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Abstract

In this paper, we study a class of backward stochastic Volterra inte-
gral equations driven by Teugels martingales associated with an inde-
pendent Lévy process and an independent Brownian motion (BSVIELs).
We prove the existence and uniqueness as well as stability of the
adapted M-solutions for those equations. Moreover, a duality princi-
ple and then a comparison theorem are established. As an application,
we derive a class of dynamic risk measures by means of M-solutions
of certain BSVIELs.
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1 Introduction

The general nonlinear case backward stochastic differential equations (BS-
DEs), i.e., equations in form

Y (t) = ξ +

∫ T

t

f(s, Y (s), Z(s)ds−

∫ T

t

Z(s)dWs, t ∈ [0, T ], (1)
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was first introduced by Pardoux and Peng [12] in 1990, they proved the
existence and uniqueness of solutions for BSDEs under Lipschitz conditions.
Since then, a lot of work have been devoted to the study of the theory of
BSDEs as well as to their applications. This is due to the connections of
BSDEs with mathematical finance as well as stochastic optimal control and
stochastic games (see e.g., [7], [14], [8]).

In Nualart and Schoutens [10], the authors gave a martingale represen-
tation theorem associated to Teugels martingales corresponding to a Lévy
process. Furthermore, Nualart and Schoutens [11] studied the corresponding
BSDEs associated to a Lévy process. The results were important from a pure
mathematical point of view as well as in the world of finance. It could be
used for the purpose of option pricing in a Lévy market and the partial dif-
ferential equation which provided an analogue of the famous Black-Scholes
partial differential equation. Following that, Bahlali et al. [3] considered
the BSDEs driven by a Brownian motion and the martingales of Teugels as-
sociated with an independent Lévy process, having a Lipschitz or a locally
Lipschitz coefficient.

On the other hand, stochastic Volterra equation had been investigated by
Berger and Mizel in [4] and [5], Protter in [15] and Pardoux and Protter in
[13]. As a natural generalization of the BSDE theory, Lin [9] firstly consid-
ered the solvability of the adapted solution for backward stochastic Volterra
integral equations (BSVIEs) with uniform Lipschtz coefficient of the form

Y (t) = ξ +

∫ T

t

f(s, Y (s), Z(t, s))ds

−

∫ T

t

[g(t, s, Y (s)) + Z(t, s)]dWs, t ∈ [0, T ]. (2)

Following it, Aman and N’Zi [1] considered the same equation and weakened
the uniform Lipschtz condition on the coefficient to a local one. Thereafter,
Yong [18] extended the equations (2) to a generalized form. For the more
general cases of BSVIEs (2), Anh and Yong [2] and Yong ([19], [20]) studied
them and gave its applications in stochastic optimal control, mathematics
finance and risk management, where the notion of M-solution was introduced
to ensure the unique solvability of the adapted solution. Recently, Ren [17]
established the well-posedness of adapted M-solutions for BSVIEs driven by
both Brownian motion and a Poisson random measure.

Motivated by above works, it is natural and necessary to consider the
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backward stochastic Volterra integral equations driven by a standard Brow-
nian motion and the Teugels martingales associated with an independent
Lévy process (BSVIELs). We first show the existence and uniqueness of M-
solutions for those equations. Then, a duality principle between the linear
BSVIELs and the linear forward stochastic Volterra integral equations driven
by the same Brownian motion and the Teugels martingales associated with
an independent Lévy process (FSVIELs) is presented. Further, as an impor-
tant application of the duality principle, we establish a comparison theorem
for M-solutions of BSVIELs. Finally, a class of dynamic risk measures are
derived by means of M-solutions of one kind of BSVIELs. We would like
to point that we adopt the similar method in Anh and Yong [2], but the
dynamic system is different from [2].

The rest of the paper is organized as follows. In Section 2, we intro-
duce some preliminaries, then we prove the existence and uniqueness of the
adapted M-solutions for BSVIELs in Section 3. In Section 4, we establish
a duality principle between linear BSVIELs and linear FSVILs as well as a
comparison theorem for M-solutions of BSVIELs. In Section 5, a class of dy-
namic coherent risk measures be derived by means of M-solutions of certain
BSVIELs.

2 Preliminaries

Given T > 0 a fixed real number. Let’s first introduce the following two
mutually independent processes:

• {Wt : t ∈ [0, T ]}: a standard Brownian motion in R
d;

• A R-valued Lévy process (Lt)0≤t≤T corresponding to a standard Lévy
measure ν satisfying the following conditions:

(i)
∫
R
(1 ∧ y2)ν(dy) <∞,

(ii)
∫
]−ε,ε[c

eλ|y|ν(dy) <∞, for every ε > 0 and for some λ > 0.

Let (Ω,F ,F, P ) be a complete filtered probability space, the filtration
F = {Ft}0≤t≤T is generated by the two processes given above, i.e.,

Ft = σ{Ws, 0 ≤ s ≤ t} ∨ σ{Ls, 0 ≤ s ≤ t} ∨ N ,

where N is the set of all P -null subsets of F .
We define:
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• L
2
FT

(0, T ;Rn) = {ψ : [0, T ]×Ω → R
n | ψ(·) is B([0, T ])⊗FT -measurable

such that E
∫ T

0
|ψ(t)|2dt <∞};

• L
2
F
(0, T ;Rn) = {ψ(·) ∈ L

2
FT

(0, T ;Rn)|ψ(·) is F-adapted};

• ℓ2 = {x = (x(i))i≥1 | ‖x‖ =
[∑∞

i=1(x
(i))2

] 1
2 <∞}.

Remark 2.1 In all the definitions of the relevant spaces in this paper, [0, T ]
can be replaced by any [R, S] with 0 ≤ R < S ≤ T .

In what follows, for any 0 ≤ R < S ≤ T , we denote

∆[R, S] = {(t, s) ∈ [R, S]2 | R ≤ s ≤ t ≤ S},

∆c[R, S] = {(t, s) ∈ [R, S]2 | R ≤ t < s ≤ S}.

For simplicity, we denote ∆[0, T ] = ∆, ∆c[0, T ] = ∆c.
We denote by (H(i))i≥1 the Teugels martingales associated with the Lévy

process {Lt : t ∈ [0, T ]}. More precisely

H
(i)
t = ci,iY

(i)
t + ci,i−1Y

(i−1)
t + · · ·+ ci,1Y

(1)
t ,

where Y
(i)
t = L

(i)
t − E[L

(i)
t ] = L

(i)
t − tE[L

(i)
1 ] for all i ≥ 1 and L

(i)
t are so

called power-jump processes, i.e., L
(1)
t = Lt and L

(i)
t =

∑
0≤s≤t(∆Lt)

i for
i ≥ 2. Here, for any process x(t), we denote by x(t−) = lims→t− x(s) and
∆xt = x(t)− x(t−).

It was shown in [10] that the coefficients ci,k correspond to the orthonor-
malization of the polynomials 1, x, x2, . . . with respect to the measure µ(dx) =
x2ν(dx) + σ2δ0(dx):

qi−1 = ci,ix
i−1 + ci,i−1x

i−2 + · · ·+ ci,1.

We set

pi(x) = xqi−1(x) = ci,ix
i + ci,i−1x

i−1 + · · ·+ ci,1x.

The martingales (H(i))i≥1 can be chosen to be pairwise strongly orthonormal
martingales. Furthermore, [H(i), H(j)], i 6= j, and {[H(i), H(j)]t − t}t≥0 are
uniformly integrable martingales with initial value 0, i.e., 〈H(i), H(j)〉t = δijt.
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Throughout this paper, we consider the following BSVIEL:

Y (t) = ψ(t) +

∫ T

t

f(t, s, Y (s−), Z(t, s), Z(s, t), U(t, s), U(s, t))ds

+

∫ T

t

Z(t, s)dWs −
∞∑

i=1

∫ T

t

U (i)(t, s)dH(i)
s , 0 ≤ t ≤ T, (3)

where ψ(·) ∈ L
2
FT

(0, T ;R) and f : ∆c × R× R
d × R

d × ℓ2 × ℓ2 × Ω → R is a
given map.

We denote by L
2(0, T ;L2

F
(0, T ;Rd)) the space of all processes Z : [0, T ]2×

Ω → R
d such that for almost all t ∈ [0, T ], Z(t, ·) ∈ L

2
F
(0, T ;Rd) satisfying

E
∫ T

0

∫ T

0
|Z(t, s)|2dsdt < ∞. We denote by ℓ2(0, T ;L2

F
(0, T ;R)) the space of

processes U : [0, T ]2×Ω → ℓ2 such that for each i ≥ 1 and almost all t ∈ [0, T ],

U (i)(t, ·) ∈ L
2
F
(0, T ;R) satisfying ‖U‖2 =

∑∞
i=1 E

∫ T

0

∫ T

0
|U (i)(t, s)|2dsdt <∞.

We make the following assumptions:
(H1) Let f : ∆c ×R×R

d ×R
d × ℓ2 × ℓ2 ×Ω → R be B(∆c ×R×R

d ×R
d ×

ℓ2 × ℓ2)⊗FT -measurable such that s→ f(t, s, y, z, η, u, ζ) is F−adapted for
all (t, y, z, η, u, ζ) ∈ [0, T ]× R× R

d × R
d × ℓ2 × ℓ2 and

E

∫ T

0

(∫ T

t

|f0(t, s)|ds

)2

dt <∞,

where f0(t, s) ≡ f(t, s, 0, 0, 0, 0, 0). Moreover, for any (y1, z1, η1, u1, ζ1) and
(y2, z2, η2, u2, ζ2) ∈ R× R

d × R
d × ℓ2 × ℓ2, it holds

|f(t, s, y1, z1, η1, u1, ζ1)− f(t, s, y2, z2, η2, u2, ζ2)|

≤ Ly(t, s)|y1 − y2|+ Lz(t, s)|z1 − z2|+ Lη(t, s)|η1 − η2|

+Lu(t, s)‖u1 − u2‖+ Lζ(t, s)‖ζ1 − ζ2‖, (4)

where the coefficients Ly(t, s), Lz(t, s), Lη(t, s), Lu(t, s) and Lζ(t, s) are deter-
mined functions from ∆c to R such that

sup
t∈[0,T ]

∫ T

t

[L2
y(t, s) + L2

η(t, s) + L2
ζ(t, s)]ds <∞, (5)

sup
t∈[0,T ]

∫ T

t

[L2
z(t, s) + L2

u(t, s)]ds < 1. (6)

Let’s give the notion of M-solution of BSVIEL (3).
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Definition 2.2 A triple of processes (Y (·), Z(·, ·), U(·, ·)) ∈ L
2
F
(0, T ;R) ×

L
2(0, T ;L2

F
(0, T ;Rd)) × ℓ2(0, T ;L2

F
(0, T ;R)) is called an adapted M-solution

of BSVIEL (3) if (3) is satisfied in the Itô’s sense for almost all 0 ≤ t ≤ T ,
and it holds that

Y (t) = EY (t) +

∫ t

0

Z(t, s)dWs +
∞∑

i=1

∫ t

0

U (i)(t, s)dH(i)
s . (7)

3 Existence and uniqueness of solution

Theorem 3.1 Suppose (H1) holds. Then for any ψ(·) ∈ L
2
FT

(0, T ;R), the
BSVIEL (3) has a unique M-solution (Y (·), Z(·, ·), U(·, ·)) ∈ L

2
F
(0, T ;R) ×

L
2(0, T ;L2

F
(0, T ;Rd))× ℓ2(0, T ;L2

F
(0, T ;R)).

Proof. From (5) and (6), we know that there exists a sequence 0 = T0 <
T1 < · · · < Tk−1 < Tk = T and δ ∈ (0, 1) satisfying:

sup
t∈[Ti−1,Ti]

∫ Ti

t

[L2
y(t, s) + L2

η(t, s) + L2
ζ(t, s)]ds ≤

1− δ

4
, 1 ≤ i ≤ k, (8)

sup
t∈[Ti−1,Ti]

∫ Ti

t

[L2
z(t, s) + L2

u(t, s)]ds ≤
1− δ

4
, 1 ≤ i ≤ k. (9)

We split the rest of the proof into several steps.
Step 1. The existence and uniqueness of M-solution for BSVIELs (3) on

[Tk−1, T ].
Let M2[Tk−1, T ] be the subspace of (y(·), z(·, ·), u(·, ·)) ∈ L

2
F
(Tk−1, T ;R)×

L
2(Tk−1, T ;L

2
F
(Tk−1, T ;R

d))× ℓ2(Tk−1, T ;L
2
F
(0, T ;R)) such that

y(t) = Ey(t) +

∫ t

0

z(t, s)dWs +
∞∑

i=1

∫ t

0

u(i)(t, s)dH(i)
s , t ∈ [Tk−1, T ]. (10)

Furthermore, for any (y(·), z(·, ·), u(·, ·)) ∈ M2[Tk−1, T ], (t, r) ∈ ∆ and t ∈
[Tk−1, T ], we have

E

∫ t

r

|z(t, s)|2ds+ E

∫ t

r

‖u(t, s)‖2ds

≤ E

∫ t

0

|z(t, s)|2ds+ E

∫ t

0

‖u(t, s)‖2ds

≤ E|y(t)− Ey(t)|2 ≤ E|y(t)|2. (11)
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For every (y(·), z(·, ·), u(·, ·)) ∈ M2[Tk−1, T ] and t ∈ [Tk−1, T ], we denote

ϕ(t) = ϕ(t) +

∫ T

t

f(t, s, Y (s−), z(t, s), z(s, t), u(t, s), u(s, t))ds. (12)

By (8) and (9), from (H1) and Cauchy-Schwartz inequality, for any t ∈
[Tk−1, T ], we have

|ϕ(t)|2 ≤ C

[
|ϕ(t)|2 +

(∫ T

t

f0(t, s)ds

)2

+

∫ T

t

|y(s)|2ds

]

+(1− δ2)

[∫ T

t

|z(t, s)|2ds+

∫ T

t

|z(s, t)|2ds

+

∫ T

t

‖u(t, s)‖2ds+

∫ T

t

‖u(s, t)‖2ds

]
. (13)

Hereafter C is a generic positive constant which may be different from line
to line.

Noting (11), for any r ∈ [Tk−1, T ], we have

E

∫ T

r

|ϕ(t)|2dt

≤ CE

[∫ T

r

|ϕ(t)|2dt+

∫ T

r

(∫ T

t

|f0(t, s)|ds

)2

dt+

∫ T

r

∫ T

t

|y(s)|2ds

]
dt

+(1− δ2)E

[∫ T

r

|y(t)|2dt+

∫ T

r

∫ T

t

|z(t, s)|2dsdt

+

∫ T

r

∫ T

t

‖u(t, s)‖2dsdt

]
.

which implies that ϕ(·) ∈ L
2
FT

(Tk−1, T ;R). Then, for any t ∈ [Tk−1, T ],
by the martingale representation theorem in Bahlari et al. [3], there ex-
ists a unique pair of processes (Z(·, ·), U(·, ·)) ∈ L

2(0, T ;L2
F
(0, T ;Rd)) ×

ℓ2(0, T ;L2
F
(0, T ;R)) such that

ϕ(t) = Eϕ(t) +

∫ T

0

Z(t, s)dWs +

∞∑

i=1

∫ T

0

U (i)(t, s)dH(i)
s . (14)

Let

Y (t) = Eϕ(t) +

∫ t

0

Z(t, s)dWs +

∞∑

i=1

∫ T

0

U (i)(t, s)dH(i)
s , (15)
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we then get

Y (t) = ϕ(t)−

∫ T

t

Z(t, s)dWs −
∞∑

i=1

∫ T

t

U (i)(t, s)dH(i)
s

= ϕ(t) +

∫ T

t

f(t, s, Y (s−), z(t, s), z(s, t), u(t, s), u(s, t))ds

−

∫ T

t

Z(t, s)dWs −
∞∑

i=1

∫ T

t

U (i)(t, s)dH(i)
s .

Thus, we get a unique adapted M-solution (Y (·), Z(·, ·), U(·, ·)) for BSVIEL
(3) on [Tk−1, T ]. Clearly, (Y (·), Z(·, ·), U(·, ·)) ∈ M2[Tk−1, T ].

Next, we prove the uniqueness of adapted M-solution.
Let (Y (·), Z(·, ·), U(·, ·)) and (Y (·), Z(·, ·), U(·, ·)) be two adapted M-solutions

of BSVIEL (3) on [Tk−1, T ]. For all t ∈ [Tk−1, T ], by (H1) and Cauchy-
Schwartz inequality, we’re able to obtain

E|Y (t)− Y (t)|2 + E

∫ T

t

|Z(t, s)− Z(t, s)|2ds

+E

∫ T

t

‖U(t, s)− U(t, s)‖2ds

≤ CE

∫ T

t

|Y (s)− Y (s)|2ds+ (1− δ2)E

[∫ T

t

|Z(t, s)− Z(t, s)|2ds

+E

∫ T

t

|Z(s, t)− Z(s, t)|2ds+ E

∫ T

t

‖U(t, s)− U(t, s)‖2ds

+E

∫ T

t

‖U(s, t)− U(s, t)‖2ds

]
(16)

Similar to (11), we have

E

∫ t

r

|Z(t, s)− Z(t, s)|2ds+ E

∫ t

r

‖U(t, s)− U(t, s)‖2ds

≤ E|Y (t)− Y (t)|2, (t, r) ∈ ∆ (17)

8



Hence, for r ∈ [Tk−1, T ), we have

E

∫ T

r

|Y (t)− Y (t)|2dt+ E

∫ T

r

∫ T

t

|Z(t, s)− Z(t, s)|2dsdt

+E

∫ T

r

∫ T

t

‖U(t, s)− U(t, s)‖2dsdt

≤ CE

∫ T

r

∫ T

t

|Y (s)− Y (s)|2dsdt

+(1− δ2)

[
E

∫ T

r

|Y (t)− Y (t)|2dt+ E

∫ T

r

∫ T

t

|Z(t, s)− Z(t, s)|2dsdt

+E

∫ T

r

∫ T

t

‖U(t, s)− U(t, s)‖2dsdt

]
. (18)

Then the uniqueness is an immediate consequence of Gronwall’s inequality.
Step 2. Solvability of a stochastic integral equation on [Tk−1, T ].
For (t, s) ∈ [Tk−2, Tk−1] × [Tk−1, T ], by Step 1, we know that the values

Y (s), Z(s, t) and U(s, t) are already determined. Hence, for (t, s, z, u) ∈
[Tk−2, Tk−1]× [Tk−1, T ]× R

d × ℓ2, we can define

fk−1(t, s, z, u) = f(t, s, Y (s−), z, Z(s, t), u, U(s, t)). (19)

We now consider the following stochastic integral equation :

ϕk−1(t) = ϕ(t) +

∫ T

Tk−1

fk−1(t, s, Z(t, s), U(t, s))ds−

∫ T

Tk−1

Z(t, s)dWs

−
∞∑

i=1

∫ T

Tk−1

U (i)(t, s)dH(i)
s , t ∈ [Tk−2, Tk−1], (20)

By (H1), the above equation admits a unique solution (ϕk−1(·), Z(·, ·), U(·, ·))
such that ϕk−1(t) being FTk−1

-adapted. This uniquely determines the values
Z(t, s) and U(t, s) for (t, s) ∈ [Tk−2, Tk−1]× [Tk−1, T ].

Step 3. Complete the proof by induction.
By the previous two steps, we have determine the values Y (t) for t ∈

[Tk−1, T ], and the values Z(t, s) and U(t, s) for (t, s) ∈ ([Tk−1, T ]× [0, T ]) ∪
([Tk−2, Tk−1]× [Tk−1, T ]). From the definition of fk−1(t, s, z, u), one can see
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that (ϕk−1(·), Z(·, ·), U(·, ·)) satisfies

ϕk−1(t) = ϕ(t) +

∫ T

Tk−1

f(t, s, Y (s−), Z(t, s), Z(s, t), U(t, s), U(s, t))ds

−

∫ T

Tk−1

Z(t, s)dWs −
∞∑

i=1

∫ T

Tk−1

U (i)(t, s)dH(i)
s , t ∈ [Tk−2, Tk−1].

For t ∈ [0, Tk−1], we consider the following equation:

Y (t) = ϕk−1(t) +

∫ Tk−1

t

f(t, s, Y (s−), Z(t, s), Z(s, t), U(t, s), U(s, t))ds

−

∫ Tk−1

t

Z(t, s)dWs −
∞∑

i=1

∫ Tk−1

t

U (i)(t, s)dH(i)
s . (21)

Note that ϕk−1(t) is FTk−1
-adapted. From Step 1, we are able to prove that

(21) is solvable on [Tk−2, Tk−1], then the values Y (t) for t ∈ [Tk−2, Tk−1], the
values Z(t, s) and U(t, s) for (t, s) ∈ [Tk−2, Tk−1] × [0, Tk−1] are determined.
Therefore, we obtain the values Y (t) for t ∈ [Tk−2, T ], and the values Z(t, s)
and U(t, s) for (t, s) ∈ [Tk−2, T ] × [0, T ]. Moreover, for t ∈ [Tk−2, Tk−1], we
have

Y (t) = ϕk−1(t) +

∫ Tk−1

t

f(t, s, Y (s−), Z(t, s), Z(s, t), U(t, s), U(s, t))ds

−

∫ Tk−1

t

Z(t, s)dWs −
∞∑

i=1

∫ Tk−1

t

U (i)(t, s)dH(i)
s

= ϕ(t) +

∫ T

t

f(t, s, Y (s−), Z(t, s), Z(s, t), U(t, s), U(s, t))ds

−

∫ T

t

Z(t, s)dWs −
∞∑

i=1

∫ T

t

U (i)(t, s)dH(i)
s . (22)

Thus, the equation is solvable on [Tk−2, T ]. We then complete the proof by
induction. �

Further, we have the following stable result.

Theorem 3.2 Let f : ∆c ×R×R
d ×R

d × ℓ2 × ℓ2 ×Ω → R satisfy (H1) and
ψ(·) ∈ L

2
F (0, T ;R). Let (Y (·), Z(·, ·), U(·, ·)) ∈ L

2
F
(0, T ;R)×L

2(0, T ;L2
F
(0, T ;Rd))×
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ℓ2(0, T ;L2
F
(0, T ;R)) be the unique M-solution of BSVIEL (3) corresponding

to (ψ(·), f). Then, for all r ∈ [0, T ], we have

E

∫ T

r

|Y (t)− Y (t)|2dt+ E

∫ T

r

∫ T

r

|Z(t, s)− Z(t, s)|2dsdt

+E

∫ T

r

∫ T

r

‖U(t, s)− U(t, s)‖2dsdt

≤ C

[
E

∫ T

r

|ψ(t)− ψ(t)|2dt

+

∫ T

r

(∫ T

r

|f(t, s, Z(t, s), Z(s, t), U(t, s), U(s, t))

−f (t, s, Z(t, s), Z(s, t), U(t, s), U(s, t))|ds
)2
dt
]
. (23)

Proof. The proof is similar to Step 1 of the proof of Theorem 3.1. �

4 Duality principle and comparison theorem

In this section, we establish a duality principle between linear BSVIELs and
linear FSVIELs. As an application of the duality principle, a comparison
theorem for M-solutions of certain BSVIELs is given.

Consider the following BSVIEL:

Y (t) = ϕ(t) +

∫ T

t

[B0(t, s)Y (s−) +B(t, s)Z(s, t) +

∞∑

i=1

C(i)(t, s)U (i)(s, t)]ds

−

∫ T

t

Z(t, s)dWs −
∞∑

i=1

∫ T

t

U (i)(t, s)dH(i)
s . (24)

Here B0(·, ·), B(·, ·) = (B1(·, ·), · · · , Bd(·, ·))
T and

(
C(i)(·, ·)

)
i≥1

satisfying the
following assumption:
(H2) For each j = 0, 1, . . . , d, the process Bj : ∆c × Ω → R such that for
each t ∈ [0, T ], Bj(t, s) is F -adapted, and sup(t,s)∈∆c esssupω∈Ω|Bj(t, s)| <∞.

For each i ≥ 1, the process C(i) : ∆c × Ω → R such that for each t ∈ [0, T ],
C(i)(t, s) is F -adapted, and sup(t,s)∈∆c esssupω∈Ω|C

(i)(t, s)| <∞.

We now state the duality principle.
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Theorem 4.1 Suppose (H2) hold. Let X(t) be the solution of the following
R-valued forward stochastic Volterra integral equation:

X(t) = ψ(t) +

∫ t

0

X(s)B0(s, t)ds+

∫ t

0

X(s)B(s, t)dWs

+
∞∑

i=1

∫ t

0

X(s)C(i)(s, t)dH(i)
s . (25)

Then, we have the following duality principle:

E

∫ T

0

Y (t)ψ(t)dt = E

∫ T

0

X(t)ϕ(t)dt. (26)

12



Proof. From the definition of M-solution, we have

E

∫ T

0

Y (t)ψ(t)dt

= E

∫ T

0

Y (t)

(
X(t)−

∫ t

0

X(s)B0(s, t)ds−

∫ t

0

X(s)B(s, t)dWs

−
∞∑

i=1

∫ t

0

X(s)C(i)(s, t)dH(i)
s

)
dt

= E

∫ T

0

Y (t)X(t)dt− E

∫ T

0

∫ T

s

B0(s, t)X(s)Y (t)dtds

−E

∫ T

0

(∫ t

0

X(s)B(s, t)dWs +

∞∑

i=1

∫ t

0

X(s)C(i)(s, t)dH(i)
s

)
×

(
EY (t) +

∫ t

0

Z(t, s)dWs +
∞∑

i=1

∫ t

0

U (i)(t, s)dH(i)
s

)
dt

= E

∫ T

0

Y (t)X(t)dt− E

∫ T

0

∫ T

t

B0(t, s)X(t)Y (s)dsdt

−E

∫ T

0

∫ t

0

X(s)B(s, t)Z(t, s)dsdt−
∞∑

i=1

E

∫ T

0

∫ t

0

X(s)C(i)(s, t)U (i)(t, s)dtds

= E

∫ T

0

Y (t)X(t)dt− E

∫ T

0

∫ T

t

B0(t, s)X(t)Y (s)dsdt

−E

∫ T

0

∫ T

s

X(s)B(s, t)Z(t, s)dtds−
∞∑

i=1

E

∫ T

0

∫ T

s

X(s)C(i)(s, t)U (i)(t, s)dtds

= E

∫ T

0

Y (t)X(t)dt− E

∫ T

0

∫ T

t

B0(t, s)X(t)Y (s)dsdt

−E

∫ T

0

∫ T

t

X(t)B(t, s)Z(s, t)dsdt−
∞∑

i=1

E

∫ T

0

∫ T

t

X(t)C(i)(t, s)U (i)(s, t)dsdt

= E

∫ T

0

[
X(t)

(
Y (t)−

∫ T

t

B0(t, s)Y (s)ds−

∫ T

t

B(t, s)Z(s, t)ds

−
∞∑

i=1

∫ T

t

C(i)(t, s)U (i)(s, t)ds

)]
dt

= E

∫ T

0

X(t)ψ(t)dt.

13



The proof is complete. �

With the help of the duality principle given above, we’re able to establish
a comparison theorem for M-solutions of certain BSVIELs. Before we state
the main result, we show the following Lemma.

Lemma 4.1 Consider the following FSVIEL:

X(t) = g(t) +

∫ t

0

a(s, t)X(s)ds−

∫ t

0

b(s, t)X(s)dWs

−
∞∑

i=1

∫ t

0

c(i)(s, t)X(s)dH i
s, t ∈ [0, T ], (27)

where a : [0, T ]2 × Ω → R, b : [0, T ]2 × Ω → R
d and c : [0, T ]2 × Ω → ℓ2 are

three B([0, T ]2) ⊗ FT -measurable and uniformly bounded processes, and for
almost all t ∈ [0, T ], a(t, ·), b(t, ·) and c(t, ·) are F-adapted. Moreover, for all

(t, s, ω) ∈ [0, T ]2 × Ω,
∑∞

i=1 c
(i)(s)∆H

(i)
s > −1.

Then for any g(·) ∈ L
2
FT

(0, T ;R) with g(t) ≥ 0, we have

X(t) ≥ 0, t ∈ [0, T ], a.s. (28)

Proof. The proof follows the ideas in [18]. We first consider a special case
of FSVIEL (27). More precisely, let 0 = τ0 < τ1 < · · · being a sequence of
F-stopping times, and

a(s, t) =
∑

k≥0

ak(s)1[τk,τk+1](t), b(s, t) =
∑

k≥0

bk(s)1[τk,τk+1](t),

c(s, t) =
∑

k≥0

ck(s)1[τk,τk+1](t), g(t) =
∑

k≥0

gk1[τk ,τk+1](t),

where for all k ≥ 0, ak(·), bk(·) and ck(·) being some F-adapted and bounded

processes such that
∑∞

i=1 c
(i)
k (s)∆H

(i)
s > −1, and each gk ≥ 0 is Fτk-measurable.

As a result, on [0, τ1], the equation (27) is equivalent to

X(t) = g0 +

∫ t

0

a0(s)X(s)ds−

∫ t

0

b0(s)X(s)dWs

−
∞∑

i=1

∫ t

0

c
(i)
0 (s)X(s)dH(i)

s , (29)

14



From Protter [16], the unique solution to equation (29) takes the form

X(t) = g0 exp

(∫ t

0

((a0(r)− b0(r)
2/2)dr + dMr)

)

∏

t<r≤s

(1 + ∆Mr) exp(−∆Mr) ≥ 0,

where

Mr =

∫ r

0

b0(s)dWs +

∞∑

i=1

∫ r

0

c
(i)
0 (s)dH(i)

s .

By induction, we can prove that (28) holds on [τi, τi+1]. The general case can
be proved by approximation. �

Next, we consider the following BSVIEL:

Y (t) = −ϕ(t) +

∫ T

t

f(t, s, Y (s−), Z(s, t), U(s, t))ds

−

∫ T

t

Z(t, s)dWs −
∞∑

i=1

∫ T

t

U (i)(t, s)dH i
s, t ∈ [0, T ], (30)

where the function f : [0, T ]2 × R× R
d × ℓ2 → R satisfies assumption (H1)

in a simplified way.
As we know, the comparison theorem is not always hold for BSDEs with

jump. One can see Barles et al. [6] for a counterexample. In our frame, we
need the following extra assumption on the coefficient f :
(H3) the function f(t, s, y, z, u) is nondecreasing in u.

Theorem 4.2 Let f, f : [0, T ]2×R×R
d× ℓ2 → R satisfying (H1) and (H3)

and let ϕ(·), ϕ(·) ∈ L
2
FT

(0, T ;R) such that

f(t, s, y, z, u) ≤ f(t, s, y, z, u), ∀(t, s, y, z, u) ∈ [0, T ]2 × R× R
d × ℓ2, a.s.

and

ϕ(t) ≥ ϕ(t), ∀t ∈ [0, T ], a.s. (31)

Let (Y (·), Z(·, ·), U(·, ·)) (resp. (Y (·), Z(·, ·), U(·, ·))) be the adapted M-solution
to BSVIEL (30) corresponding to (f, ϕ) (resp. (f, ϕ)), then

Y (t) ≤ Y (t), ∀t ∈ [0, T ], a.s. (32)
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Proof. For ∀t ∈ [0, T ], we have

Y (t)− Y (t)

= ϕ(t)− ϕ(t) +

∫ T

t

f(t, s, Y (s−), Z(s, t), U(s, t))− f(t, s, Y (s), Z(s, t), U(s, t))ds

−

∫ T

t

[Z(t, s)− Z(t, s)]dWs −
∞∑

i=1

∫ T

t

[U (i)(t, s)− U
(i)
(t, s)]dH i

s

= ϕ̂(t) +

∫ T

t

{B0(t, s)[Y (s)− Y (s)] +B(t, s)[Z(t, s)− Z(t, s)]

+
∞∑

i=1

C(i)(t, s)[U (i)(t, s)− U
(i)
(t, s)]}ds−

∫ T

t

[Z(t, s)− Z(t, s)]dWs

−
∞∑

i=1

∫ T

t

[U (i)(t, s)− U
(i)
(t, s)]dH i

s, (33)

where

ϕ̂(t) = ϕ(t)− ϕ(t) +

∫ T

t

f(t, s, Y (s), Z(s, t), U(s, t))

−f(t, s, Y (s), Z(s, t), U(s, t))ds ≤ 0,

B0(t, s) = [f(t, s, Y (s−), Z(s, t), U(s, t))− f(t, s, Y (s), Z(s, t), U(s, t))]

[Y (s)− Y (s)]−11{Y (s)6=Y (s)},

andB(t, s) = (B1(t, s), · · · , Bd(t, s))
T , C(t, s) = (C(1)(t, s), · · · , C(i)(t, s) · · · ).

Here, for j = 1, · · · , d,

Bj(t, s) = [f(t, s, Y (s), Ẑj−1(s, t), U(s, t))− f(t, s, Y (s), Ẑj(s, t), U(s, t))]

[Zj(s, t)− Zj(s, t)]
−11{Zj(s,t)6=Zj(s,t)}

,

Ẑj(s, t) = (Z1(s, t), · · · , Zj(s, t), Zj+1(s, t), Zd(s, t))

and for i ≥ 1,

C(i)(t, s) = [f(t, s, Y (s), Z(s, t), Û (i−1)(s, t))− f(t, s, Y (s), Z(s, t), Û (i)(t, s))]

[U (i)(s, t)− U
(i)
(s, t)]−11

{U (i)(s,t)6=U
(i)

(s,t)}
,

Û (i)(t, s) = (U
(1)
(s, t), · · · , U

(i)
(s, t), U (i+1)(s, t), · · · ).

From Lemma 4.1, we can prove the result. �
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5 Applications in Finance

In this Section, we define a class of continuous-time dynamic risk measures
by means of BSVIELs.

The following definitions are borrowed from [19].

Definition 5.1 A map ρ : L2
FT

(0, T ;R) → L
2
F
(0, T ;R) is called a dynamic

risk measure if the following hold :
(i) For any ϕ(·), ϕ(·) ∈ L

2
FT

(0, T ;R), if ϕ(s) = ϕ(s), a.s.ω ∈ Ω, s ∈ [t, T ]
for some t ∈ [0, T ), then ρ(t;ϕ(·)) = ρ(t;ϕ(·)), a.s.ω ∈ Ω.

(ii) For any ϕ(·), ϕ(·) ∈ L
2
FT

(0, T ;R), if ϕ(s) ≥ ϕ(s), a.s.ω ∈ Ω, s ∈ [t, T ]
for some t ∈ [0, T ), then ρ(s;ϕ(·)) ≤ ρ(s;ϕ(·)), a.s.ω ∈ Ω, s ∈ [t, T ].

Definition 5.2 A dynamic risk measure ρ : L2
FT

(0, T ;R) → L
2
F
(0, T ;R) is

called a coherent risk measure if the following hold :
(i) There exists a deterministic integral function r(·) such that for any

ϕ(·) ∈ L
2
FT

(0, T ;R),

ρ(t;ϕ(·) + c) = ρ(t;ϕ(·))− ce−
∫ T

t
r(s)ds, a.s., t ∈ [0, T ].

(ii) For any ϕ(·) ∈ L
2
FT

(0, T ;R) and λ > 0,

ρ(t;λϕ(·)) = λϕ(t; ·), a.s., t ∈ [0, T ].

(iii) For any ϕ(·), ϕ(·) ∈ L
2
FT

(0, T ;R),

ρ(t;ϕ(·) + ϕ(·)) ≤ ρ(t;ϕ(·)) + ρ(t;ϕ(·)), a.s., t ∈ [0, T ].

In what follows, we denote by

ρ(t;ϕ(·)) = Y (t), (34)

where (Y (·), Z(·, ·), U(·, ·) is the unique M-solution of the following BSVIEL:

Y (t) = −ϕ(t) +

∫ T

t

f(t, s, Y (s−), Z(s, t), U(s, t))ds

−

∫ T

t

Z(t, s)dWs −
∞∑

i=1

∫ T

t

U (i)(t, s)dH i
s, t ∈ [0, T ]. (35)
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Lemma 5.1 Let f : [0, T ]2×R×R
d×ℓ2 → R satisfy (H1) and (H3), suppose

f is sub-additive, i.e.,

f(t, s, y1 + y2, z1 + z2, u1 + u2) ≤ f(t, s, y1, z1, u1) + f(t, s, y2, z2, u2),

∀(t, s) ∈ [0, T ]2, y1, y2 ∈ R, z1, z2 ∈ R
d, u1, u2 ∈ ℓ2, a.e.

then ϕ(·) → ρ(t;ϕ(·)) is sub-additive, i.e.,

ρ(t;ϕ1(·) + ϕ2(·)) ≤ ρ(t;ϕ1(·)) + ρ(t;ϕ2(·)), a.e.

Proof. We can get the conclusion by Theorem 4.2. �

Lemma 5.2 (i) If the generator f is of form

f(t, s, y, z, u) = r(s)y + f̃(t, s, z, u),

with r(·) being a deterministic integral function, then ϕ(·) → ρ(t;ϕ(·)) is
transition invariant, i.e.,

ρ(t;ϕ(·) + c) = ρ(t;ϕ(·))− ce−
∫ T

t
r(s)ds, a.s., t ∈ [0, T ], a.s., ∀c ∈ R.

In particular, if r(·) = 0, then

ρ(t;ϕ(·) + c) = ρ(t;ϕ(·))− c, a.s., t ∈ [0, T ], a.s., ∀c ∈ R.

(ii) If f : [0, T ]2 × R × R
d × ℓ2 → R is positively homogeneous, i.e.,

f(t, s, λy, λz, λu) = λf(t, s, y, z, u), ∀(t, s) ∈ [0, T ]2, λ ∈ R
+, y ∈ R, z ∈

R
d, u ∈ ℓ2, a.e. So is ϕ(·) → ρ(t;ϕ(·)).

Proof. The proof is obvious. �

By Lemmas 5.1 and 5.2, we are able to construct a class of dynamic
coherent risk measures by means of solution of certain BSVIELs. The proof
of the following theorem is obvious, so we omit it.

Theorem 5.3 Suppose f satisfy (H1) and (H3). Moreover,

f(t, s, y, z, u) = r(s)y + f̃(t, s, z, u),

with r(·) being a bounded and deterministic integral function, then ρ(·) de-

fined by (34) is a dynamic coherent risk measure if f̃(t, s, z, u) is positively
homogeneous and sub-additive.
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