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Abstract

In this paper we prove that Bose gas with weak pair interaction is
non ergodic system. In order to prove this fact we consider the diver-
gences in some nonequilibrium diagram technique. These divergences
are analogous to the divergences in the kinetic equations discovered by
Cohen and Dorfman. We develop the general theory of renormaliza-
tion of such divergences and illustrate it with some simple examples.
The fact that the system is non ergodic leads to the following conse-
quence: to prove that the system tends to the thermal equilibrium we
should take into account its behavior on its boundary. In this paper
we illustrate this thesis with the Bogoliubov derivation of the kinetic
equations.
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1 Introduction

In this paper we study divergences in some nonequilibrium diagram technique
which is analogous to the Keldysh diagram technique. It is more or less
evident that these divergences are the same as the divergences in the kinetic
equations discovered by Cohen and Dorfman [IH3]. We develop the general
theory of renormalization of such divergences analogously to the Bogoliubov
— Parasiuk R-operation method [4-6]. Our main result can be formulated
as follows: for a wide class of Bose systems in the sense of formal power series
on coupling constant there exists non-Gibbs functional (-), commuting with
the number of particle operator such that the correlators

(UE(t, 21).. UE(t, 2,))

are translation invariant, do not depend on ¢t and satisfy the weak cluster
property. Here U* are the fields operators and the weak cluster property
means the following

| 1‘im (UE(t, 2y + 01e1a).. VE(t, 2, + Opera)) f(zy, ..., 2n)dPay . .dPxy,
a|—ro0
RSn

= /(‘lfi(t’x“)\Ifi(t’xlk»(\yi(t,x%)\Ifi(t7,§(,’ln)> X f(.ﬁlfl, ...,In>d3$1...d3.§lﬁn,
R3n

there §; € {1,0}, i = 1,2...n and

1 < ig < ... <1ig,

st < Ghpa < oo < i,

{i1, 9, ..., ir} = {i = 1,2..n|6; = 0} # 0,
{igs1,0k12, - iny ={i=1,2..n|0; =1} # 0.

f(z1,...,x,) is a test function, e; is a unit vector parallel to the z-axis. This
statement is a simple consequence of the theorem from the section 6.

Let us prove that the existence of such functionals implies non-ergodic
property of the system. We consider the problem only on classical level.



The accurate consideration for the quantum case can be found in section
10. Suppose that our system is ergodic, i.e. there are no first integrals of
the system except energy. Then, the distribution function depends only on
energy. We can represent the distribution function f(F) as follows:

F(E) =) cad(E — Eu),

where the sum can be continuous (integral). Let 1 be some enough large
but finite subsystem of our system. Let 2 be a subsystem obtained from
1 by translation on the vector [ of sufficiently large length parallel to the
z-axis. Let 12 be a union of the subsystems 1 and 2. Let pi, ps and pqo
be distribution functions for the subsystems 1, 2 and 12 respectively. Let
I'1, Ty and I'y5 be points of the phase spaces for the subsystem 1, 2 and 12
respectively. By the same method as the method used for the derivation of
the Gibbs distribution we find:

_Pry _Fry

€ Ta e Ta
=3 eade S da > 0V
pr2 Calla™r =7 “

in the obvious notation. But the weak cluster property implies that

P12 = P1P2-
Therefore all the coefficients ¢, are equal to zero except one. We find that
f(E) = cd(E — Ep)

for some constants ¢ and Ey. So each finite subsystem of our system can be
described by Gibbs formula and we obtain a contradiction.

Non-ergodic property means that there is no thermalization in infinite
Bose-gas system.

This fact implies to prove that the system tends to thermal equilibrium
we should take into account the behavior of the system on its boundary.
Indeed if a system has no boundary the system is infinite.

To illustrate this fact we will study Bogoliubov derivation of kinetic equa-
tions [7]. When one derives BBGKI-chain one neglects some boundary terms.
If one takes into account this boundary terms and uses the Bogoliubov
method of derivation of the kinetic equations one finds that these bound-
ary terms compensate the scattering integral.



I think that the dependence of behavior of the system of boundary can
be observed for small systems such as nanosystems or biological systems.

Note that our main result is closely related with so-called the Prigogin
hypothesis which states that the infinite dimensional Liouville dynamics can
not be derived from the Hamilton dynamics. The Prigogin hypothesis is
proven in [§]

The paper is organized as follows. In section 2 we introduce the notion of
the algebra of canonical commutative relations and develop an useful repre-
sentation for some class of the states on this algebra. In section 3 we describe
the von Neumann dynamics for the states. In section 4 we describe an useful
representation for the von Neumann dynamics — the dynamics of correla-
tions. In section 5 we describe the decomposition of the kinetic evolution
operator by so-called trees of correlatios. In section 6 we describe the gen-
eral form of the counterterms which subtract the divergences in the nonequi-
librium perturbation theory. In section 7 we describe so-called Friedrichs
diagrams. In section 8 we describe the Bogoliubov—Parasiuk prescriptions
and formulate our main theorem. In section 9 we prove our main theorem. In
section 10 we derive the non-ergodic property of Bose gas with weak pair in-
teraction from our main result. In section 11 we consider one example related
to our general theory. In section 12 we reconsider the Bogoliubov derivation
of the Boltzmann equation. This example illustrates the main thesis of this
paper: to prove that the system tends to the thermal equilibrium one has to
take into account its behavior on its boundary. Section 13 is a conclusion.

2 The Algebra of Canonical Commutative Re-
lations

Let S(R?) be a Schwatrz space of test functions (infinitely-differentiable func-
tions decaying at infinity faster than any inverse polynomial with all its
derivatives). The algebra of canonical commutative relations C is an uni-
tal algebra generated by symbols a*(f) and a(f) f € S(R?) satisfying the
following canonical commutative relations:

a) at(f) is a linear functional of f,

b) a(f) is an antilinear functional of f,



[a(f),a™(9)] = (£, 9),
where (f, g) is a standard scalar product in L?(R?),

(1.9) = [ Pa @)
Let pg be a Gauss state on C defined by the following correlator

pola® (k)a™ (K)) = po(a(k)a(k’)) =0
pola” (k)a(K)) = n(k)é(k — ),
where n(k) is a real-valued function from the Schwartz space. In the case
then
o~ Blw(k)—n)

n(k) = 1 — o—Bwk—n)’

where p € R, < 0, py is called the Plank state. Here w(k) = '2—2

Let C’" be a space of linear functionals on C, and C’, ; be a set of all states
on C. Let us make the GNS construction corresponding to the algebra C and
the Gauss state py. We obtain the set (H, D, )) consisting of the Hilbert
space H, the dense linear subspace D in H, the representation”of C by means
of the linear operators from D to D, and the cyclic vector ) € D, i.e. the
vector such that C) = D. This set satisfies the following condition: Va € C
(a) = po(a). Below we will omit the symbol " i.e. we will write a instead of

a.
Let us introduce the field operators:

_ 1 6ik:ca
U(z) = (2W)%/ (k)dk,
oy L ik g+
) = o / (k)dk.

We say that the state p on C satisfies the weak cluster property if

lim [ (UE(t, 2y + S1e1a).. .V (t, 2, + Spera)) f (2, ..., 2, dPxy.. AP,

a— 00

_ /(Wi(t,xil)...\lfi(t,xik))(\lfi(t,xik)...\lfi(t,xin))

X f(21, .oy 2p) A2 ... dP 2y,



where §; € {1,0}, i =1,2..n and

i < g < ... < i,

U1 < Tgo < oo < lp,

{i,dg,.yip} = {i =1,2..n]6; = 0} # 0,
{iktt, frgs o iny = {i = 1,2..0|0; = 1} # 0.

f(z1,...,x,) is a test function. e; is an unit vector parallel to the z-axis.
Definition The vector of the form

/ 0(p1s oo )  (p1) 0% () P P,
v(p1, ..., pn) € S(R?™). (1)

is called a finite vector. The finite linear combination of the vectors of the
form () is also called a finite vector.
Let f(z1, ..., Tk|y1, -, Yi|U1, ooy U] w1, ...y wy) be a function of the form
fz, o xplyr, - yilvr, oo, O w1, o wy)
= g(xla ) Ik|y1> SaS) yl|'U1a sy ’Um|w1> 8] wn)
k m l n
DD I SIS S}
i=1 i=1 f=1 g=1

where ¢ is a function from Schwartz space.
Consider the following functional on C

k l m n
pr(A) = / H dx; H dx; H dvy H dwy,
i=1 =1 g=1

=1

Xf(xla "'axn|yla "'?yl|vla "'avm|wla >wn)
.

< pol: a(@1).a(zn) a (y1)..a™ () : A a(vr)...alvn) at(w)...a™(w,) °).

Here the symbol

()AL

means that when one transforms the previous expression to the normal
form according to the Gauss property of py one must neglect all correla-

tors po(a®(z1)a*(x,)) such that a*(z;) and a*(x,) both do not come from
A.



Let C' be a subspace in C' spanned on the functionals just defined.

Now let us introduce an useful method for the representation of the states
just defined.

Let Co = CL®C_, where C, and C_ are the algebras of canonical commuta-
tive relations. The algebras Cy are generated by the generators a4 (k), af (k)
respectively satisfying the following relations:

[at (k), al ()] = [a4(k), a4 (K)] = 0,
[0 (k), aZ (k)] = [a—(k), a—(K)] = 0,
a4 (k), (k)] = 6(k — K),
[a—(k), aZ(K")] = k’),

5(k —
a3 (k), aZ (k)] =

Here we put by definition ay := ay. Let us consider the following Gauss
functional pj on Cy defined by its two-point correlator

po(aZ(k)aZ (k")) = po(a®(k)a™(K)),
po(ai(k)ai (k) = po(a® (K')a™ (k)),
polat(k)aZ(K)) = pylai (k)a® (k) = 0,
polai (k)aZ (k")) = n(k)é(k — k')
polal(k)a™(K)) = (1 + n(k))o(k — K').
One can prove that the functional pj is a state.

Let us make the GNS construction corresponding to the state pj and the
algebra Cy. We obtain the set (H’, D, )) consisting of the Hilbert space H/,
the dense linear subspace D in M, the representation” of Cy by means of the
linear operators from D to D, and the cyclic vector ) € D, i.e. the vector such
that C) = D. This set satlsﬁes the following condition: Va € Cy (a) = pf(a).

Below we will omit the symbol, i.e. we will write a instead of a.
Now we can rewrite the functional, defined in ([2)) py as follows

pi(A) = (A'Sp),

where A’ is an element of Cy such that it contains only the operators a_, a”
and can be represented through a_,a’ in the same way as A can be repre-
sented through a,a™. Sy is an element of Cy of the form

k l m n
Sf:/deinxdeufHdwg
i=1 j=1 =1 g=1

7

Y

+



Xf(zla "'7$n|y17 "'ayl|vla "'>'Um|w1> awn)

X al(z1)..al(zn)ag (y1)...as(y)a—(v1)...a—(vm)at (wr)...at(w,) : . (2)
Here the symbol : ... : is a normal ordering with respect to the state pj,.

Denote by D’ the space dual to D. We just construct the injection from
C’ into D’'. Denote its image by H/.

By definition the space C” is a space of all functionals on C which can be
represented as finite linear combinations of the following functionals

p(A) = <A, : Sfl"‘an >

Here A’ is an element of Cy such that it contains only the operators a_, a® and
can be represented through a_,a" in the same way as A can be represented
through a,a* and Sy, are the elements of the form (). Denote by H” the
subspace in D’ spanned on the vectors : Sj,...Sy, :) (in obvious sense).
There exists an involution + on H’ defined by the following formula:

k l m n
{/deinxj [T avr I dw,
i=1 =1 g=1

j=1
X (21, ooy Tn| Y1y ooy Y| 1,5 ooy U] w1, -y w0
+

X al(z1)...al(zn)ag (y1)...ar (y)a—(v1)...a—(vm)ar (wr)...at (w,) )}

k l m n
= /dein:Ej Hdfodwg
i=1 f=1 g=1

j=1
Xf*(l'l, "'7$n|yla "'7yl|vl7 "'7vm|wla >wn)

X af(xy)..at(zn)a—(y1)...a—(y)as (v1)...av (v )al (wr)...al (wy) :).
We define the involution « on Hom(H’, H') by the following equation:
(alf))" = (1)),

where a € Hom(H’, H') and |f) € H'.
We define also the involution x on C? by the following equation:

k l m n
{/de,-Hd:Edefodwg

i=1 j=1 f=1 9=1
Xf([lfl, sy xn|y17 sy yl|'U17 sy Um|w1a 7wn)

8



X s al(z1)...al(zn)as (y1)...as(y)a—(v1)...a—(vm)ar (wr)...a (w,) :}*

k l m n
= /deinxj [T v I dw,
i=1 j=1 f=1 g=1

X X1y ooy XYL, ooy Yt| U1, ooy U w01, o w0)

X s aX(z1)...a(zn)a(y1)...a (y)ag (v1)...aq (vm)al (wr)...al (wy,) -,

where f(z1, ..., Zk|y1, -, Y1|V1, -y Um| W1, ..., wy,) s a test function of its argu-
ments. Note that the involution on Hom(H’, H') extends the involution on
C2. We say that the element a € C, is real if a* = a. The involution on H”
can be defined by a similar way.

3 The von Neumann Dynamics
Suppose that our system is described by the following Hamiltonian

H=H,+ \V,
where
Ho - / @*k(w(k) — p)a* (K)a(k) and
V= /d3p1d3p2d3Q1d3Q2U(p1>p2|Q1> q2)

X0(p1 +p2 — 1 — q2)a’ (pr)a” (p2)alqr)a(g).

Here the kernel v(p1, p2|q1, g2) belongs to the Schwartz space of test functions.
To point out the fact that H is represented through the operators a™, a~ we
will write H(a™,a™).

The von Neumann dynamics takes place in the space H" and is defined
by the following differential equation:

d

N =r

o) = LI,
where the von Neumann operator has the form

L=—iH(at,a”) +iH (al,a7),



where we put by definition:
(/Hdpinqjv(pl, s Palts oo gm) < 0 (p1).a™ (pa)alqy)..algn) o)
=1 j=1

= /Hdpinqjv(pl, oy Pl 1y s @) 2 @ (pr)a (pa)alqr) . a(gn) : -
=1 j=1

Let us divide the von Neumann operator into the free operator £ and the
interaction L;,;, L = Lo+ AL;n:, where
Ly = —iHy(at,a”) + iHS(ai, ay),
Ling = —iHy(a a”) + iHiTnt(ai, a;).
Note that the operators £y and £; are real (with respect the involution x).

Let us introduce kinetic evolution operator (in the interaction represen-
tation)

U(t” t/) _ e—ﬁot”eﬁ(t”—t’)eﬁot’.
After differentiating with respect to t we find the differential equation for
U(t,t).

%U(t, t') = Lin(t)U(, 1),

where
—Lot Lot
'Cint (t) =e 70 ‘Cinte o,

So the state ), under consideration in the space " in the interaction repre-
sentation has the form

o= Texpl [ Lan®)dt),
where T is the time-ordering operator.

Note that we have a linear map from H” into C'. It is easy to see that

the von Neumann dynamics is in agreement with the Heizenberg dynamics
in C'.

10



4 Dynamics of Correlations

Let us construct some new representation of the von Neumann dynamics
useful for the renormalization program. This representation is called the
dynamics of correlations. The ideas of the dynamics of correlations belongs
to I. Prigogin [9]. The dynamics of correlations takes place in the space

H. = é sym@"H'.
0

Now let us describe how the operators £§ and L, act in the space H..

Let us define the actions of operators £ and L, which are corresponds
to the operators Ly and L;,,;.

By definition all the spaces ®"H’ are invariant under the actions of op-
erators L§. Note that the space ' is invariant under the action of operator
Lo. Let us denote the restriction of £, to the space H' by the symbol Ly.
By definition the restriction of L to the each subspace sym ®" H' of H, has
the form

Li1R.014+10L@.01+..+101®...® L.

Now let us define £¢,. Let |f) € H,, belongs to the subspace ®"#H’ and has

nt*
the form:

m

=Y _MHe.of,

=0

where f? has the form

k l m n
fij:/dein:L’defodwg
i=1 f=1 g=1

j=1
X (21, ooy Tn| Y1y ooy Y| V1, oony Ui |01, -y w0)
X al(z1)...al(zn)ag (y1)...as(y)a—(v1)...a—(vm)at (wr)...aX(w,) : . (3)
By definition,
‘Cfnlt|f> =0

11



if [ > n. Let us consider the following vector in H”

m n
]S
=1 j=1
m n i
Let us transform the expression L, > : [] f; : to the normal form. Let us
=1 j=1

denote by h; the sum of all the terms in the previous expression such that
exactly [ operators f; couple with L;,;. We find that h;) has the following
form

k

) =Y giehri )

i=1
for some k. Here g; has the form of right hand side of ([B). Now let us
consider the following vector

k
ff=sym) gl )@@ gl 4, 1),

=1

where we define symmetrization operator as follows
sym(f, ® ... ® fu)
1
= m Z f01 X...R fa(n).

" 0€Sy

(S, — the group of permutation of n elements.) Put by definition
c,l c
Linel f) = 11)i-

One can prove that this definition is correct. Analogously, in the following
expression

fi)

1

l:mn

m n

=1

let us keep only the terms such that L;,; does not couple with any of f; Let
us write the sum of such terms as follows

f n+1 '
Z : H h ).
i=1  j=1

12



Here h%) has the form of right hand side of ([3). Let |h) be a vector in
sym®" K’ defined as follows

f n+1

|h) = symZ@ DR ).

=1 j=1
Put by definition

Lol f) = |R).

We have the evident linear map F : M. — H” which assigns to each
vector sym : f, 1) ® ...® : f, :) the vector : fi...f, :). Denote by U the evo-
lution operator in interaction representation in the dynamics of correlation.
The following statement describes the relation between the von Neumann
dynamics and the dynamics of correlations.

Statement. The following relation holds:

FolU't,t")=U(t,¢")o F.

5 The tree of correlations

The useful representation of dynamics in H. is a decomposition by so called
trees of correlations.

Definition. A graph is a triple T'= (V| R, f), where V', R are finite sets
called the set of vertices and set of lines respectively and f is a map:

h:R—= VAUV x{+}UV x {1,

where V' is a set of all disordered pairs (v1,v9), v1,v9 € V such that vy # vs.

If (vy,ve) = f(r) for some r € R we say that the vertices v; and vy are
connected by a line r. If f(r) = (v1,v2), v1,v2 € V we say that the line r is
internal.

Remark. We use this unusual definition of graphs only in purpose of
this section to simplify our notations.

Definition. The graph I is called connected graph if for two any vertices
v, v’ there exists a sequence of vertices v = vg, vy, ..., v, = v’ such that Vi =
0,...,n — 1 the vertices v; and v;,; are connected by some line.

By definition we say that the line r is an internal line if f(r) = (vy, vs)
for some vertices v; and v,.

13



For each graph I' we define its connected components by the obvious way.

Definition. We say that the graph I" is a tree or an acyclic graph if the
number of its connected components increases after removing an arbitrary
line.

Definition. The elements of the set f~'(V x {—}) we call the shoots.
Put by definition Ry, = f~1(V x{—}). The elements of the set f~1(V x {+})
we call the roots. Put by definition R,.o = f~1(V x {+}).

Definition. Directed tree is a triple (T, ®,, ®g;), where T is a tree and
®, and &, are the following maps:

O,V = {1,2,..4V},
(bsh . Rsh — {1,2, ceny hRsh}-

Definition. We will consider the following two directed trees (T, @, )
and (77, @, ®’,) as identical if we can identify the sets of lines R and R’ of
T and T" respectively and identify the sets of vertices V and V' of T" and T’
respectively such that after these identification the trees T and 7" become
the same, the functions ®, and ®/ become the same and the functions ®g,
and ®’, become the same.

Denote by r(T') the number of roots of T" and by s(7') the number of
shoots of T. Below, we will denote each directed tree (T, ®,, Py,) by the
same symbol T as a tree omitting the reference to ®,, ®,, and write simply
tree instead of the directed tree.

We say that the connected directed tree T is right if there exists exactly
one line from f~(V x {+}).

We say that the tree T is right if each its connected component is right.

The vertex v of the tree T is called a root vertex if (v, +) € f~1(R).

To point out the fact that some object A corresponds to a tree T we
will often write Ap. For example we will write T' = (Vp, Ry, fr) instead of
T=(V,R,f).

Definition. For each connected right tree T there exists an essential
partial ordering on the set of its vertices. Let us describe it by induction on
the number of its vertices. Suppose that we have defined this relation for
all right trees such that the number of their vertices is less or equal than
n — 1. Let T be a right tree such that the number of its vertices is equal to
n. Let v,q. be a root vertex of T'. Put by definition that the vertex v,,,, is a
maximal vertex. Let vy, ..., v, be all of its children i.e. the vertices connected
with v, by lines. By definition each vertex v; < vpae,? = 1,..., k. We

14



can consider the vertices vy, ...,v, as a root vertices of some directed trees
T;,i =1, ..., k. By definition the set of vertices of T} consists of all vertices v
which can be connected with v; by some path v = v, ....,v] = v; such that
Vmaz 7 v;» for all 7 = 1,...,]. The incident relations on 7; are induced by
incident relations on 7. Put by definition that V(i,j), ¢,7 = 1,....k, i #
and for any two vertices v} € T; and vj € Tj vy £ v5. If vj, v} € T; for some
T; we put v} < v} in T if and only if v] < v} in the sense of ordering on T;.
We put also v < v,,4, for every vertex v # v,,4.. These relations are enough
to define the partial ordering on 7.

If the tree T has several connected components we define a partial order-
ing at each its connected components as previously and put v; % vy if v; and
vy do not belongs to the same connected component of 7.

Below without loss of generality we suppose that for each tree of cor-
relation 7' and its line r the pair (vy,vy) = f(r) satisfies to the inequality
V1 > Vg.

Definition. The tree of correlations C' is a triple C' = (T, ¢, T), where T
is a directed tree, 7 is a map from R\ Ry, to RT := {z € R|z > 0}:

T R\Rsh —>]R+,
r— 7(r),

(r(r))re = 70,

and ¢ is a map which assigns to each vertex v of T" an element

o(v) € Hom(®7—~l', H')

r—v

of a space of linear maps from ) H to H'.

r—v
In @ H' the tensor product is taken over all lines r such that r — v.
(r—w)
Let v be a vertex of the tree T. If f(r) = (v/,v) for some vertex v’ or

f(r) = (v,+) we say that the line comes from the vertex v and write r + v.
If f(r) = (v,v) for some vertex v" or f(r) = (v, —) we say that the line comes
into the vertex v and write r — v.

Definition. Let (7, ¢,T) be a tree of correlations such that for each
vertex v p(v) = LS where I, is a number of lines coming into v. We call
this tree the von Neumann tree and denote it by T7. We also say that ¢ is
a von Neumann vertex function.

15



Definition. To each tree of correlations (7', ¢, T) we assign an element

Ur,,(T)€ Hom( @?—L' @?—[

R'root

by the following way:
If T is disconnected then

U;“ap(_jfl@ ®fn

_®{UCTC¢ (CT) ® fi}.

ZGRSh(CT

Here the number of connected components of 1" is equal to n, and connected
components of 7" are denoted by CT. Cy and CT are the restrictions of ¢
and 7 to the sets of vertices and lines of C'T' respectively. R, (CT) is a set
of shoots of C'T'. Now let T' be a connected tree. To define

U o(7) @ [
re€Rsp

by induction it is enough to consider the following two cases.

case 1). The tree T' has no shoots.

a) Suppose that the tree 7" has more than one vertex. Let v,;, be some
minimal vertex of 7" and vy be a vertex such that an unique line ry comes
from v,,;, into vg. Let T” be a tree obtained from T by removing the vertex
Umin Of T. Let 7' be a restriction of 7 to R\ {ro}. Let ¢’ be a function,
defined on V' \ {vmin} as follows: ¢'(v) = ¢(v) if v # vy and

Pw) Q)  fr=:ew) X k.

r—v0; r#£T0 =0

where

h, = f.if r # r,, and
hyy = eﬁm(m)go(vmm).

Put by definition

U;",ap(?» = U;"’,ap’ (7_—»,)>7

16



b) The tree T" has only one vertex v,,;,. Then
Ut o (7) = €75 0 (0.

Case 2.) The tree T has a shoot ry coming into the vertex vy. In this case
instead of the tree (T, p,T) we consider the tree (1", ¢’,7"), where the tree
T’ has the same vertices as T, the set of lines of T' is obtained by removing
the line ro from the set of lines of 7", the function 7 is a restriction of the
function 7 to the set of lines of 7" and the function ¢’ is defined as follows:

Qpl(v) = @(0)7 ifv 7& Vo
¢ (o) ® hy = ©(vo) ® gr, where

r—vg T#T r—vQ
gr = h,., if r #r,, and
Lo(t—t,
gr =¢€ o )fro-

Here we put

tr:ZTr’a

where the sum is taken over all lines 7" which forms decreasing way coming
from + to vy. Put by definition

—

Uro(DIf) = Up o (T)If),

where

|f/> = ® Jr
(R

re Sh)T’

Let (T,¢,T) be some tree of correlations. We can identify the tensor
product

&) .

reRyy,
with

sh(T)
5
i=1
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and the tensor product

® #

TE€Rroot

with

Using these identifications let us consider an operator V7 (7) : H® — H°
defined by the following formula

VJI‘;M = Sym o U%cp e} Psh(T)a

sh(T) .
where Py,(7y is a projection of H, to sym @ H'.
Remark. If (T, ¢, T) is a von N eumann tree of correlations then we will
shortly denote' the operators U(tw) and V(imo) by Uk and V7 respectively.
The following theorem holds:
Theorem. The following representation for the evolution operators holds

(in the sense of formal power series on coupling constant \).

anr
U =Y 0 / VE(7)dr.
T VreRyp, t—tr >t

Here ny is a number of vertices of the directed tree T'.

6 The general theory of renormalization of

U(t,—00))

In the present section we by using the decomposition of correlations dynamics
by trees describe the general structure of counterterms of U(t, —o0)), which
subtract the divergences from U(t, —o0)). We will prove in the section 10
below that there exist divergences in the theory. Note that the structure of
R-operation for the processes at large times for some class of systems has
been considered at [10]
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Let T be a tree. Let us give a definition of its right subtree.

Definition. Let vy, ..., v, be vertices of T" such that Vi,j =1,....,n, 1 # j
v; £ vj. Let us define subtree T, _,.. By definition the set of vertices
_of Ty, ., consists of all vertices v such that v < v; for some i =
1,....n.

The set Rz, .. of all lines of the tree T, ., consists of all lines r of Ry
such that h(r) = (v",v") and v',v” < v; for some i@ = 1,...,n. The incident
relations on T3, . ., are induced by the incident relations of 7" except the
following point: if the line r comes from the vertex v into v;, i = 1,...,n we

n

,,,,,

,,,,,

of T.
The Bogoliubov — Parasiuk renormalization prescription. Let
us define the following operator:

Wi (t) = ® Zyro (1),
T‘GRroot(T)
where by definition,
Zyyo(t) =1, if r # 1y, and
Zypo(t) = €508, (4)

We say that the amplitudes {Ar,} are time — translation invariant ampli-
tudes if for each tree 1" and for each its root line rg

W (t)Ary = Ap .
For each set of amplitudes Az, put by definition:
AT730> =Fo AT,c,m

where T is an arbitrary tree without shoots.

Now let us formulate our main result.

Theorem. There exists a procedure called renormalization which to each
tree T" without shoots assign the amplitudes A7, satisfying to the following
properties a)-e):

a) If the tree T' is not connected and {CT} is a set of its connected
components, while {C¢} is a set of its restriction of ¢ to CT

Ar, = ® Aercy
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in obvious notations.
b) The amplitudes At are real i.e.

(AT,so)* = AT#*

c) The amplitude Ar, satisfies the property of time-translation invari-
ance.
It has been proven that

U(t,—0)) = Z %T / d7UL(7)). (5)

In the last formula the summation is taken over all trees T without shoots.
Let T be a tree without shoots and 7" be a right subtree of T' in the
described before sense. Let us define the amplitude

Agr % Ué,@(?).

Let by definition T\T" be a tree obtained by removing from the set V7 all
the vertices of 7" and from the set Rp all the internal lines of 7. In ({) 7 is
a map from Rp\p into R,

We can consider the amplitude U%\T, as a map

® o @ it
(RT\T’ )sh (RT\T/ )r-oot
By using this identification we simply put
AT’,go * U%’@<7?)
= Uf’}\T,M(F)ATr,@.

Now let us define the renormalized amplitudes, by means of the counterterms
A7 by the following formula:

(RAU)(t, —00)

_ Z% 3 / Agv x UL(F)dF.
T

TcT

d) The renormalized amplitudes (RoU)(t, —00)) are finite.
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e) Let T be an arbitrary connected tree without shoots. Consider the
following element of H':

a=>) > /AT,*U;(F)MF.

T T'CT

We can represent the element a as follows:

[e.e]
a= Z /wm(:cl,...,xk\yl,...,yl\vl,...,vf\wl,...,wg)

ko, f,9=0
: H aZ (z;)dx; H a4 (ys)dy; H a_(v;)dv; H at(w;)dw; :).
i=1 i=1 i=1 i=1

Let Wy rg(21s ey 2n) (0 = kpy + Ly + fro + gm) be a Fourier transform of
Wit £,0(T1, ooy T|Y1, - Uil U1, ooy Vw1, ..., wg). Then

/dzl, ey Az 10(21 + s(D)era, ..., 2, + s(n)era) f (21, ..., 2n),

tends to zero as a as a — +o00. Here s(i) are the numbers from {0, 1} and
there exist numbers 7, j, 7,7 = 1, ...,n such that s(i) = 0, s(j) = 1 for some
i, =1,...n. f(z1,...,2,) is a test function. e; is a unit vector parallel to
the z-axis.

Remark. The property d) implies the weak cluster property of the func-
tional (RU)(0, —00).

This theorem is a simple consequence of the theorem-construction from
the section 8.

The renormalized amplitudes satisfy to the following properties:

Property 1. For each t € R

(RAU)(t, —00))
= e LN RA\U)(0, —00)).

This property simply follows from the definition of (RAU)(t, —o0)) and means
that the functional (Ry\U)(t, —00)) is a stationary state.
Property 2.

(RAU)(t, —00)) = U(t, 0)(RAU)(0, —00)).
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This property follows from the following representation of (RAU)(t, —o00)).
(RAU) (ta _OO)> = U(t> _OO)I>a

where

and the sum in the last formula is taken over all von Neumann trees without
shoots. Property 2 means that the functional (RA\U)(t, —o0)) satisfies to the
von Neumann dynamics.

Remark. The existence of the stationary translation invariant functional
satisfying to the weak cluster property follows from the previous theorem and
the properties 1, 2.

7 The Friedrichs diagrams

Now let us start to give a constructive description of the counterterms A
such that the amplitude R(U)(t, —o0)) is finite, and the counterterms Ar
satisfy the properties a) — e) from the previous section.

At first we represent Uf}ﬁp(?), where 7' is some tree without shoots, as a
sum taken over all so-called Friedrichs graphs ® concerned with 7.

Definition. A Friedrichs graph ®; concerned with the directed tree T
without shoots is a set (V,R,Or, f*, f~,g), where V is a union of the set
of vertices of T" and the set {®}. Recall that there is a partial order on V7.
We define a partial order on the set V if we put Vo € Vi @ > v. f+ and
[~ are the maps f,f~ : R — V such that f*(r) > f~(r). Or is a map
R — {+, —} called an orientation. ¢ is a function which to each pair (v, ),
v € Vp, r € R such that f*(r) =v or f~(r) = v assigns + or —. The graph
(f/, R,Or, f*, f~,g) must satisfy the property: if we consider & as a vertex,
the obtained graph is connected.

If fT(r) =v we write r — v, and if f~(r) = v we write r < v.

If we want to point out that the object B concerned with the graph ® we
will write Bg. For example we will write Vp and Rg for the sets of vertices
and lines of ® respectively.

At the picture we will represent the elements of V' by points and the
element ® by ®&. We will represent the elements of R by lines. The line
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r connects the vertices f*(r) and f~(r) at the picture. We will represent
orientation Or(r) by arrow on r. If Or(r) = + the arrow is directed from
f=(r) to fH(r). If Or(r) = — the arrow is directed from f*(r) to f~(r). To
represent the map g : (r,v) — {+, —} we will draw the symbol g((r,v)) (+
or —) near each shoot (r,v). At the picture a shoot (r,v) is a small segment
of the line 7 near v.

Definition. The Friedrichs diagram I' is a set (7, ®, ¢, h), where T is a
tree, ® is a Friedrichs graph, ¢ is a map which assigns to each vertex v of T’
a function of momenta {p,|r € R} of the form

o Drzoer) = Yol Drson) [ | 5(2 +p!),

Si

where 1), is a test function of momenta coming into (from) the vertex wv.
{S;}*, is a decomposition of the set of shoots of v into n, of disjunctive
nonempty sets S;, p}, ..., pfl are momenta corresponding to the shoots from
{S;}, h is a function which assigns to each pair v € V, r € R such that
ft(r) > v > f_(r) areal positive number h(v, 7).

It will be clear that it is enough to consider only the diagrams I' such
that for each its vertex v and set S; € {S;}; there exists a line r such that
(r, f=(r)) € S;. )

To each Friedrichs diagram I' = (T, ®, ¢) we assign an element of H” of
the form

U(tT,Cb,gp)(F)
:/...dpemt...UIZ(...prezt...)
X 5o (Droyy) e 2)-

Here p,,,, are momenta of external lines, i.e. such lines r that f(r) = @. We
choose the lower index of aZ(p,,,) by the following rule. Let v be a vertex
such that f~(rem) = v. If g((r,v)) = + we choose + as a lower index, and
if g((r,v)) = — we choose — as a lower index. We choose the upper index
of aZ(py.,,) by the following rule. If the lower index of af(p,,,,) is {-} then
the upper index is equal + if the corresponding line comes from the vertex v
and this index is equal — if the corresponding line comes into the vertex v.
If the lower index of a3 (p,,,,) is {+} then the upper index is equal — if the
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corresponding line comes from the vertex v and this index is equal + if the
corresponding line comes into the vertex v.
Now let us describe the amplitude UL(...pest...). By definition we have

UR(7)(...Peat.--)

= / 1:[ ol -Preo--)

reR;n

Or(mpi( X Trpt X h(vr)
X H e rp€(Rp)r veEVP dpr

Let us describe the elements of this formula. Rp is a set of all lines of
diagram I". Symbol r < v denotes that the line r comes into (from) the
vertex v. In the expression

¢v("'pT:v"')6(Z j:pr)

we take the upper sign + if the line r comes into the vertex v and we take lower
sign — in the opposite case. The symbol Ry denotes the set of lines of the tree
T from the triple (T, ®, ») and symbol rr means the line from Ry. The sym-
bol V. denotes the set of all vertices v such that f*(r) > v > f~(r). The sym-
bol (Ryr), denotes the set of all lines rr of Ry such that the increasing path
coming from f~(r) into f*(r) contains rr. G(Or(r),g(f*(r)),g(f~(r)))(p)
is a factor defined as follows

G(Or(r), g(f7(r)), g(f~(r)(P)d(p — p')
sgn(—Or(r)g((r,f+(r sgn(Or(r)g((r,f~—(r

T ),
Below we will simply write G, (p) instead of G(Or(r), g(f*(r)), g(f~(r)))(p).

It is evident that we can represent U(7) as a sum taken over some
Friedrichs diagrams I' corresponding to the tree T' of the quantities U2(S).

Now let us define the quotient diagrams.

Definition. Let I' = (T, ®, ¢, h) be a Friedrichs diagram and A C Ry be
a subset of the set Ry of lines of T and 7 be a map from Ry into R*.

We define the quotient diagram I' gz := (T'a, P4, w47, ha) in the following
way. To obtain the tree Ty we must tighten all lines from A into points. To
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obtain ®4 we must remove all loops obtained by tightening all lines from A
into the point.

Now let us define ¢ 4-. Joint all the vertices of T' to A. We obtain a tree
denoted by AT'. Let {CAT} be a set of all connected components of AT Let
vy be a vertex of ® 4 corresponding to the connected component CAT of AT.
Put by definition:

Or (.. Prsv..) A7

:/H%(... Dreso--)

veV
Or(rpr( X Trpt X h(vr)
X e re(Rp)r vEVp

r€ER;y

Let us point out the notations in the previous formula. R;, is a set of all
lines of ® 4 such that f+(r) and f~(r) are the vertices of CAT. (Rr), denotes
the set of all lines r7 of Ry such that the increasing path coming from f~(r)
into f*(r) contains r7. The symbol V,. denotes the set of all vertices v such

that f*(r) >v > f=(r). ha(ve,r)= > hv,r)+ > Ty
veV ar rr€A; rrE(Rr)r

Definition. Let I' be a Friedrichs diagram. Let Fr be a space of all
functions of external momenta of the diagram I' of the form:

U(...Dext--),

where (... pegt...) is a test function of external momenta.
The convolution of the amplitude Ap(7)(...pegt...) with the function f €
Jr we denote by Ar(7)[f].

8 The Bogoliubov — Parasiuk renormaliza-
tion prescriptions

Let for each Friedrichs diagram I" = (T, ®, p) Ap(7)(...pext---) be some am-
plitude. Fix some diagram I' and let 7" be some right subtree of the tree T’
corresponding to I'. Let I'v be a restriction of the diagram I" on 7" in obvious
sense. Define the amplitude Ar_, x Ur(...pest...) by the following formula:

Aryy % Up (Pt
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iOr(r)p2( > Trpt > k(o))
7 Ry v Vr,
_ / H{e T€(RY) € } H O Prep--)
reRr’ veV/
XAFT/(-~-p-~-)~

In this formula V"’ is a set of all vertices v such that v is not a vertex of Vv,
R’ is a set of all lines r of ®r such that f*(r) is not a vertex of 7. (R}),
is a set of all lines rr of T" such that rr is not a line of 77 and there exists
an increasing path on 7' coming from f~(r) into f*(r) such that this path
contains 7. V! is a set of all vertices v of T such that v is not a vertex of T”
and f*(r) > v > f=(r).

Let Ar(T)(p) be some amplitude. Put by definition:

n

Ar(st, e 5)(0) = Ar(—e s 1)) [ =

8_1’ ) ; 11 s

where n is a number of lines of Tr. Below we will consider the amplitudes
Ar(8)[f] as distributions on (R7)™ i.e. as an element of the space of tempered
distributions S’((R*)"). Let ¥(5) be a test function from S((R*)"). The

convolution of the amplitude Ar(5)[f] and the function ¢ (5) we denote by:

Car(3)1f), 0(3)
= / d5Ar(3)[f1(3).

(R+)"

The Bogoliubov — Parasiuk prescriptions. It will be clear below,
that we can take into account only the diagrams I' such that for each line
rp of the corresponding tree of correlations 1" §R,, > 3. Here R, is a set
of all lines r of ' such that the increasing path on 7" which connects f~(r)
and fT(r) contains ry. Below we will consider only such diagrams. Other
diagram can be simply subtracted by some counterterms Ar.

According to the Bogoliubov — Parasiuk prescriptions we must to each
diagram I" (corresponding to the connected tree) assign the counterterm am-
plitude Cr(3)[f] f € Fr satisfying the following properties.

a) (Locality.) Cr(3)[f] is a finite linear combination of § functions cen-
tered at zero and their derivatives.

b) Let I" be a Friedrichs diagram and T be a corresponding tree of corre-
lations. Let A C Ry and T” is some right subtree of T" such that:
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1) all lines 77 of T such that r is not a line of Ry belong to A,
2) All the root lines of 7" do not belongs to A.
Then

Cr, (A)f) = (Cr, + T))I,

where A" :== AN (Rz+) and 1" is a restriction of I" on 7T".

@CACRTF
where 7 = (74,...,T,) = (é, ...,i), the symbol C means here the strong

inclusion and T is some subtract operator.
d) The amplitudes Cr(5)[f] satisfy to the property of time-translation
invariance, i.e.

i > Or(rpit | A
e TG(RT‘OOt)F CF(T:[, ceny Tn)[f] = CF(Tl + t, ceey Tn)[f]

e) Let I" be a Friedrichs diagram. Let

R = U@+ Y Crun @), and

DCACRT,
Re(®)f) = Ue@f1+ Y, Cr AU+ Cr@)f].
WCACRT,

The amplitudes Rp(3) are well defined distributions on (R*)".
f) The amplitudes Rr(5) satisfy the weak cluster property. This property
means the following. Let f(...pes...) be a test function. Then

- ia Y pr
[ e ) ) F 0,

as a — oo. Here p! is a projection of p, to the x-axis.
Put by definition for each diagram I':

AF(F>: Z CFA-?’

ACRyy.
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where ’ in the sum means that all the root lines of Tt do not belong to A.
Put

Ar=3" [ AN ) ),

e

where the symbol I' ~ T means that the sum is taken over all diagrams
corresponding to T with suitable combinatoric factors. Suppose that the
properties a) — f) are satisfied. Then Ar are the counterterms needed in the
section 8. Not that the state corresponding to (RU)(t, —o0)) will obvious
commute with the number of particle operator.

Theorem — Construction. [t is possible to find such a subtract oper-
ator T such that there exist counterterms Cr satisfying the properties a) —
f)-

Note that it is not necessarily for us use not real counterterms. Indeed

the evolution operator is real, so after renormalization we can simply take
Re (RU)(t, —0)).

9 Proof of the theorem-construction

In this section we prove the theorem-construction from the previous section.
Note that to prove our theorem we will use some ideas of the papers [T1HI3].
Before we prove our theorem let us prove the following
Lemma 1. Let L; = S(R¥), Ly = S((RT)"), k,n = 1,2,.... Let A(p)
be some nonzero quadratic form on R*. Let T}, t > 0 be an one-parameter
semigroup acting in Ly drfined as follows:

T f(op..) = AP (L p).

Let T? t > 0 be some infinitely differentiable semigroup of continuous
operators in L.

Let M be a subspace of finite codimension in Lo. Suppose that M is
invariant under the action of T?, i.e. ¥t >0 T2M C M.

Suppose that there exist the linear independent vectors f1,...f; in Ly such
that

Lin{{f,, ... fi}, M} = L,,
MnN Lin{fl, ceey fl} = 0.
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and for each i =1,...,0,t >0

Tt2fi =fita1fiaa+..+afi+f,

for some coefficients a;_1,...,a; and the element f € M.

Let g be a functional on L1 @ M such that g is continuous with respect to
the topology on S(R¥) x S((RT)"). Suppose that Vf € Ly @ M and Vt > 0
(9, T3f) = (g, ) where T, = T} @ T?.

Then, there exists an continuous extension § of g on S(RF) x S((R*)")
such that Vf € L1 ® Ly and t > 0 (g, T,.f) = (g, f)-

By definition we say that the functional h on Ly ® Ly is invariant if V¢ > 0
and Vf € Ly ® Ly (h, T;f) = (h, f).

Proof of the lemma 1. At first we extend our functional ¢ to the
invariant functional g on L; ® Ly and then we prove that ¢ is continuous.

Let N be a subspace of Ly of all functions of the form, A(p)f(p), where
f(p) is a test function. Let My = Lin{M U {f,}}. Let

d
h = (ETf)h:oﬁ-

Let k& be a continuous functional on N defined as follows:

(k,0(p)A(p)) = —(g,¢(p) @ h).

Let k be an arbitrary continuous extension of k£ on whole space L;. The
existence of such continuation follows from Malgrange’s preparation theorem
[T4]. Now we define the continuous functional g; on Ly ® M; as follows:

Gilnem = 9lnem,

(G, f @ f1) = (k, f), Vf € Ly.

According to (@) we find that g; is an invariant extension of g on L; ® M.
Step by step we can extend by the same procedure the functional ¢ to
the functionals go, ....q; on Ly ® M;,...,L; ® M, respectively, where My =
Lin{M U {f., fo}},...M; = Lin{M U {f,, fa, ..., fi}} respectively. Just con-
structed functional is separately continuous so it is continuous. The lemma
is proved.

Sketch of the proof of the theorem. We will prove the theorem by
induction on the number of lines of the tree of correlations Tt corresponding
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to the diagram I'. It is evident that it is enough to consider only the diagrams
with connected tree of correlations.

The base of induction is evident. Suppose that the theorem is proved
for all diagrams of order < n. (Order is a number of lines of the tree of
correlations.)

Let us give some definitions. Let £(¢) be a smooth function on [0, 400
such that 0 < £(¢) < 1, £(¢) = 1 in some small neighorhood of zero and £(t) =
0if ¢ > 5-. Let us define a decomposition of unit {n(5)[4 C {1,...,n}} by
the formula

na(3) = [ [ &6 [T —€(s))-
i¢A i€A

Let ¢)() be some test function on real line such that ¢ (¢t) > 0, [(t)dt =
1 and ¢(t) = 0 if |[{| > 5. Put by definition:

T T— A

— ().

(5)\(517 — >\)

We have

+oo

/ Aoy (z — ) = L.

0

Let Sy((RT)™), N = 1,2,..., be a subspace of S((R)") of all functions f
such that f has a zero of order > N at zero. Let U(S) be a function of
S(R™)").

We have:

(Rr(3)[f], ¥(3))
_ Z /d)\)\"_l / d5Rr,,.(3q1..npa)

Ac{1,...,n} 0 (RT)n
01(1 — [S])W(AS)Na(S).

The inner integral in (@) converges according to the inductive assumption.
Therefore if ¥(5) € Sy((R*)™) and N is large enough the integral at the right
hand side of (@) converges. So

(Be(3)[f1,¥(3)
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defines a separately continuous functional on S(R*)®@ Sy ((Ry)"). f=1-1,
where [ is a number of external lines of I'. To define a subtract operator T we
must extend the functional (Rp(5)[f], ¥(5)) to the space S(R*) @ S((R)™)
such that extended functional will satisfy to time-translation invariant prop-
erty. To obtain this extension we use the lemma. In our case L; = S(R3/),
Ly = S(RT)™), A(p) = — > Or(r)p®. T? is an operator acting in the

rERext
S((R4)™) as follows.

S
Tt2f(817 s Sn) = f(l —18115’

7;2]0(813 ceey Sn) - O, lf S; Z

S9y ey Sp) if 85 <

1
t )
1
-
The basis { f1, ... fi} from the lemma is {s7"....s7""ny(5) }, my,..m,, = 1,2,3...,
my +mg + ... + m, < N lexicographically ordered. We can now apply our
lemma directly.

Now let us prove the weak cluster property. Let p € R?. Denote by
pl, p?, p? the projections of p to the z, y, z-axis respectively. To prove the
weak cluster property it is enough to prove the following statement: for each
connected diagram I' the function (Fr(38)(...pest.--), ¥(5)) defined by

6(2 ipewt)<FF(§)(pemt>v \Il(g» = <I:£F(§)(pemt>7 \Il(g»

is a distribution of variables ...p2,,...p2,,... (constrained by momentum conser-
vation law) which depends on ...pl ,... (constrained by momentum conserva-
tion law) by the continuously differentiable way. We will prove this statement
by induction on the number of lines of the corresponding tree of correlations.
The base of induction is evident. Suppose that the statement is proved for
all the trees of correlations such that the number of their lines < n. Let I’
be a diagram such that the number of the lines of the corresponding tree of
correlations is equal to n. It is evident that if W(8) has a zero of enough high
order at zero then (F1(3)(...pest...), ¥(5)) belongs to the required class (its
enough to use our construction with decomposition of unit). Therefore we
need to solve by induction the system of equations of the form:

(Z Z j:(pext)2)<FF(§)("'pext"')a \II(E‘))

= (Fel) (st S TPU(E).
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According to Malgrange’s preparation theorem [I4] we can choose the so-
lution (F7(8)(...pest--.), ¥(S)) such that it belongs to the required class if
(Fr(3)(...peat--.), T2V (5)) belongs to the required class. Therefore the state-
ment is proved. So our theorem is proved.

10 Derivation of non ergodic property from
main result

Let us prove (more accurately as in introduction) that our system (Bose gas
with weak pair interaction in thermodynamical limit) is non-ergodic system.

Let us recall definition of ergodicity [16].

Definition. Consider a quantum system described by Hamiltonian H.
This system is said to be ergodic if the spectrum of H is simple.

This definition is equivalent to the following

Definition. A quantum system described by Hamiltonian H is said to
be ergodic if each bounded operator commuting with H is a function of H.

The generalization of this definition to the case when where exists some
additional commuting first integrals is obvious [10].

It is to difficult to define a Hilbert space and Hamiltonian (as a self-
adjoint operator in Hilbert space of states) of the system, in thermodynamical
limit. So we give some new definition of ergodicity for this case which can be
considered as some variant of last definition. Let us introduce some useful
notations. Let V' be an algebra of all Wick monomials with kernels from the
Schwartz space, i.e V' is a linear space of all expressions of the form

/w(pl, e Dl @ ooes ) [ [ @t (i) i [ | (i) da,

i=1 j=1
w e S(R?)(n-l-m) )’

where the multiplication is defined by canonical commutative relations. Let
V' be an algebraically dual of V. We say that the functional p € V is a
stationary functional if Vv € V' p([H,v]) = 0. Here H is a Hamiltonian of
our Bose gas. We say that the functional p € V is a translation-invariant
functional if Vo € V p([P,v]) = 0, where P is an operator of momentum of
our system. We say that the functional p € V' commute with the number of
particle operator if Vo € V' p([N,v]) = 0, where N ia a number of particle
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operator. Note that Yo € V [H,v], [N,v], [P,v] € V. Denote by V, the
linear space of all Wick monomials of the form [H, v + [N, v + [P, ],
vo,v1,U € V. Denote by V! the space of all translation-invariant stationary
states commuting with the number of particle operator. We have Vf €
V'(feV!e YveV, f(v) =0). Now let us introduce a notion of Gibbsian
states.

Let 3, u € R, 8> 0, 7 € R®. We define Gibbsian state on V formally by
the following formula:

B(H—uN+5 *))

(@) g5 = ——tr(ac

28,5 ’
where a € V', N is a particle number operator and Z is so called statistical
sum:
Zg s = tr(e—B(H—uNwﬁ))_

This states corresponds to canonical distributions. Note that one of the
basis statement of statistical mechanics states that there no difference which
distribution we use: canonical or micro-canonical distribution. Bellow we
will omit ¥, P at all formulas to simplify or notations.

Let V/, be a subspace spanned by all Gibbsian states, i.e. V. is a set of
all functionals (-) on V' of the form:

(=2 calVsasias

where the sum is understood in some generalized sense, for example it may
be continuous (integral). It is evident that V/, C V.

Now we can give the definition of ergocity for Bose gas in thermodynam-
ical limit.

Definition. We say that our system is ergodic if each translation invari-
ant stationary state can be represented as a superposition of Gibbsian states,
ie V] =V..

After these previous discussion let us start to prove our statement. Recall
that we find non Gibbsian real stationary translation invariant functional (-)
constructed as a formal power series on coupling constant A satisfying to the
weak cluster property. This functional can be represented as follows:

(y=Clo+ (Dt
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where (-)o is a functional of zero order of coupling constant A, (-)o is a func-
tional of first order of coupling constant A and e.c.t.

Suppose that our system is ergodic.

We do not suppose that the series (-)o + (-)1 + ... converges, but we will
work with it formally as with convergent series and find explicit formulas for
(-) under the assumption of ergodicity. Let us illustrate formal manipulation

that we will use by several examples.

Example 1. Let us calculate the sum > z'. We do not suppose that

=0
|z| < 1. Denote by S the sum of this series. We have

S:ixizljtixi:ljtxixi:ljth
i=0 i=1 i=0

Therefore

S=1+2xzS,

(1—2)S=1,

1
S =
11—z
Example 2. Let us calculate the sum Y . Consider the function 2& =
i=1

aox + a1 + apx® + ... as a polynomial of infinite degree. Let us use the Viete
theorem for this "polynomial”. The roots of *% are x; = im, i € Z \ {0},
According to the Viete theorem we have

H LUZ‘:C,

i€Z\{0}

> [ ==

J€Z\{0} i€Z\{0,j}

> I m=-p

i<, ,J€Z\{0} k€Z\{0,i,5}

We find from these equations that



and

1 1 1
> —120 P12 Y
1<j, 1,j€Z\{0} 1€Z\{0} 1€Z\{0}
1 1
=-1/2 E — =—=.
, €T 6
icz\{0} *
Therefore
1 1
— =
i=1,2... i 6

But z,, = mn, so we finally have

S
i=1 # 6
Such formal manipulation was widely used by Euler and others. Suppose
that the set of such formal rules is enough large from one hand and does not
contain a contradiction from other hand. These rules we call the Euler rules.
If we can find the ”sum” of some series by using the Euler rules then this
series is called convergent in Euler sense. The ”sum” of this series is called
a sum in Euler sense.

Let us prove that our functional (-) can be represented as follows (under
the assumption of ergodicity):

()= Cal)foias

where ¢, are the "sums” of probably divergent series. The convergence (in
the Euler sense) of this series will be proven below (under the assumption of
ergodicy). The sum can be continuous (integral).

Let {e,,a € A} be a Hamele basis of V;, V, = Lin{e,,a € A}. Let
{eg, 0 € B}, ANB = () be a completion of {e,, @ € A} to the Hamele basis
of V, ie. {eq,a € A} U{ep, B € B} be a Hamele basis of V. Vy € AU B
let f, be an element of V' such that f,(e;) =1 and f,(e,) = 0if v # 7/,
v eAUB.

An arbitrary functional p from V’ now can be represented as a sum

p=> lafat Y lafs,

ac peB
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where [,, lg are arbitrary numbers. Note that for arbitrary l,, [z the right
hand side of last equation is well defined because Vv € V' f, (v) # 0 only for
finite number of elements v € AU B. It is obvious now that an arbitrary
element f € V! C V! (ergodicity) can be represented as follows:

=Y lsts
BeB

where [g are arbitrary numbers.
Vi =0,1,2,... we have the following representations

(Yi=> sifat Y shfs
ac peB
But Va € 2 we have
Z S = Z<6a>i = <ea> =0,
i=0 i=0

because e, € Vi and (-) is a translation invariant stationary functional.
Therefore Va € V

(o) = i<> - i(Z hle) + )
_ ijf() + gﬁez%séfg(@

= Z(i si) fala) + i BZ% sizfo(a)

S s

in Euler sense. Finally

o0

(a) = (a)i,

1=0

where we put (-); = > sjfs € V and our statement is proved.
Be®B
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Let 1 be some enough large but finite subsystem of our system. Let 2
be a subsystem obtained from 1 by translation on the vector [ of sufficiently
large length parallel to the z-axis. Let 12 be a union of the subsystems 1
and 2. Let Uy, Uy and U; be density matrices for the subsystems 1, 2 and
12 respectively (which correspond to (-)).

Let {<P711,N> n, N =1,2,...} be a basis of eigenvectors of Hamilton operator
for subsystem 1. Let{apfn,M,m,M = 1,2,..} be a basis of eigenvectors of
Hamilton operator for subsystem 2. N, M are the number of particles in
systems 1,2 respectively. Then the basis of eigenvectors of Hamiltonian for
subsystem 12 is {tn N, = @p x @ Poy ars 1, Nym, M = 1,2, ...}, According
to the assumption that the systems 1,2 are enough large we find the following
expression

_Hig—paNi2
e Ta

U1,2 = E Ca—Z
o

for density matrix of subsystems 1,2 in obvious notations. We have also the
following expression for the density matrix of subsystem 12 (if | = 400).

Hi—pa Ny Hy—pa Ny
e To e To
Ulg— E Cq 7 & 7
«a «a

But if | = 400 the weak cluster property implies that U, = Uy ® U,. This
leads to the following relations:

_EnnyuaN _Em’pr,a]VI
Y et
Ca
Z, Z
a (07 (0%
E, N—paN Em,M—nrgM
DI
= Co c
Z Tz,
@ B

Here {E, n, n,N = 1,2,...} be a set of eigenvalues of H; . But the set of
sequences

En N—palN
o

is linear independent if for all two indices a, 3, such that o # 3 (Tq, pa) #
(T, pg)- So for each o we have

E, N—#aN _ En N—mgN

e Ta e s
Co——— = C, Cg————.
« Za « zﬂ: 5 ZB
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En, —paN
According to the linear independence of {e~ s } we find that Vo

Co = C,,.

So the series representing c, are convergent in the Euler sense and Va ¢, =
0, 1.
But we have ) ¢, = trU = 1. So for some 3 ¢ = 1 and ¢, = 0 if a # .

We see that (-) is a canonical Gibbsian distribution
()=

for some inverse temperature 5 and chemical potential p.

Let us calculate now (a(k)a™(k’)). We have constructed (-) by some
Gauss state py described by some test function n(k). It follows from our
construction of (-) that:

(a(k)a* (K)) = n(k)o(k — &').

But if momentum k£ is sufficiently large we can neglect by potential energy
and find

(a(k)at(K)) = conste 5 (k — ).

If we chose n(k) such that n(k) tends to zero as k — oo slowly than each
Gauss function we obtain a contradiction. This contradiction proves non
ergodic property of our system.

Now let us discuss so called the Boltzmann ergodic hypothesis (1871). Let
() be a translation invariant stationary functional on V' such that V¢t € R
the functionals (e (.)e ") are well defined. The Boltzmann hypothesis
states that for each such functional there exists an element (-)" € V. such
that Va € V

T
1

lim — / (et ge=itHy gt — (q. (6)

T—+o00 T
0

We see that according to V. # V{, the Boltzmann hypothesis does not hold.
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11 Examples, chain diagrams

In this section we consider by direct calculation some class of divergent di-
agrams in Keldysh diagram technique. At first let us introduce the basis
notion of the Keldysh diagram technique.

Let us introduce the Green functions for the system

P(T(VE(ty, 1), oo, UE (tn, 20))).

Symbol H near ¥+ means here that \Ifﬁ are Heizenberg operators.
We require in nonequilibrium diagram technique the following represen-
tation for the Green functions

(T (W5 (t1, 21), .. W3y (tn, 7)) =
po(S_lT(\I/6t<t1, .f(fl), ceey \I]E)t(tn, l’n)S )

The symbol 0 near U+ means here that ‘115—L are operators in the Dirac rep-
resentation (representation of interaction). The S-matrix has the form

—+00

S = Texp(—i / V(t)dt),

—00

and

—+00

S™1 = Texp(i / V(t)dt).

—00

T is a symbol of the antichronological ordering here. py is some Gauss state
defined by density function n(k) as usual.

Let us recall the basic elements of nonequilibrium diagram technique.
The vertices coming from T-exponent are marked by symbol —. The vertices
coming from T-exponent are marked by symbol +. There exist four types of
propagators

G§™(ty — to, w1 — ) = po(W(ty, 21) W (Lo, 72
Gy (tr — ta, 21 — 2) = po( VT (ta, 2)U(t1,
Gy~ (ty — ta, 2y — @) = po(T (‘I’(thxl) T (tg, o)

Gt (t — ta, w1 — 12) = po(T(W(tr, 21) V7 (f, 22))).

),
),
)

Y
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Let us write the table of propagators

Gi(1.0) = [ (2wt — ()1 + (ke )

(2m)*
Gy t(t,x) = / %(2%)5@) — w(k))n(k)e iwt=ko)
v [ AR 1 4n(k) n(k) —ifwt—ka
G (t’x)_z/(%r)‘l{w—w(k +i0_w—w(k‘)—i0}e ( !

dik n(k) 14 n(k)

++ _ N —i(wt—kx)
Go (1) Z/(Qﬁ)‘l{w—w k) +i0 w—w(k:)—io}e '

11.1 Divergences
A typical example of divergent diagram is pictured at figl.
fig. 1

The ovals represent the sum of one-particle irreducible diagrams. These
diagrams are called chain diagrams. Let us suppose that all divergences
of self-energy parts (ovals) are subtracted. The divergences arise from the
fact that singular supports of propagators coincide. At first we consider
diagrams with one self-energy insertion (one-chain diagram). These diagrams
are pictured at fig. 2.

fig. 2

These diagrams are analogous to one-loop diagrams in quantum field
theory.

The aim of this section is to prove that the Green functions can be made
finite by the following renormalization of the asymptotical state:
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—+oo
1 — [ h(t)dt
po(-) — Epo(e o (),

where
h = /h(k)a+(k)a(k)d3k,

h(k) is a real-valued function and

- +fooh(t)dt
Z=pole —
11.2 Proof of the existence of divergences in the theory

Suppose that there are no divergences in the Keldysh diagram technique if
n(k) # 1% for any positive o, 3. Therefore the Green function

12
e* TP

p(STHSTF (t1, 21)o(ta, 72)))
is translation invariant. So the density matrix
pi(1,x2) = p(STHSVG (¢, 21)Wo(t, 22)))

is an integral of motion. Let

plh) = [ dapi (020"

In zero order of perturbation theory p(k) = n(k). But if there are no diver-
gences in Keldysh diagram technique it is possible (see [15]) to derive the
following kinetic equation for p(k)

Ipi(k)
ot

- / w(p, palpas po){(L -+ p(p))(L + p(p1))p(p)p(ps)
—p(P)p(p1)(1 + p(p2))(1 + p(p3))}-
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The right hand side of this equation is equal to zero only if

1
B)=—
p() 6a%+5+1

for some «, 5 (a« > 0, § > 0). But n(k) = p(k) in zero order of perturbation
theory, so n(k) has a Bose-Einstein form. This contradiction proves our
statement.

11.3 Regularization
Let us now introduce regularization. Note that

1 T ) €

T2 T3 2°
T + 1€ T4+ € TXe+ €

Therefore we use the following regularization

1 €

O(w —w(k)) = — PR 0c(w — w(k)),
1 w— w(k) N 1
P(w — w(k:)) - (w—wk))2+e2 Pe(w — w(k:))

11.4 Some simple relation on the Green functions

Lemma 1. The following equalities hold

G__(tl — tg, r1 — LUQ)* = G++(t2 — tl, To — .f(fl), (7)
G+_(t1 - tQ,ZL’l — [L’g)* = G+_(t2 — tl,l’g — [L’l). (8)

Proof. We have

G~ (t1 —ta, w1 — 22)" = po(T (Vg (t1, 1)V (t2, 22)))*

= po(T(\Ifﬂ(tl,xl)\PH(tQ,xg))) G++(t2 - tl, To — LU1>.

So the equality [7 is proved. We have

Gt (t1 — to, 21 — )" = po( Uy (b1, 21) U (t2, 22))"
= po( Uy (ta, 22) Vi (t1,21)) = G (ta — t1, 22 — 21).

So the equality 8 is proved.
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The Lemma is proved.
It is easy to prove the following
Lemma 2. The following equality holds

Gt (t,z) = 0()G~ (t,z) + 0(—t) G (t, ),
Gt (t,x) =0)GTH(t,x) + 0(—t)G~ (t,z).

Let us introduce the following matrix

G =

G+t Gt
ot g

Let us introduce the similar matrix for the self-energy operator

Y
el

Dyson equations in Fourier representation have the form
G = G + GG,

We have from these equations that

Y=Gy'-C,
or in the matrix form
> 1 Gy~ —Gar_ _ 1 G- -G (9)
detG, || —Go = Gg* detG || -G~ G

It follows from Lemma 1 that

G (w,p) =G (w,p)*
G (w,p) =G (w,p),
G (w,p) =G " (w,p)"

Therefore detG,, detG are real and we have the following lemma.
Lemma 3.

Z__(tl — t2, r1 — 1’2)* = Z++(t2 — tl,l’g — ZL’l), Z+_(t1 — tg, r1 — 1'2)* = Z+_(t2 — tl,l’g — 1’1)(10)

The following Lemma holds.
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Lemma 4.
ST (w,p) + 57 (w,p) = =X (w,p) — X7 (w,p).

Proof. The statement of lemma follows from the Dyson equation (@) and
the following two obvious equalities:

G (w,p) + G (w,p) = G " (w,p) + G (w,p),
Gi T (w,p) + Gy~ (w,p) = Gy H(w,p) + G{ ™ (w,p).

11.5 Calculation of the propagators in one-chain ap-
proximation

Lemma 5. The following limit equality holds (in the sense of distributions):

1
. 2 N o
lim(02(z) — 5—0.(x)) =0,
.1 1
lim (=0 (¢) — ~0(x) = reg,
1 1 1
Iy T Wk =

Here reg means some correct distribution.
Proof. Let f(x) be some test function with compact support. We have

) (@) = = [ o @i
@)

L H0) 4 2 (0) + ()}

T2 ) (a2 +e?)
for some smooth bounded function ¥ (z). We have

@@ = [ GO+ e )+ i)

11 1
_ F{g/7(x2+1>2dx}f(0)+0(6).

44



But

/#d _T
@+ 2

So

/d?(x)f(:v) = 2%5“0) +0(e).

So the first equality is proved. One can prove other three equalities in the
same way.

Therefore we see from the Lemmas 1,2, that we can consider only the
function G~ (¢, x). But the function G~ (¢, x) can be represented as a sum
of chain diagrams. At first let us consider the diagrams with one self-energy

insertion (one-chain diagram). We have G-~ = Y. H¥ where the diagrams
e

for HY are presented at the fig. 2. We have the following representation for

the divergent parts of these diagrams.

(HZ o, ) + (HFa,)
= 275 (0, p)(p) (1 + () 26w — w(p)

P2 (w0, pIn(p) (14 n(p)) 260 — w(p).

We see that the divergent part of these two diagrams is real (because ¥~ =
(5)°).

Let us consider the singular part of other two diagrams presented at fig
3.

fig. 3

We have

(HZDaiv(w, p) + (HI )aiv(w, p)
= m(2m)(1+ 2n(p))(1 + n(p))8Z(w — w(p)) X" (w, p)
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+r(2m)(1+ 20(p)(p) e — ()5 ()
= 71+ 20(p))(1+ 1(3) 23 — w(p)) 5 @, )

{1+ 20(p)n(p)20( — w(p) S () + O(c).

We see that (H. ™ )aiv(w, ) + (H ") aiv(w, p), (HZ)aio(w, p)+(HI)aiw(w, p)
are real.

We will use the dotted line for lines which connect creation-annihilation
operators with operators arising from the vertex: [ h(k)a™t(k)a(k)d®k (see
fig. 4).

fig. 4
So the divergences in G-~ = > H¥ can be subtracted by the following
ij=t
counterterm:

h(p) = X" (w,p) + X7 (w,p) + 2;&;2121(2)(;))

x{(1+n(p)=~(w,p) + n(p)XZ (w, p)}.

By using Lemma 4 we have:
 1+42n(p)

" = AT n)nG)
{1 +n(p)=" (w,p) = n(p)Z" (w,p)}-

The left hand side of this equation can be rewritten as follows (in approxi-
mation used in [15])

1+ 2n(p)
2n(p)(1 4+ n(p))

where St(p) is a scattering integral. So h(p) # 0 for non-equilibrium matter.

h(p) =

St(p),
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Analogously one can consider two-chain diagrams presented at fig. 5 by
direct calculation and prove that the divergences can be subtracted by the
counterterms of the asymptotical state.

fig. 5

Note that there arises the phenomenum of overlapping divergences in this
example.

12 Notes on Bogoliubov derivation of Boltz-
mann equations

In this section we study the problem of boundary conditions in Bogoliubov
derivation of kinetic equations [7]. Let us consider N particles in R3. Let
¢; be a coordinates of particle number ¢, and p; be a momentum of particle
number ¢, ¢ = 1, ..., N. Suppose that particles interact by means of the pair
potential V' (¢; —¢;). We suppose that V' belongs to the Schwartz space. Let
x; = (pi, ¢;) be a point in the phase space I'. Let f(x1, ..., ,) be a distribution
function of N particles. If we want to point out that f(xy,...,xy) depends
on t we will write f(xz1,...,xy|t). Let

fl(xl) :/dxg...def(xl,...,xn),
and
fo(xq, x2) :/dxg,...,def(xl,...,xN)

be marginal distribution functions. Put by definition

p1(z1) = N fi(z1),
P2(£171,1'2) = N2f2($1,932)-
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If A is a function on the phase space I', I' = R%" and

then
W)= [ fars e m) Al ) =
N / dar A) f(z1) =
- / e A(z)pr (x).

Now if A is a function on the phase space
A= Z A(SL’Z, Ij)
i#]

in the limit of large N we find

<A> :/dl’ldxgpg(l’l,.flfg)A(Il,Ig).

Let us introduce also three-particle distribution function:

fg(Il,Jfg,ZL’g) :/dI4...dZL’Nf(I1,...,LUN>.

Let us derive the equation for f(z). At first let us write equation of motion
for f(xy,...,zn). We have

0 " p;
at (xla"'>$N | t)+z%vlf(xl7axn|t)
. Z 8‘/ — dgj 8f(xla 7xn|t)

= 0.
Op;

i#]

This equation is only an infinitesimal form of the Liouville theorem. Let us
multiply this equation by N and integrate over dxs,...,dxy. Suppose that
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f(x1,...,zn) is a function of rapid decay of momenta. This assumption allow
integrate over p; by parts. We find:

0
FTACIDRE FACH)

0
+ / dl’g%a—qug(xl, l’2|t)

_ /d aV(Ql - Q2) 5p2(:)31,z2|t)
q1 D1

(11)

Note that we have kept here boundary term. Let us now talk about deriva-
tion of kinetic equation. According to the standard prescription we put
p3(z1, T2, x3) = 0 in equation for py(z1,x2). We find the following equation
for po:

& (@ (t), 2a(0)]t) = O, (12)

dt
where (z1(t), x2(t)) is a solution of corresponding two-body problem.
Condition of correlation breaking. We consider only translation-
invariant matter in purpose of simplicity. Usual correlation-breaking condi-
tion has the form

p2(1, 22|0) = h(p)(z1, 22))h(pPy(21, 22)).

Here h is a function on momenta-space of one particle. We consider only
translation-invariant gas, so h depends only of momentum.

p'1(x1,x9) and p'y(x1, 22) are momenta of particles 1 and 2 at t = —oo if
at t = 0 their coordinates and momenta was z; and x, respectively.
Proposition.
—pa(x1,22) = 0. 13
= ol 22) (13)

Indeed, according to (I2)
p2(x17 x2‘t> = p2(x(1]7 $(2)|0),

where 2y and 29 are phase coordinates of particles 1 and 2 respectively at a
moment t = 0. Therefore

p2(x1, za|t) = h(p) (2], 29))h(ph(a?, 29)).
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But the points 2y and x9 come to the points x; and w5 after the time t. So

(P (a1, 23), Py (Y, 23)) = (P (w1, 22), Py (w1, 22)), and

pa(x1, malt) = h(p) (27, 29))h(ph(2], 25)) =
h(p) (w1, 22)) (Pl (1, 72)) = pa(z1, 72]0).

In result

pa(z1, 22|t) = pa(21, 2/0).

The proposition is proved.
It follows from equations (I2) and (I3]) that:

P v, + P29, fo(a, t)
m m

aV(Ql - Q2) 0 aV(Ql - Q2) 0
= (= , T2|t). 14
( oq Op ¢ 8p2>f2(x1 x2\ ) ( )

The function h(p) can be found from the following equation

. 1
p1(z) = lim N/Pz(i)fl,ifz)dl”z-

N—oo

But in zero order of gas parameter the particles are free and

pr(x) = h(z).

Formula (I4]) is usually used for transformation of r.h.s. of equation (IIJ) to
the scattering integral. From other hand the equation

0
—pa(1,22) =0

ot
shows that there is no irreversible evolution in the system. From other point
of view we will show that the last term in the left hand side of (ITJ) is equal
to the scattering integral.
For simplicity we will show the case v; = 0, v = Z. The general case
can be reduced to this case by means of Galilei transformation. So let us
consider the integral

] 0
I = lim d3p2/dQ212 02(07071727(]2)7
m Oqy

R—o0
Vr

50



where Vg is a ball of radius R with the center at zero. Let us integrate over
dgo by using Gauss theorem. We find

I = lim /d3p2/d522 COS¢P2(0aO>p2aC_I2)-
R—o00 m

Here Sy is a boundary of Vi and v is an angle between two rays: first of
them is parallel to ps, second starts from zero and passes throw ¢o. We have

]z}%i_r)rolo/d?’m/dS—cosqb X
h(p} (0 0))h(p2(pz,Q2))

Let us suppose that the particles scatter only then they are not too far from
each other. Then

h(Pi(Oa O))h(P/z(Pm q2)) = p1(p2)p1(0)

for all o € Sr\ O, where O is a small neighborhood of the point gy := ‘?‘R €
Sgr. Diameter of O is approximately equal to diameter of suppV. Therefore

the integral I is not equal to zero and equal to

I = /dgpg—/Q’]deb

x{p1(Py (P2, 42(D)), (0,0)) p1(p5(p2; g2(b)), (0,0))
—Pl(p2)P1(0)}> (15)

where b := g2 — qop. But the right hand side of (3] is a usual scattering
integral.

Therefore if we keep boundary terms in BBGKI-chain we obtain the ki-
netic equations without scattering integral.

13 Conclusion

In the present paper we have developed the general theory of the renormal-
ization of nonequlibrium diagram technique. To study this problem we have
used some ideas of the theory of R-operation developed by N.N. Bogoliubov
and O.S. Parasiuk.
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We illustrate our ideas by simple example of one- and two-chain diagrams
in Keldysh diagram technique.

We want to illustrate in this paper the following general thesis: to prove
that the system tends to the thermal equilibrium one should take into ac-
count its behavior on its boundary. In the last section we have shown that
some boundary terms in BBGKI-chain which are usually neglected in Bogoli-
ubov derivation of kinetic equation compensate scattering integral in kinetic
equation.

Author is grateful to I1.V. Volovich, O.G. Smolyanov, Yu. E. Lozovik,
A.V. Zayakin and [.L. Kurbakov for very useful discussions.
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