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Abstract

The chromatic number of an planar graph is not greater than four and
this is known by the famous four color theorem and is equal to two when
the planar graph is bipartite. When the planar graph is even-triangulated
or all cycles are greater than three we know by the Heawood and the
Grotszch theorems that the chromatic number is three. There are many
conjectures and partial results on three colorability of planar graphs when
the graph has specific cycles lengths or cycles with three edges (triangles)
have special distance distributions. In this paper we have given a new
three colorability criteria for planar graphs that can be considered as an
generalization of the Heawood and the Grotszch theorems with respect to
the triangulation and cycles of length greater than > 4. We have shown
that an triangulated planar graph with k disjoint holes is 3-colorable if
and only if every hole satisfies the parity symmetric property, where a
hole is a cycle (face boundary) of length greater than 3.

1 Introduction

Four coloring of planar graphs is a famous theorem (4CT) and it has been proved
twice by the same method by the assistance of an computer and correctness of
the proof has been verified by another computer program [1],[2],[3]. The author
has given an non-computer proof of the four color theorem by using spiral chains
and spiral chain coloring in the maximal planar graphs [2],[3],[17]. However, for
an given planar graph the question “When three color suffice?” has not been
completely solved. When the planar graph is even-triangulated or all cycles are
greater than three we know by the Heawood and the Grotszch theorems that
the chromatic number is three [1]. In the literature, there are several proofs of
Grotszch theorems [11],[15],[16],[18] and the simplest and efficient algorithmic
proof is appear to be given by the author [17]. It has been also considered on
the other surfaces [12],[13],[15]. Let C' = {White, Gray, Black} = {W,G, B}
be the set of three colors and when we needed we use Red = {R} as the fourth
color.

In this paper we have given a new three colorability criteria for planar graphs
that can be considered as an generalization of the Heawood and the Grotszch
theorems with respect to the triangulation and cycles of length greater than > 4.



First we have defined the triangulated ring and gave necessary and sufficient
condition for three colorability ring. Next we have given an generaliztion of
triangulated rings for an triangulated planar graph with & disjoint holes which
is 3-colorable if and only if every hole satisfies the parity symmetric property,
where a hole is a cycle (face boundary) of length greater than 3.
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Figure 1: Illustration of the triangulated rings for 3 and 4 colorings.

2 Triangulated ring

In Fig. 1 we have shown two double triangulated rings together with their col-
orings. The double triangulated ring shown on the right (Case A) is 3-colorable
while double triangulated ring shown on the left (Case B) is 4-colorable.

We will make a few formal definitions first. A triangulated ring is a 2-
connected planar graph G with minimum degree > 3 with two faces F; and F,
whose facial walks are the (induced) cycles C; and C,, respectively, such that:

(1) V(C;) and V(C,) partition V(G). (That is V(C;)UV(C,) = V(G) and
V(C;)NV(C,) = B), where indices 7 and o are being used to denote the inner
and outer cycles (faces) of the graph.

(2) Every face other than F; and F, is a triangle.

Every vertex v on C; or C, has a fan, namely the triangles incident with v
(other than possibly C; and C,). These fans, along with F; and F,, partition the
faces of G. Let the fan graph of G be the graph F/(G) whose vertices f; represent
the fans F; of G, where an edge is in F(G) if the fans share a common edge. The
vertices f; can (and will be) identified with the of the fan (the vertex of the fan
adjacent to all others). The graph F(G) is also the subgraph of G induced by
{fo, f1, -y fok—1}. The fan graph of G is a even cycle fo, f1, ..., fak—1. The cyclic
parity sequence of (cps(G)) is the cyclic sequence popips...per—1 where is the
parity (even/odd) of the number of triangles in F;. Note that every triangulated
ring has at most one 3-coloring (up to permutation of colors), because a triangle
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Figure 2: All possible three colorings of the triangulated rings with inner-cycles
of length 3,4 and 5.
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Figure 3: Three colorable triangulated rings that cps(G;) € T,i = 1,2, where
X is the symmetry axis of the graph.



d(u)=d(v)=1 (mod 2)

Figure 4: Three colorings of the triangulated rings with |C;| = 8,|C,| = 6 and
|C;| =10, |C,| =6



has exactly one 3-coloring (again, up to permutation of colors), and every edge
not in C, U C; is in a triangle. The next lemma takes this result one step
further. For that, we must introduce some terminology related to the cps of
a graph. If popi...par—1 is a cps with £k > 2 and p; = e, then define the
e-collapse of the cps at j to be the cps as pop1..pj—2(Pj—1 + Dj+1)Pj+2---D2k,
where addition is of parities (modulo 2). That is, the e-collapse of ooeeoeoo at
5 is ooee(o 4+ 0)o = ooeeeo. Finally, let T be the set of all ¢ps’s which can be
transformed into ee or (0)°™ (i.e., 6mo’s, for some integer m) by a finite number
of e-collapses.

Let us give a simple lemma.

Lemma 1. If G(C;UC,) is 3-colorable triangulated ring with all even fans
then |C;| = 0(mod3)or with all odd fans then |C;| = |C,| = 0(mod2), |C;| # 4.

Lemma 2. If G is a triangulated ring, then G is 3-colorable iff cps(G) € T .

First, we need some lemmas. The first is easily proven using induction:

Lemma 2.1. Suppose F' is a fan graph, where v is the vertexr of F adjacent
to all others, and u and w are the two vertices of F
v with degree 1. Then:

(a) If F is even and u,vand w are colored so that u and w receive the same
color, then this partial 3-coloring extends to a proper 3-coloring of F';

(b) In a proper 3-coloring of an even fan F, u and w receive the same color;

(¢) If F is odd and u, v, and w are colored so that u,v and w all receive
different colors, then this partial 3-coloring extends to a proper 3-coloring of F';
and

(d) In a proper 3-coloring of an odd fan F,u,v, and w all receive different
colors.

If G is a triangulated ring with at least four fans, and F; an even fan of G,
we will call the [even] fan collapse of G at F}; the graph H obtained from G by
deleting the vertices of F; other than f;_1, f; , and f;11, and then identifying
the vertices f;_; and fj41.

Lemma 2.2. Let G be a triangulated ring, and H the graph resulting from a
fan collapse of G at F; . Then G is 3-colorable if and only if H is. Furthermore,
cps(H) can be obtained from cps(G) by an e-collapse atj.

Proof: If ¢ is a proper 3-coloring of G, then since F is a fan, c(u) = c¢(w),
by Lemma 2.1(b). This means that when H is created, some vertices will be
deleted (which makes this smaller graph 3-colorable), and two vertices with the
same color will be identified. This means H is 3-colorable. Now suppose c is a
proper 3-coloring of H. To go from H to G, a vertex vy will have to be split
into v and w. We will let c(u) = ¢(w) = ¢(vp), and we still have a 3-coloring.
To get G, we need to add some vertices, so we need to make sure that we can
extend the 3-coloring to these vertices. Since the fan which will be created is
even, Lemma 2.1(a) implies that this new fan is 3-colorable. The union of these
two proper 3-colorings gives a proper 3-coloring of G.

To prove the second result: The graph H is a triangulated ring with two
fewer fans than G. All but one of the fans of H come from fans of G, with
the other fan of H being the combination of two fans F;_; and Fjy; of G; the
parity of this new fan is the sum of the parities of F;_; and Fj;;. QED.



And the following result makes life easier:

Lemma 2.3. If G and G are triangulated rings with the same cps, then Gy
is 3-colorable iff GG is.

Proof: If G; and G, are as stated above, then (G; can be transformed into
G by repeatedly adding two vertices to a fan, or by removing two vertices from
a fan. If this is done to fan Fi, it doesn’t affect the coloring of f;_1, fi, or fiy1.
QED.

Proof of Lemma 2: Let F(G) be the fan graph of G. Note that fan F;
contains the vertices f;,, fi, and fi4+1 (where all indices are modulo 2k), which
correspond to the vertices u, v, and w in the statement of Lemma 2.1.

We will begin by proving that if e¢ps(G) € T , then G is 3-colorable. The
proof will be by induction on the number of e-collapses. If there are no e-
collapses, then we only have to settle the cases ee and (0)°™, since eo,00 ¢ T
. If eps(G) = ee, then F(G) contains two vertices v; and v, and (technically)
2 parallel edges. (Note that G itself can itself be a simple graph, because the
e in the cps means there’s an even number of triangles in each fan, not zero.)
If we color fy with 1 and f; with 2, then note that for all i,p; = e, and f;_1
and fiyq are (trivially) colored with the same color. Lemma 2.1(a) implies that
G is 3-colorable. Similarly, if ¢ps(G) consists of 6mo’s, we color the fan graph
as follows. (Note that in this case, 2k = 6m is a multiple of 6, so it’s also a
multiple of 3, and the coloring is well-defined:

1 if i =0(mod3)
c(fi) =<2 ifi=1(mod3)
3 if i = 2(mod3)

Now, since every p; is odd, all we need to do is to verify that f;_1, f;, and
fi+1 all receive different colors, for all ¢. This follows immediately from the
definition, and Lemma 2.1(c) then implies that G is 3-colorable. Now suppose
the result is true for N —1 e-collapses, with N > 1. Let G be a triangulated ring
whose ¢ps(G) can be transformed into ee or (0)5™ by N e-collapses. Consider
the first e-collapse, which we will assume occurs at j and results in the cps
sequence S. If H is the fan collapse of G at Fj , then cps(H) = S, by Lemma
2.2.

But since S can be transformed into ee or (0)%™ with N —1 e-collapses, H is
3-colorable by the induction hypothesis. Lemma 2.2 states that H is 3-colorable
iff G is, so G is 3-colorable.

Now we have to show that if a triangulated ring G is 3-colorable, then
cps(G) € T . Assume that G is 3-colorable. First, we will settle the case where
cps(@) has no e’s in it. In this case, every p; is o, so the3-coloring must satisfy
c(fits) = c(f;) for all i, where indices are taken modulo 2k; this follows because
e(fi),c(fix1), and ¢(fir2) must all be distinct, since p;+1 = o, by Lemma 4.1;
and ¢(fir1),c(five), and ¢(fi+3) must all be distinct, since p;42 = o. This
forces c(fi) = ¢(fi+3). However, if the number of o’s is not a multiple of 6,
then 2k (the length of the ¢ps) is not a multiple of 3. That means that the
condition ¢(f;+3) = ¢(f;) forces all vertices f; to be colored the same, which is
not allowed by Lemma, 2.1(c). Hence there is no proper 3-coloring of G, contrary



to assumption. Thus the number of 0’s is a multiple of 6, so cps(G) = (0)°™ € T
, as claimed. Now suppose that p; = e. If k = 1, then cps(G) = oe, eo,
oree. It is easily seen that if ¢ps(G) = oe (or eo) then G is not 3-colorable, so
cps(G) =eec T .

So now we may assume that & > 2. Define a sequence of graphs G; in
the following way: Let Gp be G, and for all i > 0, if p; = e in ¢ps(G;) and
cps(G;) has length at least two, then let G;11 be the fan collapse of G; at Fj .
Suppose we cannot continue from G . Note that, for all applicable i, cps(Gi11)
can be obtained from cps(G;) by e-collapse. Then ¢ps(G ) either has no e’s,
or has length two. Furthermore, G is 3-colorable, by repeated application of
Lemma 2.2. But we have seen G can only be 3-colorable if ¢ps(Gn) = ee or
eps(Gn) = (0)°™. In either case, we can obtain ee or (0)®™ from cps(G) by
repeated e-collapsings. Thus ¢ps(G) € T, which proves the lemma.

The following lemma is given without proof and useful for 3-colorable trian-
gulated rings.

Lemma 8. Triangulated ring G is 3-colorable if cps(G) is symmetric and
|Co| = 0(mod3) or |C, U C;| = 0(mod3).

For illustrations see the 3-colorings of the triangulated rings given in Fig. 2
and 4. In Fig. 4 the symmetry axis is denoted by X.

In Fig. 3 a more general three colorable triangulated rings have been shown.
The ¢sp(G)’s respectively are:

cps(Gr) = {oab...ab ab obaba...ba} (Fig.2 (left))

cps(G2) = {eab...babaebaba...ba} (Fig.2 (right)),

where if b = e then b = 0 and if b = e then b = o, and o and e denote odd
and even parities.

3 Planar graphs with holes

In this section we will extend the result obtained for the three-colorability of
the triangulated rings to triangulated planar graphs with vertex disjoint k cycles
(holes) h; of lengths greater than three. Let G(h;), i = 1,2, ...,k be the set of
triangulated rings arround the holes h;, where V (k1 )NV (h2)N...0V (hy) = 0. Let
V(C,) be the outer-cycle of G. Clearly V(C,)N{V (h1)UV (h2)U...UV (hy)} = 0.

Theorem 3. Let G be an triangulated planar graph with k disjoint holes h;,
i =1,2,...k. Then G is 3-colorable iff for every triangulated ring G(h;) we
have csp(G(h;)) € T.

Proof. Necessity of the theorem can be easily seen by the cyclic parity
sequence of (e¢psG(h;) which we have assumed that can be transformed into ee
or (o)wm} (see Lemma 2).

Now define the graph H(V, E) where the vertex set V(H) = {hq, ha, ..., hi}
are the holes of G and e, ; = (h;h;) € E(H) if E(G((h;)) N E(G(hj)) # 0. Let
T¢ be an spanning tree of H(V, E). Then start coloring of the vertices G(hq)
first and next select an vertex h;,i # 1such that (h;h1) € T. Color the vertices
of G(h,). Repeat this step for the other vertices of Ti. It is clear that since



espG(h;) € T and (G(h;)is an triangulated ring at the end G would be colored
properly with three colors.

Corollary. The planar triangulated graph G(h;) with k holes h; = 1,2, ...,k
can be made 3-colorable triangulated ring with C; = h; Uho U ... U hg.

Proof. Delete suitable edges of the spanning tree Tz in merging two adjacent
holes h; and h;. At the end the inner cycle C; will be the union of the holes.

Next define the semi-triangulated graph G*as an triangulated ring in which
there exists at least one cycle C,. of length greater than three such that C;NC. #
0 and C, N C,. # 0. Note that non-triangulated ring has no triangle; hence is
3-colorable by Grotzsch theorem. The following simple theorem gives useful
information when G*is 3-colorable.

Theorem 4. Let G be an triangulated ring. If csp(G) ¢ T and G*be any
semi-triangulated ring obtained by the addition of an single cycle C,. of length
k > 4 then G*is 3-colorable. If csp(G) € T and G*be any semi-triangulated ring
obtained by the addition of an single cycle C, such that |E(C,) N E(C,)| > 2
then G is 3-colorable.

Proof. If csp(G) ¢ G then for any 3-coloring ¢ there must be an vertex v
such that ¢(v) = ¢ = j, where ,j € {1,2,3},i # j. Note that such a vertex
v can be selected freely beforehand since G is an triangulated ring. Then the
vertex v is splited into two v'and v" vertices in G*such that (v'v") € C,. Hence
the 3-coloring ¢ of G*can be made proper by ¢(v') =i and ¢(v”) = j and the
other vertices of C,.can be colored alternatingly by two colors 1,2 or 3, 2. Second
part of the theorem is similar to the first part but this time since csp(G) € G
the coloring ¢ of G is an proper 3-coloring and the vertex v with ¢(v) = ¢ must
be splited into three vertices i.e., |E(C,) N E(C,)| > 2. Therefore coloring ¢ will
be proper three coloring of G* = G U C,.

In fact the above theorem can be generalized to semi-triangulated rings with
k cycles of length > 4. That is think of G*as disjoint triangular ladders (all with
triangles) separated by cycles of length > 4. Let us denote the semi-triangulated
graph G* = G*(C; U Cy U ... UCy). This suggest that as we are inserting large
cycles into 3-colorable planar graph three colorability maintained.

4 Another wave of conjectures on 3-colorability

As early as 1959, Grotzsch proved that every planar graph without 3-cycles is
3-colorable. This result was later improved by Aksionov in 1974. He proved
that every planar graph with at most three 3-cycles is 3-colorable. In 1976,
Steinberg conjectured the following :

Steinberg’s Conjecture (1976) [5] : Every planar graph without 4- and 5-
cycles is 3-colorable.

An algorithmic proof to Steinberg’s conjecture has been proposed by the
author in 2006 [4]. We note that the statement of the Steinberg’s conjecture
is not sharp since there are 3-colorable planar graphs with four and five cycles
(see Fig. 7).

In 1969, Havel posed the following problem:
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Figure 5: Three coloring of an planar graph with 4 holes.

Hawel’s Problem (1969) [20] : Does there exist a constant C' such that
every planar graph with the minimal distance between triangles at least C is
3-colorable?

Aksionov and Mel’nikov proved that if C' exists, then C' > 4, and conjectured
that C' = 5 [6]. These two problems remain widely open. In 1991, Erdds
suggested the following relaxation of Steinberg’s Conjecture: Determine the
smallest value of k, if it exists, such that every planar graph without any cycles
of length 4 to k is 3-colorable. The best known bound for such a k is 7 [19]. Many
other sufficient conditions of 3-colorability considering planar graphs without
cycles of specific lengths were proposed.

At the crossroad of Havel’s and Steinberg’s problems (since the authors con-
sider planar graphs without cycles of specific length and without close triangles),
Borodin and Raspaud proved that every planar graph without 3-cycles at dis-
tance less than four and without 5-cycles is 3-colorable (the distance was later
decreased to three by Xu, and to two by Borodin and Glebov). As well, they
proposed the following conjecture:

Strong Bordeauz Congecture (2003) [21]: Every planar graph without 5-cycle
and without adjacent triangle is 3 colorable.

By adjacent cycles, we mean those with an edge in common. This conjecture
implies Steinberg’s Conjecture. Finally, Borodin et al. considered the adjacency
between cycles in planar graphs where all lengths of cycles are authorized, which
seems to be the closest from Havel’s problem ; they proved that every planar
graphs without triangles adjacent to cycles of length from 3 to 9 is 3-colorable
. Moreover they proposed the following conjecture:
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Figure 6: Three colorable planar graphs with triangulated ring (upper): with
three cycles of length 5 and 6, (lower): with two cycles of length 5.
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Nowosibirsk 3-Color Conjecture (2006) [22]: Every planar graph without 3-
cycles adjacent to cycles of length 3 or 5 is 3-colorable. This implies Strong
Bordeaux Conjecture and Steinberg’s Conjecture.

We claim that the above two conjectures can be settled by the use of spiral
chains and this will be given in the updated version of [4].

In Fig. 9 we have shown triangulated rings with 3- and 4-colorings. Note
that the Kempe chains K(W, B), K(G,B) in Fig. 9(b) and K(W,G) in Fig.
9(c) prevent the three colorability of the triangulated rings.

4 Concluding remarks

In this paper we have given a new three coloring criteria, that is three colorability
of triangulated rings. We have generalized three colorable rings to some extend
to the triangulated planar graphs with disjoint large cycles (cycles of length
> 4). Although we know that planar 3-colorability is NP-complete [10] but the
result obtained here may rise some hopes to devise an efficient algorithm for
three colorable planar graphs.

Acknowledgments. The author would like to thank to Dr. Chris Heckman
for introducing “collapsing” in the cps sequences and the proof of Lemma 2.
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Figure 9: Some triangulated rings with and without three coloring (dashed lines
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