

kv + 3Hψ + 3ψ′
)

+ wv
δξ

ξ

]

. (3.11)

The pressure perturbation δp = c2Sδρ + τδS, where δS denotes entropy perturbations
and τ ≡ (∂p/∂S)ρ. Below we assume that pressure perturbations do not give rise to spatial
fluctuations of the entropy to baryon ratio.

3.1 The integrated Sachs-Wolfe effect

The ISW effect is a net change in the energy of a CMB photon as it passes through evolving
gravitational potential wells. It can be computed by

(

∆T

T

)

ISW

= 2

∫ η0

ηr

dη
∂ψ

∂η
[(η0 − η) n̂, η] , (3.12)
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The integration is along the photon trajectory (n̂) from ηr (conformal time at recombination)
to η0 (conformal time today).

Combining the equations (3.9) – (3.11) into a single expression for the gravitational
potential, we end up with

ψ′′ +
(

1 + c2S
)

3Hψ′ +
[(

c2S − w
)

3H2 + c2Sk
2
]

ψ =

wv

[[

−
1

2
+

k2

(1 + w + wv)9H2

]

3Hψ′ +

[

3H2

2
+

k2

3(1 + w + wv)

]

ψ +
3H2

2
Ξ

]

, (3.13)

where Ξ ≡ δξ/ξ can be considered as the relative perturbation of the coefficient of bulk
viscosity.

If we neglect the VDF contribution to the energy-momentum tensor, the right hand
side of equation (3.13) vanishes and hence the resulting equation is the full evolution for the
gravitational potential of an adiabatic fluid with an equation of state parameter w = p/ρ.
The right hand side of (3.13) represents the influence of nonadiabaticity on ψ. For the VDF
model, we set c2S = w = 0 and use the appropriate functions wv and Hv. For the last term
we need to know the functional form of ξ. If ξ = ξ0(ρ/ρ0)

ν its perturbation δξ = νξ∆ can
be related to the potential ψ using equation (3.9).

3.2 Evolution of sub-horizon perturbations

In the radiation era pressure suppresses the growth of structures. However, cold dark mat-
ter, once kinetically decoupled from the plasma, starts to grow logarithmically on scales
smaller than the Hubble horizon even during this epoch. Once the Universe becomes matter
dominated (zeq ∼ 3000) CDM can grow linearly in the scale factor. This scenario is called
hierarchical structure formation as smallest structures form first and later on merge and grow
to evolve into larger structures.

The unified dark matter models studied in this paper have a matter-like behavior in
the past, but do not necessarily provide a successful structure formation scenario. In order
to study scales which entered the horizon sufficiently long before matter-radiation equality,
we make use of the covariant conservation of the energy-momentum tensor (T µ

ν;µ = 0). The
first-order continuity equation reads

∆′ − 3H∆
(

w − c2S + wv

)

− (1 + w + 2wv)
(

kv + 3ψ′
)

− 3Hwv(ψ − Ξ) = 0, (3.14)

and the Euler equation is

v′ +

[

H
(

1− 3c2S − 3wv

)

+
w′

v

1 + w + wv
−

wvk
2

3H (1 + w + wv)

]

v −

wvk

H (1 + w + wv)
ψ′ +

k(1 + w)

1 + w +wv
ψ +

wvk

1 + w + wv
Ξ +

kc2S
1 + w + wv

∆ = 0. (3.15)

For the adiabatic case there are many studies about the evolution of sub-horizon scales, even
considering the possibility of energy other than matter or radiation [16] or modified theories
of gravity [17]. However, the clustering properties of nonadiabatic CDM have not yet been
considered in much detail.
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For the VDF model (w = c2S = 0), we can simplify equations (3.14) and (3.15) and take
the subhorizon limit of the Poisson equation to obtain

∆′ − 3Hwv∆ = (1 + 2wv)kv − 3HwvΞ (3.16)

v′ +

[

H(1− 3wv) +
w′

v

1 +wv
−

k2wv

3H(1 + wv)

]

v = −
kψ

1 + wv
+

kwvψ
′

H(1 + wv)
−

kwvΞ

1 + wv
(3.17)

−k2ψ =
3

2
H2∆ (3.18)

It is covenient to combine these equations to a single second-order differential equation
for ∆ and to use the scale factor a instead of conformal time. Hence, we obtain a Meszaros-like
equation:

a2
d2∆

da2
+

[

a

H

dH

da
+ 3 +A(a) +B(a)k2

]

a
d∆

da
+

[

+C(a) +D(a)k2 −
3

2

]

∆ = P (a), (3.19)

A(a) = −6wv +
a

1 + wv

dwv

da
−

2a

1 + 2wv

dwv

da
+

3wv

2(1 +wv)

B(a) = −
wv

3a2H2(1 + wv)

C(a) =
3wv

2(1 + wv)
− 3wv − 9w2

v −
3w2

v

1 + wv

(

1 +
a

H

dH

da

)

− 3a

(

1 + 2wv

1 + wv

)

dwv

da
+

6awv

1 + 2wv

dwv

da

D(a) =
w2
v

a2H2(1 + wv)

P (a) = −3wva
dΞ

da
+ 3wvΞ

[

−
1

2
+

9wv

2
+

−1− 4wv + 2w2
v

wv(1 + wv)(1 + 2wv)
a
dwv

da
−

k2(1− wv)

3H2a2(1 + wv)

]

The function P (a) contains all contributions from the perturbation of the coefficient of
bulk viscosity δξ. In the limit wv = 0 we obtain the standard equation for CDM perturbations
with the solution ∆cdm ∝ a.

The above equations are solved numerically. However, in order to obtain some analytic
predictions for ∆, note that in the sub-horizon limit k ≫ H we find

a2
d2∆

da2
+B(a)k2a

d∆

da
+D(a)k2∆ = −3wva

dΞ

da
−wvΞ

k2(1− wv)

H2a2(1 + wv)
. (3.20)

If we also send wv to −1, the k2 terms dominate and the equation is dominated by the first
derivative term, thus one can expect exponential damping.
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4 Observational Constraints

4.1 Supernova and H(z) data

We employ a statistical analysis using recent H(z) [18] and the SN Ia constitution [19] data
sets, in order to constrain the parameters of the background model.

The confidence contours for a set of parameters {p} are obtained from the probability
distribution function (PDF)

P (p) = Be−
χ
2(p)
2 ,

where B is a normalization constant. For a given sample, lets say SN, χ2 is defined by

χ2
SN (p) =

∑

i

[

µth
i
(p)− µobs

i
(p)

]2

σ2
i

. (4.1)

The quantities µthi and µobsi are the theoretical and the observed values, of the distance moduli
and σi denotes their error for each data point i. For the H(z) sample we replace µ by H.
Hence, for the joint analysis we use χ2 = χ2

SN + χ2
H .

Observational constraints on q0 and ν are shown in Figure (1). It displays the 2σ and
3σ confidence levels with best fit at (q0, ν) = (−0.95,−3.2) with χ2

V iscous = 472.5. The
dashed-red lines are age constraints for which the Universe is 13Gyr and 15Gyr old. The
parameters for which the transition to the accelerated epoch occurs at ztr = 1 and ztr = 0.5
are shown in the thin lines. We remark that these background results can be translated to
the GCG model using the correspondences stablished in section 2. For the ΛCDM model
(the horizontal line corresponding to ν = −0.5) the best fit occurs at q0 = −0.57 (vertical
line) that means ΩΛ = 0.71. We obtain χ2

ΛCDM = 472.9. Thus the latter χ2 is greater than
for the viscous model. This occurs since the viscous model has an extra parameter. A model
comparison by means of the Akaike information criterion, AIC = χ2 + 2k with k being the
number of free parameters [20], it becomes clear that both models are competitive with the
ΛCDM model being slightly favoured (|∆AIC| = 1.6).

4.2 The integrated Sach-Wolfe effect from unified dark matter

The CMB spectrum of anisotropies has been a key test for dark energy candidates as well
as for modified gravity theories. It has been observed that UDM models suffer from an
amplification of the ISW signal [13]. In general, for the GCG, unless α = 0, the acoustic
peak to Sachs-Wolfe plateau ratio decreases for increasing α > 0. A similar conclusion was
obtained for the bulk viscous fluid in [13]. However, the dependence of these results on the
free parameters of the UDM models is still not clear and we adress this question now.

We define a ”quality“ variable Qm to measure the difference between the ISW signal
for some model m and the ΛCDM model,

Qm ≡

(

∆T
T

)m

ISW
(

∆T
T

)ΛCDM

ISW

− 1, (4.2)

where positive (negative) values of Q stand for an enhanced (a reduced) ISW effect for the
modelm to ΛCDM. The signal

(

∆T
T

)m

ISW
can be obtained from (3.12), once we have calculated

the gravitational potential Ψm from (3.13). A similar definition of Q was considered in [21].
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Figure 1. Observational constraints from SN1a and H(z) data on the parameters of the VDF model
(q0 and ν). The fat dot indicates the best-fit model. Short-dashed lines denote 2σ and 3σ contours.
Long-dashed (red) lines indicate age constraints of 13 Gy and 15 Gy, respectively. Thin lines denote
the redshift of the onset of accelerated cosmic expansion. The cosmic expansion history of a ΛCDM
model is obtained for ν = −1/2 (horizontal line) with its best fit at q0 = −0.57 (vertical line).

The relevant modes for the ISW effect correspond to scales k < 0.003(h/Mpc), that is
the approximate scale where the Sachs-Wolfe Cl plateau begins in the CMB temperature
anisotropy angular power spectrum. We shall plot the contours Q = 120%, 80%, 40% and 0%
in parameter space and compare them to the background constraints obtained above. With
this strategy we verify whether it is possible to conciliate the ISW effect contours close to
Q = 0% (i.e. close to the ΛCDM model) with the ”allowed“ background model parameters.

In order to estimate Q, we adopt a fiducial spatially flat ΛCDM model with parameters
H0 = 72 km/s/Mpc and Ωm0 = 0.266, as suggested by WMAP-7.

One can ask if the current measurements of the ISW effect are able to discriminate
between different models. In other words, are the values Q = 40% and 80% or even Q = 120%
acceptable? To answer this question we consider current and future estimations of the error
bars of the CMB temperature and galaxy cross-correlation function CgT , that is currently
used to measure the ISW effect [22]. Since the ISW effect is hard to measure one can currently
discard only the models with Q > 100% (at 95%C.L.), corresponding to 2δCgT /CgT ≥ 1.
Radio surveys in the near future will reduce the error up to a factor of 5 and thus should be
able to improve the limit to the Q = 20% level (see figure 9 of [23]).

4.2.1 A model for ξ(ρ) and its adiabatic counterpart

With the ansatz ξ(ρ) = ξ0(ρ/ρ0)
ν the quantity Ξ becomes

Ξ =
2ν

3H2

(

−k2ψ − 3Hψ′ − 3H2ψ
)

. (4.3)

The evolution equation for the gravitational potential is obtained by combining (4.3)
and (3.13). For the bulk viscous model (c2s = 0) we solve it numerically and calculate Qv
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(see (4.2)) for various choices of the background parameters. The results are shown in figure
(2). Q = 0% and even Q = 40% are in stark disagreement with the background contours
(short-dashed lines) which are compatible with the constraints obtained in [24]. In additition,
long-dashed lines display the age of the universe with 11, 13 and 15 Gyrs. The best-fit model,
symbol • in Figure (2), corresponds to Qv = 120%.
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Figure 2. Additional CMB temperature fluctuations from the integrated Sachs-Wolfe effect are
estimated by Q, see (4.2). Solid lines represent contours of constant Qv are shown in together with
the 2σ and 3σ contours and the age constraints of figure 1. VDF models with acceptable expansion
history lead to at least a doubling of the ISW contributionwith respect to the WMAP 7yr best-fit
ΛCDM model.

For the GCG model we compute equation (3.13) with wv = 0. Also we write H as a
function of A and α and for the adiabatic speed of sound we find

c2s gc = −αwgc =
αA

A+ (1−A)a−3(1+α)
. (4.4)

We observe, see figure (3), a small improvement, as the best fit model is close to the Qgc =
80% line. However, both cases are discarded by the CMB data and this result agrees with
[12–14].

In section 3 the perturbation of the bulk viscous coefficient (δξ) has been considered as
a free function with its effects gathered by Ξ. Of course, a full perturbative analysis of the
bulk viscous fluid should include this term. Let us for a moment take the freedom to treat
Ξ as a free function of time neglecting the form imposed by (4.3). For the case Ξ = cte = 0
we observe that it is possible to conciliate the background constraints with the non-amplified
ISW effect line (Qv = 0) as shown in figure 4. We remark that the background dynamics is
exactly the same as before and the nonadiabatic contributions, except for the term Ξ, are
still active on the r.h.s. of (3.13). The analysis shown in figure 4 reveals that Ξ 6= 0 is the
source of the amplified ISW effect which has plagued the VDF model. For ζ ∝ ρν , we cannot
regard Ξ = 0 as a solution to the problem, since Ξ = 0 occurs only if ν = 0 or ∆ = 0. We
know that there are density fluctuations in the Universe, thus ∆ 6= 0. On the other hand,
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Figure 3. As figure 3, but now for the GCG model. The free parameters of the GCG model are
A and α, as defined in the text. Dashed lines represent the 2σ and 3σ contours of the fit to SN1a
and H(z) data, with best-fit denoted by the fat dot. From left to right, the solid lines are contours
of constant ISW contribution Qgc = 0%,+40%,+80% and +120%. For the GCG the ISW effect is
slightly less pronounced compared to the VDF models.

assuming ν = 0 leads to very different background dynamics, which we study below as a
particular configuration of the VDF model.
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Figure 4. As figure 2, but now the perturbation of the coefficient of bulk viscosity is arbitrarily set
to zero, δξ = 0. ¿From top to botton the solid lines are the corresponding Qv = +120%,+80%,+40%
and 0% contours. Long-dashed (red) lines display the age of the universe with 11, 13 and 15 Gy.
Now, VDF models fit the background and do not show an enhanced ISW effect. However, there is no
physical motivation to put δξ = 0 in the context of VDF models, unless ν = 0.

We have also verified that extremely large negative (positive) values for ν(α) do not
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produce a large amplification in the ISW effect. Concerning the GCG, this limit of the
parameter α had been found before in [25] but the correspondence with ν had not yet been
established. Large values for the parameter ν also agree with the analysis using the matter
power spectrum [10]. This range for the parameter ν(α) implies a step-transition of the
background evolution from a CDM phase to a deSitter one as discussed in [26].

4.2.2 A constant coefficient of bulk viscosity

The previous considerations suggest to study the case of a constant coefficient of bulk viscosity
(ν = 0) in more detail. Now, the VDF has only q0 as free parameter. At perturbative level
there are no contributions from Ξ but the rhs of (3.13) is non-vanishing. Figure 5 shows the
PDF for q0 with the values Qv = 120%, 80%, 40%, 0% and constraints from the age of the
universe. The line Qv = 0% is within the 2σ region, but leads to a Universe younger than
13 Gyrs. In order to satistfy the age constraints Q > 30%, which can be tested in the near
future [23].
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Figure 5. PDF for the case ν = 0 with best fit at q0 = −0.46. The short-dashed lines denote the
1σ and 2σ regions. The age constraints (13Gy and 15Gy) are shown by long-dashed lines. Solid lines
represent, from left to right, Qv = 120%, 80%, 40% and 0%. The regions of a small enhancement of
the ISW effect is in conflict with the age of the Universe.

4.2.3 Mimicking the ΛCDM background evolution

For ν = −0.5(α = 0) the VDF (GCG) and the ΛCDM models have exactly the same
background evolution. Hence, the ISW contribution from nonadiabatic perturbations can
be quantified. Note that identical background solutions can be achieved by three different
models: i)the ΛCDM scenario, ii) a two-fluid model consisting of pressureless, dissipationless
matter and a dissipationless fluid with EoS p = −ρ, iii) the VDF(GCG) with ν = −0.5(α = 0)
which is also equivalent to a fluid with a negative constant pressure. On the other hand, these
models have distinct perturbative dynamics, namely: i) there are no perturbations from Λ,
ii) could have nontrivial but adiabatic perturbations and iii) has nontrivial and non-adiabatic
perturbations. The GCG is an example for ii).

The result for the VDF with ν = −0.5 is shown in the left panel in Figure 6. The
nonadiabatic contributions of the VDF are responsible for putting the Qv = 0% line outside
3σ CL. However, if we neglect the contribution from δξ, the Qv = 0 line is within the 1σ CL,
right panel in Figure 6.
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Concerning the GCG with α = 0, the PDF for A parameter is shown in Figure 7. This
particular case behaves very similar to the ΛCDM and our result agrees with [12].
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Figure 6. PDFs for the VDF with ν = −0.5. The best fit occurs at q0 = −0.64. Left panel shows
the result considering the full evolution while in the right panel the pertubation Ξ was neglected. The
age constraints (13 Gy and 15 Gy) are shown as long-dashed lines. Solid lines represent, from left to
right, Qv = 120%, 80%, 40% and 0%.
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Figure 7. PDF for the GCG with α = 0 and best fit at A = 0.76. The age constraints (13 Gy
and 15 Gy) are shown as long-dashed lines. Solid lines represent, from left(right) to right(left),
Qgc = 120%, 80%, 40% and 0%. This GCG model does not suffer from an ISW overproduction
problem.

To summarize the observational constraints of sections 4.1 and 4.2, we have seen that
generic VDF models that are excellent fits to SNIa and H(z) data sets, give rise to a large
ISW contribution to the CMB temperature angular power spectrum and are thus excluded.

4.3 Structure formation on small scales

In the standard CDM structure formation scenario small-scale perturbations start to grow
∝ a when the universe becomes matter dominated, at a redshift zeq. Before zeq, even if
the wavelength of the perturbation is larger than the Jeans length rapid expansion prevents
the growth of structures. Hence, before we can study the process of strucutre formation for
the VDF it is essential to establish the time at which the universe becomes VDF dominated
and we thus include the radiation fluid in our analysis. With the inclusion of radiation
the dynamics of the GCG remains the same. However, since the expansion rate becomes
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H = [8πG3 (ρv + ρr)]
1/2 the background dynamics of the VDF is severely changed at early

times. The fractional density for the VDF is given by the numerical solution of

a
dΩv

da
+ 3Ωv − ξ̃Ων

v

(

Ωv +
Ωr0

a4

)1/2

= 0, (4.5)

where ξ̃ = 9H0ξ0ρ
ν−1
c , ρc is the critical density and Ωr0 = 8.475 × 10−5. The new model

parameter ξ̃ is related to the deceleration parameter q0 approximately by

q0 =
1

2

(

1 +
−9H0ξ0ρ

ν
v0 + ρr0

ρv0 + ρr0

)

≈
1

2
(1− ξ̃). (4.6)

The fiducial ΛCDM model adopted in section 3 has the matter-radiation equality occuring at
zeq = 3137. For a VDF plus radiation the equality is a function of the model parameters and
will be denoted by z∗eq. As shown in figure 8 for parameters values within 2σ CL, z∗eq > zeq.
Hence, sub-horizon VDF fluid perturbations start to grow before typical CDM perturbations.
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Figure 8. Redshift of matter-radiation equality for the VDF (left) and GCG (right). Countours of
constant z∗eq (see text) are shown in the model parameter space of the VDF (left) and GCG (right).
Dashed lines denote the constraints from SN and H(z) data as presented in figures 1 and 3, respectively.

We solve equation (3.19) with intial conditions ∆v(zeq∗) = 1 and d∆v
da (zeq∗) = 1 and

compare with the CDM evolution ∆cdm ∝ a with the same initial conditions, however cal-
culated at zeq, ∆cdm(zeq∗) = 1 and d∆cdm

da (zeq∗) = 1. The Hubble rate and equation of state
function in (3.19) become

(

Hv

H0

)2

= Ωv +Ωr0a
−4 wv = −

1− 2q0
3

(Ωv +Ωr0a
−4)1/2Ων

v, (4.7)

with Ωv being determined from (4.5).
We consider modes which give rise to cluster (subgalactic) size structures k ∼ 0.2Mpc−1

(k = 106Mpc−1). We assume that for these modes the nonadiabatic Meszaros equation is
valid up to the onset of non-linear evolution at znl = 3(60 ± 20) [27]. Soon after znl, a large
fraction of the matter collapses into gravitationally bound objects. Nonlinear effects lead to
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a further modification of the final (at z = 0) power spectrum. The study of them is beyond
the scope of this work. Figure (9) shows the growth of perturbations, considering the best
fit model obtained above, for k = 0.2 – 0.3Mpc−1 (k = 106Mpc−1) in left (right) panel. Also
the CDM growth is shown as short-dashed line. If we consider the full evolution of equation
(3.19) including the term Ξ (botton lines indicated by δξ 6= 0) we observe a large growth
suppression after a redshift z ∼ 6(a ∼ 0.14) for k ∼ 0.2Mpc−1 and z ∼ 200(a ∼ 0.005)
for k = 106Mpc−1. Indeed, the dominant contribution in the terms proportional to k2∆
and k2∆′ comes from Ξ and, consequently, at late times the density contrast ∆ will decay
rapidly. On the other hand, similarly to the ISW effect results, the perturbative dynamics is
well behaved if δξ = 0 (upper lines).

The GCG perturbations do not suffer any kind of suppression and will behave exactly
like the CDM ones since it obeys the standard adiabatic growth equation, wv = 0 in (3.19),
with solution ∆gc ∝ a. At the same time, for any GCG configuration the transition to the
accelerated expansion phase occurs after znl and the growth of perturbations is not suppressed
by this effect.
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Figure 9. Left panel: Growth of sub-horizon perturbations in CDM (short-dashed) in the ΛCDM
model and of the VDF for k = 0.2Mpc−1 (long-dashed) and k = 0.3Mpc−1 (solid). The upper lines
for the viscous fluid have δξ = 0, while the bottom ones have δξ = νξ∆. Right panel: The same for
k = 106Mpc−1. Generic VDF models supress structures on subgalactic scales exponentially.

5 Conclusions

The main idea behind the unification scenario is to reduce the dark sector to one component
instead of dark energy and dark matter. This component should, at cosmological scales,
reproduce both the structure formation process and the current accelerated expansion of the
universe. The former condition seems to be the main challenge for such models.

We have compared the ISW signal of UDM models with the ΛCDM prediction. Figures
(2) and (3) are in agreement with previous results, where the background-prefered model
parameters of the VDF and the GCG imply an unacceptably large amplification of the ISW
effect. In fact, we confirm and quantify the findings of [13] for a wide range of parameters.
Although models with ν = 0 cannot be ruled out by current data, they nevertheless show a
significant amplification of the ISW effect that will be detectable in the future.

This tight constraints can be seen as an evidence that either bulk viscous effects do
not play a role in the cosmic dynamics or that the phenomenological ansatz ξ ∼ ρν is not
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appropriate. Since the intensive thermodynamic variables are functions of the extensive ones,
a possible alternative is to describe the bulk viscous pressure in terms of energy density and
entropy, i.e. p = p(ρ, S) and ξ = ξ(ρ, S). This could imply a well behaved perturbative
dynamics and alleviate the ISW problem of such fluids. Recently a microscopic model for
the cosmic bulk viscosity has been introduced as a dark energy candidate in [28]. This “dark
goo” model shows good results when compared with the matter and CMB power spectrum.
It could be interesting to extend this model to the context of unified dark matter where an
estimation of the mass of the dark particle can be achieved. An important lesson from “dark
goo is that more realistic viscosity coefficients show a complicated dependence on the energy
density and cannot be written as ζ ∝ ρν .

On the other hand, we note that bulk viscous pressure represents a small negative
correction to the positive equilibrium pressure. Here we have admited the viscous pressure
to be the dominating part of the pressure. This is clearly beyond the established range of
validity of conventional non-equilibrium thermodynamics and non-standard interactions are
required to support such an approach [29]. Hence, viscous cosmologies based on the Israel-
Stewart theories [30] can also be considered. Recently, a qualitative analysis of such causal
transport theory has been performed in [31].

We have studied the evolution of sub-horizon scales during the matter dominated epoch.
In the standard CDM model the linear growth of small-scale perturbations gives rise to dark
halos hosting galaxies. Concerning the unified scenario, we find a modification of the redshift
of the matter-radiation equality. As shown in figure 8 the prefered parameter values for the
UDM models are compatible with z∗eq > zeq. Hence, UDM perturbations start to grow earlier
than CDM perturbations. The GCG perturbations follow the CDM growth ∆gc ∝ a until
znl and consequently, only the amplitude of the perturbations will be different. On the other
hand, the VDF perturbations grow in a different way following a nonadiabatic Meszaros-
like equation derived in section 3. In general, the evolution of ∆ is scale-dependent and
deviates significantly from ΛCDM. The most important effect at late times is the dominance
of nonadiabatic contributions causing ∆ to decay rapidly.

Despite the different evolution of viscous-matter perturbations and standard CDM per-
turbations on subhorizon scales, the ad hoc assumption δξ = 0 can alleviate the ∆ growth
suppression. Since VDF perturbations start to grow before zeq, their amplitudes are of similar
size as in the ΛCDM case. In other words, the growth before znl offsets the late time growth
suppression. But this assumption is not an acceptable solution and unless other effects like
shear viscosity or a very different ansatz for ξ would lead to qualitatively different results, the
VDF models are ruled out. This can be interpreted as a complementary probe that viscous
cosmologies based on the Eckart formalism (with ξ ∝ ρν) are strongly challenged as potential
contenders for a general relativity-based description of the cosmic medium.

The inclusion of a baryonic component in the system provides a more realistic model
when compared with the one-fluid approximation adopted here. In this case, the background
dynamics of the GCG fluid remains the same while the VDF will behave differently. How-
ever, as baryons represent a small fraction of the cosmic energy budget we do not expect a
significant influence on the evolution of the unified dark sector.

To conclude, the dissipative UDM models considered in this work have severe problems
to describe the observed cosmic structure on largest (enhanced ISW effect) and on smallest
scales (overdamping due to dissipation).
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