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Abstract

A Kaluza-Klein like approach for a 4d spin foam model is considered. By applying
this approach to a model based on group field theory in 4d (TOCY model), and using
the Peter-Weyl expansion of the gravitational field, reconstruction of new non gravi-
tational fields and interactions in the action are found. The perturbative expansion of
the partition function produces graphs colored with su(2) algebraic data, from which
one can reconstruct a 3d simplicial complex representing space-time and its geometry;
(like in the Ponzano-Regge formulation of pure 3d quantum gravity) , as well as the
Feynman graph for typical matter fields. Thus a mechanism for generation of matter
and construction of new dimensions are found from pure gravity.

I Introduction

Spin foam models [?, ?, ?], which represents a sum-over-histories approach of quantum grav-
ity, can be defined in any space time dimension. They can be used in different approaches
of quantum gravity, such as LQG! (as a path integral formulation for canonical formulation
of quantum gravity), topological field theories, and simplicial gravity. Spin foam models are
used lately as a general formulation for quantum gravity.

In spin foam models, one may use an abstract 2-complex for illustration of a discrete space
time, and assigning algebraic data from the representation of Lorentz group, to it. This
combination can assign an algebraic form of geometric data to the simplicial gravity.

On the other hand, one can consider spin foam models in terms of the so-called group field
theories [?, 7], i.e. field theories over group manifolds. The GFT? formalism|?] represents
a generalization of matrix models for 2-dimensional quantum gravity [?]. There is a group
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field theory structure for any spin foam models [?, ?]. The GFT structure can be interpreted
as a (discrete) third quantization of quantum gravity [?]. Moreover, they allow us to sum
over different topologies [?, 7, 7, ?].

In this picture, spin foams (and thus space-time itself) appear as Feynman diagrams of a
field theory which is defined on a group manifold. Thus, spin foam amplitudes are simply
the Feynman amplitudes and the number of vertices of the spin foam complex correspond
to the orders in perturbative expansion of the GFT.

There are some spin foam models, and group field theories, in 4-dimensions, that have been
extensively studied [?, ?]; however their validities are still under investigation. In 4d, one
can write a BF theory with some constraints to illustrate 4d gravity. The simplest model
to illustrate (topological) 4d gravity without cosmological constant is TOCY? model [?],
whose group field theory derivation was given by Ooguri [?]. In 3-dimentions there are spin
foam models of gravity which provide a consistent quantization and are equivalent to those
obtained from other approaches. However, each model has some distinctive advantages. In-
deed, the first model of quantum gravity, the Ponzano-Regge model, was a spin foam model
for Euclidean quantum gravity without cosmological constant [?]. This approach has been
developed to a great extent in the 3-dimensional case. It is now clear that it provides a full
quantization of pure gravity [?], whose relation with other approaches is well understood
[?, ?]. The presentation of the Ponzano-Regge model as a discrete gauge theory, was given
by Boulatov [?].

The above mentioned models only consider pure gravity.

There are some recent investigations which try to couple non-gravitational fields to gravita-
tional field in framework of spin foam models, such as coupling of the Yang-Mills [?, ?] and
matter fields [?, ?]. This has been done to GFT|[?] as well.

In this research the focus is on a Kaluza-Klein like strategy, which can reduce interaction
degree in group field theory approach of spin foam model of (topological) 4d-gravity. Also,
the symmetry of the theory in 4d is reduced and then as a result a 3d spin foam model plus
the non-gravitational fields is obtained.

In section II Ponzano-Regge model as a 3d, and TOCY model as a 4d spin foam models
are reviewed in framework of GFT. In section III the Kaluza-Klein approach is applied to
TOCY model and in the last section the possibility of how pure gravitational fields can be
the source of non-gravitational fields is explained and concluded.

II GFT formulation in 3d and 4d

II.1 3d-spin foam model (Ponzano-Regge model)

Based on [?, 7] one can consider a real field ¢(g1, g2, g3) over a Cartesian product of three
copies of G = SU(2) as of the following:

¢: SU(2) ® SU(2) @ SU(2) — R (1)

It is convenient to require that ¢ be invariant under any permutation (7) of its arguments
in the sence that:

¢(91a g2, 93) = Cb(gm,ngz 97r3) (2)
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and invariant under the right diagonal action of SU(2)?, in the sence that:

Vg € SU(2) : ?(91,92,93) = (919,929, 939)- (3)

Then it is straightforward to show that:

(91, g2, 93) :/ dh ¢(gih, g2h, gsh), (4)
SU(2)

where dh is the Haar measure.
Now consider a model defined by the following action:

3
Sle] = %/Hd9i|¢(91,92,g3)|2
i=1

A\ 6
] / H dgi (91, 92, 93)9(93: 9a, 95) P (95 G2, 96) P (96 94, G1)- (5)
=1

Also, note that any quantum theory like this can be defined by a partition function Z,
alternatively, which can be expanded in terms of the Feynman diagrams (I') as:

GiSiel _ A’
2= [ po > Sy A0 ()

where v is the number of vertices of the graph I', sym|[I'] is the symmetry factor, and Z(I")
is the Feynman amplitude corresponding to I'.

It worth noting that in this case the Feynman diagrams are dual to 3d simplicial complexes,
which are supposed to construct the geometrical space. For constructing the corresponding
Feynman amplitudes Z(I"), one should consider the following steps: First going to the repre-
sentation space, and expanding the field ¢(g1, g2, g3) over SU(2) ® SU(2) ® SU(2). By using
Peter-Weyl theorem, one can write:

¢(glu g2, 93 Z ¢£rlz71j,in’]23,m3DfT1L1 l1( )D7Jn2 l2( )Dzsalg (gg)cgll:lJ;fZS’ <7)

J1,92,J3

where cl“’l];}” are 3j-symbols® and D’ )., are the irreducible representation of g, and ¢f1727s
are Fourier like expansion coefﬁ(nents for ¢(g1, g2, 93)-

Then, by using (??) and (?7), one can rewrite the action S[¢] in terms of the representation
space variables in the form of:

:1 E |¢j1,j27j3 § ¢J17j2,j3 73,7475
2 ml,m2,m3 mi1,ma,m3 ¥ M3,ma,ms

J1,32,33 31,
J5:92,J6 J6:J4,J1 J1J233 (8)
ms5,m2,me 7 Me,mM4,m1 L4 J5 J6 17

4One can impose invariance under diagonal action of the group (G), to give a closure with d number of,
(d-2)-faces to form a (d-1)-simplex (in d dimension). (d-1)-simplexes are needed for spin foams.
®Clebsh-Gordon coefficients



J1J2J3 ; 6
where {7,727} are 6j-symbols®.

Finally, considering (??) and (7?), one can show the Feynman amplitude of 3d GR[?] as:

Z(r) =Y _ [ dimGy) [T{65}. 9)
f v

Jr

which is the same as what one may obtain in Ponzano-Regge model.

II.2 4d-spin foam model (TOCY model)

In 4 dimensions, one can consider a real field ¢(g1, g2, g3, g4) over a Cartesian product of
four copies of SO(4) which requires to be invariant under the right diagonal action of SO(4).
Considering the same procedure as the above 3d GR, the TOCY model [?] can be obtained.
Actually the 4d-action is

1 4
S[¢] = §/Hdgi‘¢<gl7g27g37g4)|2
=1

\ 10
+ §/Hdgi 391, 92 93, 94)0(94, 95, 96, 97) B (7. 93, Is. o)
) i=1

?(99, 96, 92, 910) (10 8> I5, 91)- (10)

In representation space, using Peter-Weyl decomposition of ¢ into unitary irreducible repre-
sentations, one can write:

(91,9295, 90) = Y OMEINIGRY, 5, (90 RE, 5,(92)RE, 5, (95) R, 5,(9)05, g, 5 0 (11)
jl?"‘7j4

Where Rfm are matrix elements of the unitary irreducible representations j[?], the indices
a, 3 label basis vectors in the corresponding representation space, and the index i represents
the orthonormal basis Ufh 2.83.6, 111 the space of the intertwiners between the representations
J1, 72, J3, Ja. S0, one can rewrite the action in terms of the representation variables as:

1 o
— — 1,J2,73,J4 2
Sl = 5 D ekl
j17j27j37j4
+ — E 11,]2:]3,]4 14575,]6,]7 J175:13:]8:]9
5] M1,1M2,1M 3,14 714, N5,Me,M7 7 1N7,1M3,1Msg,1mg
J1y-+,J10

jodviziio | giwdsisit 155 (12)

mg,Mme,1M2,1M10 7 1M10,1M8,1M5,1M1

By considering (?7?) and (??), one can show the Feynman amplitude of (topological) 4d GR
(TOCY model)[?] in representation space as of the following:

Z(1) =Y _ [ dimy) [ {155}, (13)
Jfisde f v

where {155} are the 15j symbols.

6{6j} _ {jl J2J3\ le J1092:08 33:J4,05 J5:01:06 J6:J4:01

Jajs jed T Laly,..., le “l1,l2,l3 “l3,la,ls “ls,l1,le “le,la,la
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III Kaluza-Klein strategy

Returning to the TOCY model, and using SU(2) instead of SO(4)7 for simplicity®, and noting
that the action is the same as equation (?7), one can rewrite equation (?7?) as:

(b(gh 92, 93, g4) = Z (I)m4 Iy (gla 92, g3)Dm4 In (94) (14>
Ja
where
¢‘Z;1L47l4 (917 927 gg) = Z %;{#237#;?7714D£1 l1 ( )D"Z)?LQ,ZQ <g2)D£23,l3 (g3)vli1,l27l3,l4 : (15)
j17j27j37i

Equation (?7) is similar to the Fourier expansion of a multi variable function in terms of one
of its variables® (i.e. same as what is done in Kaluza-Klein approach).

Now by putting (??) in action formula (??) and integrating over g4, one can obtain the
following equation for the action!®

3 ] 2
1 |D) (91,92, 93)]
(I) == - i ’
S1®) Q/Hdg Z 2 1

J1,92,73:J4

+ 2 mi,l1,...,maq,l4 ®]1 ’ ’
4'/H g ZJ 2j1+1 (2]4+1) ml,ll(gl 92 93)
%2 | (93,91, 95) 0% 1 (95,92, 96) P22 | (96, 9a, 91), (16)

It is known from LQG that, eigenvalues of area operator are related to j. Therefore, one
can see denominators in (??) as something proportional to areas. Now one can consider
the situation that for every 3—simplexes!'! assumes an area'? of one of g;s is small'3. By
this requirement, the larger js which belongs to larger areas|?] are inaccessible, and produce
smaller terms, and therefore can be regarded as perturbations.

In other words, looking at integrants in (?7), one can observe the products of (2j; + 1)s in

"BF Theory with gauge group SU(2)[?, 7]

8As it is shown in[?], any group element g of SO(n) can be written as g = g ~Vh, where h € SO(n — 1)
and ¢V can be expanded in terms of Euler angels in n dimensional space. If one use g = ¢®h in all
calculation presented in this paper and integrate over ¢, it would be expected that, this strategy will work
for SO(4) with some relatively complicated calculations!|?]

9Here the selected variable for expansion is g4; but it is clear that any other variable can be selected as
well.

10Tt worth noting that, there are some different choices for interaction terms in expanded action. Since
close simplexes are considered, the compatible interaction term should be the same as the interaction term
in equation (??). This means that in action formula (??), one should expand g¢; in the first field, g5 in the
second field, gg in the third field, and g;¢ in the forth field. Then, if close simplexes are considered, one
should expand all arguments in the fifth field as well.

1(d — 1)—simplexes in d dimensions.

12(d — 2)—volume in d dimensions.

13GSince close simplexes are considered, the result of this assumption is that in one of 3—simplexes, all
areas become small. This means that in equation (??) the areas belong to g (in the 3-simplex that belongs
to the first field), g5 in the second field, gg in the third field and gi9 in the forth field are small, and as a
result all areas belong to the fifth field will be small.



the denominators, and by assuming that ‘Zjnjilj“;lmh are finite, then the larger js produce
the smaller terms. Following the strategy of Kaluza-Klein and keeping the j = 0 term, the

action (??) will be reduced to:

1 3

§/gd9i|¢(91;92793)‘2

/\ 6

I/gdgi(b(gla92793)¢(937g4795)¢(95792796)¢(96794791)7 (17)

where the symbol ¢(g1, g2, g3) is substituted for <I>00(gl g2, 93) and \ for /\’gbo 0,00

This action is the Ponzano-Regge action for 3d gravity with the correct Vertex amplitude
(i.e., {65} symbol). As SU(2) is the symmetry group in this study, it is straightforward to
show ¢(g1, g2, g3) has those symmetries that the field in Ponzano-Regge action has.

But here, there is a very basic difference in comparison with the Kaluza-Klein approach.
Contrary to Kaluza-Klein approach, where the zero mode corresponds to low energy (or
large distance) regime, in our approach j = 0 mode indicates the short distance regime. For
long distance effects, if one let j become greater than zero, then the first choice is j = % On
the other hand since in all vertices, the angular momentum is conserved, there will be two
choices for interaction terms, which are:

Lji=jo=12%,j3=4j1=0

2.1 =J2=Js=Ja=3

Using these facts, then the action will be reduced to:

S[6, ®] = Ssapgld] + Slp, D2, (18)

where S3q_pg[¢] is pure gravity action in 3 dimensions, and

S[e, d2] = /H ey 91,gz,gg)|

2’2 1

m 7l ;ma,l 1 2
+ /Hd = Q(I)ml 11(91792793)@%2,52(9&94795)

¢(95, g2, 96)¢(96> 94, 91)

2’222’% ; 1 1
+ /H =T 474(I)m1 11(91792793)q)m2l2(g3’g4’g5)

1 1

D2 1.(95, 92, 96) P2, 1, (96, 9as 1), (19)

As usual, sum over the repeated indices are assumed. The first term in S[g, ®2] is the

kinetic term for (1)2 .1 and the second term represents how the field <I> .1 interacts with the

gravitational field ng The vertex contribution of this interaction comes from the coupling
11

2°2 1
1 . . =
constant %% The last term contains interactions among ®? , fields.

Now one can interpret the fields in (??) and (??) as gravitational and matter like fields, and



take (Iﬂ 1 as fermionic like fields'*. By this interpretation, there are three interaction terms

in (? ) The first one belongs to self interaction of pure gravitational fields, the second one
is interaction of two fermionic like fields with two pure gravitational fields, and the last one
is the interaction of four fermionic like fields. If one let areas become larger, then she/he can
include other terms with the js greater than j = } in S[¢]. For example, keeping the j =1
terms, the action will become

S[¢, ®] = Saa_pgle] + S[p, ®2] + S[g, @7, B, (20)

where

3 1 2
1 1 |q)m (91792)g3>|
Slp, @2, @' = Q/Hdgz‘ ! 3

m 7l ;ma,l
+ /Hd e 2q)71n1,l1(g17927g3>

q)%ng,lg <g37 94, g5)¢(g57 g2, g6)¢(967 94, gl)

2727
m,l, .,m3,l L
+ /H - . S(I)ml l1<gl7g27g3)

mg l2 <g37 94, g5)q)m3,l3 (957 g2, g6)¢<967 94, gl)
1,1,1

+ /H P ’m3’l3<1>£11,l1(91,gz,93)

@)1, (93, 94, 95) P, 1. (95, 92, 96) D (g6 94, 91)

1,1,1,1

m 7l ) ,m )
=+ /H = . 4(I)m1 11(91792793)

D) (937 94, 95)Prs 1, (95, 92, 96) P 1, (96, 90 1) (21)

This action contains the new fields with new interactions. According to [?] one may interpret
the fields @2, ®!, ..., &7 as different matter fields.

If one takes ®! as a spin 1 like field , the third term in (??) is the interaction between two
spin 5 1 like fields and one spin 1 like ﬁeld which can be interpreted as the QED interaction
in ordlnary QFT. Now as an option, one may extend the lessons of this calculation to a
general picture of higher-7 matter fields and their interaction with the 3d gravitational field.
If one starts with a pure gravity in 3 dimensional space and let these dimensions grow up
-which is equivalent to appearing the new matter fields in appropriate manner- the new 4
dimensional space which contains a pure 4 dimensional gravity will emerge. In other words,
by cooling the 3 dimensional space, many kinds of particles will appear in this space, and
finally the appearance of the 4th dimension can be observed. In this new-born space, only
pure 4 dimensional gravity exist.

14This interpretation can be found in details in [?]



I11.1 Further achievements

As a toy model, one can easily show that by applying this strategy to any dimensions and
use SU(2) instead of SO(d), similar results can be achieved. For example, one can start with
GFT in 5 dimensions [?, ?], and assume similar symmetrries for the field; thus can write
action as of the following:

1 5
S[QS] = §/Hdgi|¢(gla92ag3ag4ug5)|2
i=1

15

A

6! / H dgi (91, 92, 93, 9a; 95)9(s, 96+ 97, g8, 99)
=1

¢(99, 94, 910, 911, 912)¢(g127 gs, 93, 913, 914)
¢(g14, g11, 97, 92, 915)¢(915, 913, 910, 96, 91)- (22)

By expanding the field ¢ similar to the expansion in (?7?) and rewriting the action, one can
get the following statement for the action.

. .
1 D7 (91, 92, g3, 94) |
(I) - - dl !
51®] 2/1_192 2 1

71,72:73:34,5

+ / Hdgz MLl Mol @t (g1, go, g3, Ga)
L 2 ) (25 + 1)

q)in%b (947 95, 96, 97)(I)m3 I3 (977 g3, gs, 99)

(1)3,24714 (99, 965 92 910)(1),715715 (910, 98, 95, 91)- (23)
Again, by applying the perturbation approach, and keeping the j = 0 term, the TOCY
model'® will be obtained. Considering the next term, which is j = %, one can write the
five-dimensional action as:
1
S, O] = Sug—pgl9] + S[o, 2], (24)

where Syq_pg[¢] is pure gravity action in 4 dimensions, and

1 m 91 92,93794)|
Slo, 04] = /H £one

1
§
m 7l ;ma,l ! 1
+ /Hd AR Q2 (g1, 92, 93, 94) P24 (94, 95, 96, 97)

®(97, 93, 98, 99) (99, 96, 92, 910)?(G10, 98, 95, 1)

1111

731712212727”414 ; 2
+ /H — q)m1 ll(gla927937g4)q)’r2n2,l2(g4’g5’g6’g7)

l\J\»—A

1

@m3713(977g?ng8a99)@514714(99796,927910)925(910,98795791)- (25)

15Since SU(2) is the symmetry group in this study, one can easily show @870 has those symmetries that
the field in TOCY model has.



Finally, one can keep other fields, and add them order by order; threfore, these fields can be
interpreted as new non-gravitational fields.

IV Conclusions

The lesson that can be learnt from the above calculations is that if one start with a pure
gravity in 3 dimensional space and let these dimensions grow up, which is equivalent to
appearing the new matter fields in appropriate manner, then what will emerge is the new 4
dimensional space which contains a pure 4 dimensional gravity. In other words by cooling
the 3 dimensional space, many kinds of particles will appear in this space, and finally the
appearance of the 4th dimension can be observed. In this new-born space there exist only
pure 4 dimensional gravity. Actually this is a scenario to show how the new dimensions and
matter (or even dark energy) will appear and extend from pure gravity.
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