
On the Three Colorability of Planar GraphsI. CahitAbstratThe hromati number of an planar graph is not greater than four andthis is known by the famous four olor theorem and is equal to two whenthe planar graph is bipartite. When the planar graph is even-triangulatedor all yles are greater than three we know by the Heawood and theGrotszh theorems that the hromati number is three. There are manyonjetures and partial results on three olorability of planar graphs whenthe graph has spei� yles lengths or yles with three edges (triangles)have speial distane distributions. In this paper we have given a newthree olorability riteria for planar graphs that an be onsidered as angeneralization of the Heawood and the Grotszh theorems with respet tothe triangulation and yles of length greater than ≥ 4. We have shownthat an triangulated planar graph with k disjoint holes is 3-olorable ifand only if every hole satis�es the parity symmetri property, where ahole is a yle (fae boundary) of length greater than 3.1 IntrodutionFour oloring of planar graphs is a famous theorem (4CT) and it has been provedtwie by the same method by the assistane of an omputer and orretness ofthe proof has been veri�ed by another omputer program [1℄,[2℄,[3℄. The authorhas given an non-omputer proof of the four olor theorem by using spiral hainsand spiral hain oloring in the maximal planar graphs [2℄,[3℄,[17℄. However, foran given planar graph the question �When three olor su�e?� has not beenompletely solved. When the planar graph is even-triangulated or all yles aregreater than three we know by the Heawood and the Grotszh theorems thatthe hromati number is three [1℄. In the literature, there are several proofs ofGrotszh theorems [11℄,[15℄,[16℄,[18℄ and the simplest and e�ient algorithmiproof is appear to be given by the author [17℄. It has been also onsidered onthe other surfaes [12℄,[13℄,[15℄. Let C = {White, Gray, Black} = {W, G, B}be the set of three olors and when we needed we use Red = {R} as the fourtholor.In this paper we have given a new three olorability riteria for planar graphsthat an be onsidered as an generalization of the Heawood and the Grotszhtheorems with respet to the triangulation and yles of length greater than ≥ 4.1



First we have de�ned the triangulated ring and gave neessary and su�ientondition for three olorability ring. Next we have given an generaliztion oftriangulated rings for an triangulated planar graph with k disjoint holes whihis 3-olorable if and only if every hole satis�es the parity symmetri property,where a hole is a yle (fae boundary) of length greater than 3.
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Figure 1: Illustration of the triangulated rings for 3 and 4 olorings.2 Triangulated ringIn Fig. 1 we have shown two double triangulated rings together with their ol-orings. The double triangulated ring shown on the right (Case A) is 3-olorablewhile double triangulated ring shown on the left (Case B) is 4-olorable.We will make a few formal de�nitions �rst. A triangulated ring is a 2-onneted planar graph G with minimum degree ≥ 3 with two faes Fi and Fowhose faial walks are the (indued) yles Ci and Co, respetively, suh that:(1) V (Ci) and V (Co) partition V (G). (That is V (Ci)∪V (Co) = V (G) and
V (Ci)∩V (Co) = ∅), where indies i and o are being used to denote the innerand outer yles (faes) of the graph.(2) Every fae other than Fi and Fo is a triangle.Every vertex v on Ci or Co has a fan, namely the triangles inident with v(other than possibly Ci and Co). These fans, along with Fi and Fo, partition thefaes of G. Let the fan graph of G be the graph F (G) whose verties fi representthe fans Fi of G, where an edge is in F (G) if the fans share a ommon edge. Theverties fi an (and will be) identi�ed with the of the fan (the vertex of the fanadjaent to all others). The graph F (G) is also the subgraph of G indued by
{f0, f1, ..., f2k−1}. The fan graph of G is a even yle f0, f1, ..., f2k−1. The yliparity sequene of (cps(G)) is the yli sequene p0p1p2...p2k−1 where is theparity (even/odd) of the number of triangles in Fi. Note that every triangulatedring has at most one 3-oloring (up to permutation of olors), beause a triangle3



Figure 2: All possible three olorings of the triangulated rings with inner-ylesof length 3,4 and 5.
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Figure 3: Three olorable triangulated rings that cps(Gi) ∈ T, i = 1, 2, where
X is the symmetry axis of the graph.
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has exatly one 3-oloring (again, up to permutation of olors), and every edgenot in Co ∪ Ci is in a triangle. The next lemma takes this result one stepfurther. For that, we must introdue some terminology related to the cps ofa graph. If p0p1...p2k−1 is a cps with k ≥ 2 and pj = e, then de�ne the
e-ollapse of the cps at j to be the cps as p0p1...pj−2(pj−1 + pj+1)pj+2...p2k,where addition is of parities (modulo 2). That is, the e-ollapse of ooeeoeoo at
5 is ooee(o + o)o = ooeeeo. Finally, let T be the set of all cps's whih an betransformed into ee or (o)6m (i.e., 6mo's, for some integer m) by a �nite numberof e-ollapses.Let us give a simple lemma.Lemma 1. If G(Ci∪Co) is 3-olorable triangulated ring with all even fansthen |Ci| ≡ 0(mod3)or with all odd fans then |Ci| = |Co| ≡ 0(mod2), |Ci| 6= 4.Lemma 2. If G is a triangulated ring, then G is 3-olorable i� cps(G) ∈ T .First, we need some lemmas. The �rst is easily proven using indution:Lemma 2.1. Suppose F is a fan graph, where v is the vertex of F adjaentto all others, and u and w are the two verties of F
v with degree 1. Then:(a) If F is even and u, vand w are olored so that u and w reeive the sameolor, then this partial 3-oloring extends to a proper 3-oloring of F ;(b) In a proper 3-oloring of an even fan F , u and w reeive the same olor;() If F is odd and u, v, and w are olored so that u, v and w all reeivedi�erent olors, then this partial 3-oloring extends to a proper 3-oloring of F ;and(d) In a proper 3-oloring of an odd fan F, u, v, and w all reeive di�erentolors.If G is a triangulated ring with at least four fans, and Fj an even fan of G,we will all the [even℄ fan ollapse of G at Fj the graph H obtained from G bydeleting the verties of Fj other than fj−1, fj , and fj+1, and then identifyingthe verties fj−1 and fj+1.Lemma 2.2. Let G be a triangulated ring, and H the graph resulting from afan ollapse of G at Fj . Then G is 3-olorable if and only if H is. Furthermore,
cps(H) an be obtained from cps(G) by an e-ollapse atj.Proof: If c is a proper 3-oloring of G, then sine F is a fan, c(u) = c(w),by Lemma 2.1(b). This means that when H is reated, some verties will bedeleted (whih makes this smaller graph 3-olorable), and two verties with thesame olor will be identi�ed. This means H is 3-olorable. Now suppose c is aproper 3-oloring of H . To go from H to G, a vertex v0 will have to be splitinto u and w. We will let c(u) = c(w) = c(v0), and we still have a 3-oloring.To get G, we need to add some verties, so we need to make sure that we anextend the 3-oloring to these verties. Sine the fan whih will be reated iseven, Lemma 2.1(a) implies that this new fan is 3-olorable. The union of thesetwo proper 3-olorings gives a proper 3-oloring of G.To prove the seond result: The graph H is a triangulated ring with twofewer fans than G. All but one of the fans of H ome from fans of G, withthe other fan of H being the ombination of two fans Fj−1 and Fj+1 of G; theparity of this new fan is the sum of the parities of Fj−1 and Fj+1. QED.7



And the following result makes life easier:Lemma 2.3. If G1 and G2 are triangulated rings with the same cps, then G1is 3-olorable i� G2 is.Proof: If G1 and G2 are as stated above, then G1 an be transformed into
G2 by repeatedly adding two verties to a fan, or by removing two verties froma fan. If this is done to fan Fi, it doesn't a�et the oloring of fi−1, fi, or fi+1.QED.Proof of Lemma 2 : Let F (G) be the fan graph of G. Note that fan Fiontains the verties fi1 , fi, and fi+1 (where all indies are modulo 2k), whihorrespond to the verties u, v, and w in the statement of Lemma 2.1.We will begin by proving that if cps(G) ∈ T , then G is 3-olorable. Theproof will be by indution on the number of e-ollapses. If there are no e-ollapses, then we only have to settle the ases ee and (o)6m, sine eo, oo /∈ T. If cps(G) = ee, then F (G) ontains two verties v1 and v2, and (tehnially)
2 parallel edges. (Note that G itself an itself be a simple graph, beause the
e in the cps means there's an even number of triangles in eah fan, not zero.)If we olor f0 with 1 and f1 with 2, then note that for all i, pi = e, and fi−1and fi+1 are (trivially) olored with the same olor. Lemma 2.1(a) implies that
G is 3-olorable. Similarly, if cps(G) onsists of 6mo's, we olor the fan graphas follows. (Note that in this ase, 2k = 6m is a multiple of 6, so it's also amultiple of 3, and the oloring is well-de�ned:

c(fi) =











1 if i ≡ 0(mod3)

2 if i ≡ 1(mod3)

3 if i ≡ 2(mod3)Now, sine every pi is odd, all we need to do is to verify that fi−1, fi, and
fi+1 all reeive di�erent olors, for all i. This follows immediately from thede�nition, and Lemma 2.1() then implies that G is 3-olorable. Now supposethe result is true for N −1 e-ollapses, with N ≥ 1. Let G be a triangulated ringwhose cps(G) an be transformed into ee or (o)6m by N e-ollapses. Considerthe �rst e-ollapse, whih we will assume ours at j and results in the cpssequene S. If H is the fan ollapse of G at Fj , then cps(H) = S, by Lemma2.2.But sine S an be transformed into ee or (o)6m with N −1 e-ollapses, H is
3-olorable by the indution hypothesis. Lemma 2.2 states that H is 3-olorablei� G is, so G is 3-olorable.Now we have to show that if a triangulated ring G is 3-olorable, then
cps(G) ∈ T . Assume that G is 3-olorable. First, we will settle the ase where
cps(G) has no e's in it. In this ase, every pi is o, so the3-oloring must satisfy
c(fi+3) = c(fi) for all i, where indies are taken modulo 2k; this follows beause
c(fi), c(fi+1), and c(fi+2) must all be distint, sine pi+1 = o, by Lemma 4.1;and c(fi+1), c(fi+2), and c(fi+3) must all be distint, sine pi+2 = o. Thisfores c(fi) = c(fi+3). However, if the number of o's is not a multiple of 6,then 2k (the length of the cps) is not a multiple of 3. That means that theondition c(fi+3) = c(fi) fores all verties fi to be olored the same, whih isnot allowed by Lemma 2.1(). Hene there is no proper 3-oloring of G, ontrary8



to assumption. Thus the number of o's is a multiple of 6, so cps(G) = (o)6m ∈ T, as laimed. Now suppose that pj = e. If k = 1, then cps(G) = oe, eo,oree. It is easily seen that if cps(G) = oe (or eo) then G is not 3-olorable, so
cps(G) = ee ∈ T .So now we may assume that k ≥ 2. De�ne a sequene of graphs Gi inthe following way: Let G0 be G, and for all i ≥ 0, if pj = e in cps(Gi) and
cps(Gi) has length at least two, then let Gi+1 be the fan ollapse of Gi at Fj .Suppose we annot ontinue from GN . Note that, for all appliable i, cps(Gi+1)an be obtained from cps(Gi) by e-ollapse. Then cps(GN ) either has no e's,or has length two. Furthermore, GN is 3-olorable, by repeated appliation ofLemma 2.2. But we have seen GN an only be 3-olorable if cps(GN ) = ee or
cps(GN ) = (o)6m. In either ase, we an obtain ee or (o)6m from cps(G) byrepeated e-ollapsings. Thus cps(G) ∈ T , whih proves the lemma.The following lemma is given without proof and useful for 3-olorable trian-gulated rings.Lemma 3. Triangulated ring G is 3-olorable if cps(G) is symmetri and
|Co| ≡ 0(mod3) or |Co ∪ Ci| ≡ 0(mod3).For illustrations see the 3-olorings of the triangulated rings given in Fig. 2and 4. In Fig. 4 the symmetry axis is denoted by X .In Fig. 3 a more general three olorable triangulated rings have been shown.The csp(G)'s respetively are:

cps(G1) = {oab,...ab,ab,obaba...ba} (Fig.2 (left))
cps(G2) = {eab...babaebaba...ba} (Fig.2 (right)),where if b = e then b, = 0 and if b, = e then b = o, and o and e denote oddand even parities.3 Planar graphs with holesIn this setion we will extend the result obtained for the three-olorability ofthe triangulated rings to triangulated planar graphs with vertex disjoint k yles(holes) hi of lengths greater than three. Let G(hi), i = 1, 2, ..., k be the set oftriangulated rings arround the holes hi, where V (h1)∩V (h2)∩...∩V (hk) = ∅. Let

V (Co) be the outer-yle of G. Clearly V (Co)∩{V (h1)∪V (h2)∪...∪V (hk)} = ∅.Theorem 3. Let G be an triangulated planar graph with k disjoint holes hi,
i = 1, 2, ..., k. Then G is 3-olorable i� for every triangulated ring G(hi) wehave csp(G(hi)) ∈ T .Proof. Neessity of the theorem an be easily seen by the yli paritysequene of (cpsG(hi) whih we have assumed that an be transformed into eeor (o)

{6m}(see Lemma 2).Now de�ne the graph H(V, E) where the vertex set V (H) = {h1, h2, ..., hk}are the holes of G and ei,j = (hihj) ∈ E(H) if E(G((hi)) ∩ E(G(hj)) 6= ∅. Let
TG be an spanning tree of H(V, E). Then start oloring of the verties G(h1)�rst and next selet an vertex hi, i 6= 1suh that (hih1) ∈ TG. Color the vertiesof G(hı). Repeat this step for the other verties of TG. It is lear that sine9



cspG(hi) ∈ T and (G(hi)is an triangulated ring at the end G would be oloredproperly with three olors.Corollary. The planar triangulated graph G(hi) with k holes hi = 1, 2, ..., kan be made 3-olorable triangulated ring with Ci = h1 ∪ h2 ∪ ... ∪ hk.Proof. Delete suitable edges of the spanning tree TG in merging two adjaentholes hi and hj . At the end the inner yle Ci will be the union of the holes.Next de�ne the semi-triangulated graph G∗as an triangulated ring in whihthere exists at least one yle Cr of length greater than three suh that Ci∩Cr 6=
∅ and Co ∩ Cr 6= ∅. Note that non-triangulated ring has no triangle; hene is
3-olorable by Grotzsh theorem. The following simple theorem gives usefulinformation when G∗is 3-olorable.Theorem 4. Let G be an triangulated ring. If csp(G) /∈ T and G∗be anysemi-triangulated ring obtained by the addition of an single yle Cr of length
k ≥ 4 then G∗is 3-olorable. If csp(G) ∈ T and G∗be any semi-triangulated ringobtained by the addition of an single yle Cr suh that |E(Co) ∩ E(Cr)| ≥ 2then G

∗ is 3-olorable.Proof. If csp(G) /∈ G then for any 3-oloring c there must be an vertex vsuh that c(v) = i = j, where i, j ∈ {1, 2, 3}, i 6= j. Note that suh a vertex
v an be seleted freely beforehand sine G is an triangulated ring. Then thevertex v is splited into two v

′and v
′′verties in G∗suh that (v

′

v
′′

) ∈ Cr. Henethe 3-oloring c of G∗an be made proper by c(v
′

) = i and c(v
′′

) = j and theother verties of Cran be olored alternatingly by two olors 1, 2 or 3, 2. Seondpart of the theorem is similar to the �rst part but this time sine csp(G) ∈ Gthe oloring c of G is an proper 3-oloring and the vertex v with c(v) = i mustbe splited into three verties i.e., |E(Co)∩E(Cr)| ≥ 2. Therefore oloring c willbe proper three oloring of G∗ = G ∪ Cr.In fat the above theorem an be generalized to semi-triangulated rings with
k yles of length ≥ 4. That is think of G∗as disjoint triangular ladders (all withtriangles) separated by yles of length ≥ 4. Let us denote the semi-triangulatedgraph G∗ = G∗(C1 ∪ C2 ∪ ... ∪ Ck). This suggest that as we are inserting largeyles into 3-olorable planar graph three olorability maintained.4 Another wave of onjetures on 3-olorabilityAs early as 1959, Grötzsh proved that every planar graph without 3-yles is
3-olorable. This result was later improved by Aksionov in 1974. He provedthat every planar graph with at most three 3-yles is 3-olorable. In 1976,Steinberg onjetured the following :Steinberg's Conjeture (1976) [5℄ : Every planar graph without 4- and 5-yles is 3-olorable.An algorithmi proof to Steinberg's onjeture has been proposed by theauthor in 2006 [4℄. We note that the statement of the Steinberg's onjetureis not sharp sine there are 3-olorable planar graphs with four and �ve yles(see Fig. 7).In 1969, Havel posed the following problem:10
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C2
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C1

Figure 5: Three oloring of an planar graph with 4 holes.Havel's Problem (1969) [20℄ : Does there exist a onstant C suh thatevery planar graph with the minimal distane between triangles at least C is
3-olorable?Aksionov and Mel'nikov proved that if C exists, then C ≥ 4, and onjeturedthat C = 5 [6℄. These two problems remain widely open. In 1991, Erdössuggested the following relaxation of Steinberg's Conjeture: Determine thesmallest value of k, if it exists, suh that every planar graph without any ylesof length 4 to k is 3-olorable. The best known bound for suh a k is 7 [19℄. Manyother su�ient onditions of 3-olorability onsidering planar graphs withoutyles of spei� lengths were proposed.At the rossroad of Havel's and Steinberg's problems (sine the authors on-sider planar graphs without yles of spei� length and without lose triangles),Borodin and Raspaud proved that every planar graph without 3-yles at dis-tane less than four and without 5-yles is 3-olorable (the distane was laterdereased to three by Xu, and to two by Borodin and Glebov). As well, theyproposed the following onjeture:Strong Bordeaux Conjeture (2003) [21℄: Every planar graph without 5-yleand without adjaent triangle is 3 olorable.By adjaent yles, we mean those with an edge in ommon. This onjetureimplies Steinberg's Conjeture. Finally, Borodin et al. onsidered the adjaenybetween yles in planar graphs where all lengths of yles are authorized, whihseems to be the losest from Havel's problem ; they proved that every planargraphs without triangles adjaent to yles of length from 3 to 9 is 3-olorable. Moreover they proposed the following onjeture:11



Figure 6: Three olorable planar graphs with triangulated ring (upper): withthree yles of length 5 and 6, (lower): with two yles of length 5.
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Novosibirsk 3-Color Conjeture (2006) [22℄: Every planar graph without 3-yles adjaent to yles of length 3 or 5 is 3-olorable. This implies StrongBordeaux Conjeture and Steinberg's Conjeture.We laim that the above two onjetures an be settled by the use of spiralhains and this will be given in the updated version of [4℄.In Fig. 9 we have shown triangulated rings with 3- and 4-olorings. Notethat the Kempe hains K(W, B), K(G, B) in Fig. 9(b) and K(W, G) in Fig.9() prevent the three olorability of the triangulated rings.4 Conluding remarksIn this paper we have given a new three oloring riteria, that is three olorabilityof triangulated rings. We have generalized three olorable rings to some extendto the triangulated planar graphs with disjoint large yles (yles of length
≥ 4). Although we know that planar 3-olorability is NP -omplete [10℄ but theresult obtained here may rise some hopes to devise an e�ient algorithm forthree olorable planar graphs.Aknowledgments. The author would like to thank to Dr. Chris Hekmanfor introduing �ollapsing� in the ps sequenes and the proof of Lemma 2.Referenes[1℄ H. Groetzsh, Ein Dreifarbensatz fur Dreikreisfrei Betz auf der Kugel,Wiss, Z. Martin Luther Univ., Halle-Wittenburg Math. Naturwise. Reihe,8 (1958).[2℄ I. Cahit, Spiral Chains: A New Proof of the Four ColorTheorem,arXiv:math/0408247v1 [math.CO℄, 2004.[3℄ I. Cahit, Spiral Chains: The Proofs of Tait's and Tutte's Three-Edge-Coloring Conjetures,arXiv:math/0507127v1 [math.CO℄,2005.[4℄ I. Cahit, The proof of Steinberg's three oloring onjeture,arXiv:math/0607497v1 [math.CO℄, 2006.[5℄ R. Steinberg, The state of the three olor problem, Quo Vadis, GraphTheory? J. Gimbel, J.W. Kennedy and L.V. Quintas (eds), Ann. Dis.Math. 55(1993) 211-248.[6℄ L. S. Meinikov, and V. A. Aksionov, Some ounter-examples assoiatedwith the 3-olour problem, Journal of Combinatorial Theory, B (28), 1-9,1980.[7℄ B. Grünbaum, Grötzsh's theorem on 3-olorings, Mihigan Math. J., 10,1963, 303-310. 13
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Figure 7: (a) Four olorable triangulated ring with only an single C5 (subgraphin bold lines is not 3-olorable).(b) Four olorable graph without C4.14
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(c)Figure 9: Some triangulated rings with and without three oloring (dashed linesare the Kempe-hains that prevent to redue the hromati number.
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