arXiv:1101.0245v1 [cs.RO] 31 Dec 2010

Use of Python and Phoenix-M interface in
Robotics

Shubham Chakraborty

Editor(Physics- Higher Academics), Vikas Publishing House Pvt Ltd
E-28, Sector-8, NOIDA, UP
email: chakraborty.shuvam@gmail.com, +91-9999192634

If at first an idea doesn’t look absurd, it has no future- Sir Albert Einstein

Abstract: In this paper | will show how to use Python programming with a computer interface such as
Phoenix-M ' to drive simple robots. In my quest towards Artificial Intelligence(Al) | am experimenting
with a lot of different possibilities in Robotics. This one will try to mimic the working of a simple
insect’s nervous system using hard wiring and some minimal software usage. This is the precursor to
my advanced robotics and Al integration where | plan to use a new paradigm of Al based on Machine
Learning and Self Consciouness via Knowledge Feedback and Update Process.

Index Terms: Python, Phoenix-M, Robotics.

1. Introduction

This paper is neither path-breaking nor is it about some great inventions. It is about a humble
Robot which will showcase a simple thing that how easy is it to use python for works like robotics.
Robotics is a field which has shown tremendous promise and has been equally dissappointing
when it comes to deliver the promises. Modern day robots are driven by some seriously sophis-
ticated software in conjunction with equally sophisticated mechatronics. In this paper we will see
how we can use the Python programming language and Phoenix computer interface to drive
simple robots. | have used some very minimal Python programming which can drive the Phoenix
interface to link a computer with the robot. For a robot, | have modified a remote controlled toy
car and integrated it with Logic and electronic circuits and Phoenix interface. But before | write
something about it let us first discuss about the Phoenix interface,.

2. PHOENIX-M

Phoenix-M[1] is a micro-controller based computer interface which has been developed by Inter-
University Accelerator Centre.? This simple yet powerful interface has been created to bridge the
gap between inexpensive computers and highly expensive computer interfaces, that can be found
in sophisticated laboratories only, to garner data and analyse them.

"Physics with Home-made Equipment and Innovative Experiments

2Formerly Nuclear Science Center, Delhi. IUAC is an autonomous research institute of University Grants Commission,
India,providing particle accelerator based research facilities to the Universities.

Fig. 1. Phoenix Interface[4]

Phoenix provides microsecond level accuracy for timing measurements. Collecting data from the
sensor elements and controlling the different parameters of the experiments from the PC is one
of the features of Phoenix-M. This is achieved by loading the required software® into the micro-
controller. This enables the students to use it as a general purpose micro-controller development
kit as well as help them design stand-alone projects. The interface comes with a CD which contains
all the required software to drive the micro-controller 4. The python library with which the controller
can be accessed is known as phm.py and can be found in the software repositories specially
made for Phoenix.

3. Lets get started
The main aim of this experiment is two fold.

1) To create a simple robotic device which will mimic the way a Foraging ant[3] searches for
food by tracing chemical signature of food.

2) To use Phoenix-M® and Python in sync, to create this robot, and put forward the versatility
of Python programming.

This toy robot is inspired by the actions of Foraging ants[3]. It has to start from its home and
wade through a series of obstacles, to reach its desired destination. This is very similar to the
actions of Foraging ants[3] which go out in search of food. If food is nearby, it gets the chemical
signature and starts following it, while overcoming all types of obstacles it finda in its way. This
will be done using Micro-controller based controls of Phoenix-M interface.

When a Foraging ant® goes out in search of food, it leaves behind a trail of Pheromones[2]’.
Once food has been found, it traces backs its pheromonal trail and reaches its home. In our case
we have a toy robot which will trace a light signal 8.

3The software is usually Python

4Atmegal6

5Dr Ajith of IUAC will be giving a lecture on Phoenix-M

8The only difference is that initially Fooraging ants wander a bit randomly till they reach their destination and then their
path becomes more stable. In our case that will not happen

7A pheromone is a secreted or excreted chemical factor that triggers a social response in members of the same species.

8Light signal is our substitute of chemical signature of food

3.1. Overview of variables and definitions

Before | start explaining everything let us first decide on the variable conventions. So | will be
using the following variables which have some specific meanings. Here is a list of variables and
their meanings.

Table 1: Variables and their meanings.

Seek | The eye of the robot seeks the light signal.
Py, Left pressure sensor.
Pr Right pressure sensor.
Wr, Left wheel.
Wgr Right wheel.
517273,4 Switches 1 to 4.
1 Forward Movement
0 No Movement
1 Backward Movement

3.2. Algorithm

First we have to develop an Algorithm. The algorithm is a step by step process which a certain
system follows to achieve its goals. In our case the Robot has to first seek out the light source.
The moment it gets hold of the light source it moves towards it. In case it encounters any obstacle,
its pressure sensors immediately signals the micro-controller. The decision is taken according to
the side which encounters the obstacle.

Table 2: Algorithm followed by the Robot
Step 1 Start
Step 2 Seek Light Source
Step 3 If (Seek Light ==1) Then Move ahead
Step 4 If (Obstacle==1) Then
Step 5 If(Obstacle == Right) Then Move Clockwise / Back
Step 6 If(Obstacle == Left) Then Move Anti-Clockwise / Back
Step 7 | Else If(Obstacle == Left == Right) Move Back and stop for 2 seconds
Step 8 Repeat Step 2 to 7 till destination reached
Step 9 Stop

One thing to note is that 1 means Forward movement, 0 means No movement and 1 means
Backward movement

3.3. Control Sequences

Now lets see the Movement Sequence of the Robot. The movement sequence lets us determine
the way the robot should react to an incoming signal stimulus.

Table 3: Movement Sequence

Move Ahead Wp =Wg =1
Move Clockwise/Back Wr,=0and Wr =1
Move Anti-Clockwise/Back | W =1 and Wr =0
Seek Wr=1and Wr=1

3.4. Seek and Move Procedure

Table 4: Truth table for Seek and (Respective) Move Procedure

Seek P | Pr | Wi | Wg
1 0 0 1 1
0 0 0 1 1
0 1 0 0 1
0 0 1 1 0
0 1 1 1 1

Table 5: Truth table for Move Procedure and Switch Combinations

Wi | Wr | S1 | S2 | S3 | Sa
0 0 0 0 0 0
1 1 1 0 1 0
1 1 0 1 1 0
0 1 0 0 0 1
1 0 1 0 0 0
1 1 0 1 0 1

Now that we have seen the various procedures that are required to make the robot work, we will
now concentrate on the second most important part of the experiment, Hardware and Software.
There are essentially two hardware components that we will use in sync; Phoenix-M interface
and the Robot whereas the software will be a combination of Python code which will make the
robot move and the another Python code to connect to the Phoenix-M interface and make its
micro-processor respond.

The given figure is just an outline of the Robot. WL and WR are the two wheels which run
independant of each other. PL and PR are the two electro-mechanical pressure sensors which
sense whether there is an obstruction in the path or not. If there is an obstruction, the pressure
sensors complete a circuit which grounds the digital input channels of Phoenix-M interface.
Similarly there is another sensor, Seek which acts like the eye of the Robot. It is an LDR(Light
Dependant Resistor) which is attached to the base of an n-p-n transistor such that the transistor
acts like a switch. The switch is used to operate a relay circuit. The output of the relay is taken as
Logic High (+5V) or Logic Low(0V). Apart from this it also houses a battery pack, a PCB on which
the sensors are mounted and relay switches which help in the passage of signals. Below you will
see the circuit diagrams of the components and how they can be integrated with the Phoenix-M
interface.

sw[TU'”N&

o ays TE BPITERY Prr s
T
¥ 2

Fig. 2. Outline of Robot

3.5. Bit combinations
The Phoenix interface has its own way to understand and decipher the input and output signals
through its channels. These Bit combinations need to be understood before we can start to build
our Python code based on these combinations.

Table 6: Input channels on Phoenix-Mand their Bit combinations

S.No. | Input Channels | Input Signal | Bit Conventions
1 Dy Seek 1
2 D, P, 2
3 Do Pr 4

Table 7: Output channels on Phoenix-Mand their Bit combinations

S.No. | Output Channels | Output Signal | Bit Conventions
1 D, Sy 1
2 D Ss3 2
3 Dy So 4
4 Ds S 8

3.5.1. What does the above mean?
In the output channels if | want to make both the wheel move forward then according to Table 5,

S3 and Sy should go high. Since S3 and S, are connected to D; and D, respectively, then the
output bit combination should be 0110 which in decimal system is 6. The following two tables will
show you the bit combinations.

Table 8: Modified Truth table for Seek Procedure with Bit combination

Seek Pr Bit combination
1 15

14

10

12

08

—|o|=|o|lo|T
— = o] x| ==

h
_LOH‘_LH‘:U%

0
0
0
3
1

[elielie) o)

Table 9: Modified Truth table for Move Procedure, Switch and Bit Combimations

Wi | Wgr S1 So Sg S4 Bit combination
0 0 00| 0|O 00
1 1 1 0 1 0 10
1 1 0|1 1 0 06
0 1 o0 /|O 1 01
1 0 1 o|0|O 08
1 1 0|1 0|1 05

(et

To Ti Da D_g

Sl TN &
ClRCUIT

Fig. 3. Circuit Diagram of Switching Circuit

4. Python Codes to ineract with Phoenix-M
4.1. Example 1.

import phm, time

p = phm.phm()

while 1:
p.write_outputs (4)
time.sleep (10)
p.write outputs (0)
time.sleep(10)

A line by line explanation of the Example 1.

Line 1: Loads phm module from Phoenix library and time module from standard Python library
Line 2: Loads the function phm () onto the compiler

Line 3: Starts an infinite loop

Line 4: Outputs a digital signal to BIT Combination 4, which means it will set D, high.

Line 5: Stops the execution of the code for 10 seconds

Line 6: Outputs a digital signal to BIT Combination 0, which means all the output channels will
set to low

Line 7: Stops execution of the code for another 10 seconds.

As you can see that a simple code like the one given above can actually be used to create
a timer device. So instead of changing the circuit, all we need to do is change the code with
perfect results. As can be seen, Python makes life a lot easier when it comes to dealing with
micro-controllers.

Now let us look at another example in which a specific input gives rise to an output. The while
1: command keeps the processor on its toes. It keeps looking for an input from the interface.

4.2. Example 2.

import phm, time
p = phm.phm()
while 1:
p.read_inputs ()
if (p.read_inputs () =
p.write_ outputs (8)
else:
time.sleep (10)

= 7):

5. Python code to drive the Robot interface

Let us now look at the code that will drive our Robot across the obstacles to its destination. The
codes, though may look very simple and kiddish, are extremely powerfull and flexible and can
easily drive the Robot around.

Robot code
import phm, time
p=phm.phm()
while 1:
p.read_inputs ()

if (x 15):
p.write_outputs (10)
continue

elif(x ==14):
p.write_outputs (06)
continue

elif (x ==10):
p.write_outputs (08)
continue

elif(x ==12):
p.write outputs (01)
continue

elif (x ==08):
p.write_outputs (09)
time.sleep(2)
p.write_outputs (05)
continue

else
p.write_outputs (06)

X =

Table 10: Analysis of the entire code

Code

Function

X = p.read_inputs ()

Reads input Bit combination from the input channels

if (x == 15):

Pp, = Pgr = 0. Seek = 1. Search for light

p.write_outputs (10)

Move counter-clockwise

elif (x ==14):

Py, = Pr = 0. Seek = 0. Move towards light

p.write_ outputs (06)

Move forward

elif (x ==10):

PL:SGBkZO,PRZI

p.write_ outputs (08)

Move Back/Counter-Clockwise

elif (x ==12):

Seek =P, =1and Pr =0

p.write outputs (01)

Move Back/Clockwise

elif (x ==08):

Seek:PL:PRzl

p.write outputs (09)

Move Back

time.sleep(2)

Wait 2 seconds

p.write outputs (05)

Move Clockwise

continue

After every command, process begins again

else

If nothing matches

p.write_outputs (06)

Move forward

The above code, in sync with the micro-controller and the logic (and electronic) circuits, can

easily drive the Robot to its desired destination.

6. What Next!!

Let us now modify the above code for the Robot and get something else done by it. Till now we
were working with a Robot which had to bump into something to figure out that it has ran into
obstacle. But wouldn't it be nice if it doesn’t have to run into an obstacle, just go across it. This
can be easily done by modifying the Robot hardware a bit. instead of a light sensitive seeker we
will have to use a sonar system. Such systems are easily available in the market. All that has to
be done is to mount the sonar system in place of the LDR (Light Dependant Resistor - Seeker)
and integrate it with the interface just the way we have done it before. The code will also change
a bit. Following is the code and its analysis.

Robot code with Sonar

import phm, time
p=phm.phm ()
while 1:
x = p.read_inputs()
p.write_outputs (2)
y=p.clr2rtime (0, 0)
distance = (33000xy) /2
if (distance <5):
p.write outputs (09)
time.sleep (2)
p.write_outputs (05)
continue
elif (x==15):
p.write outputs (10)
continue
else:
continue

7. Conclusions

What we can conclude from this paper is that Python can actually make the life a lot easier when
it comes to using micro-controllers and hence can be a big boon for Robotics enthusiasts. Infact
the flexibility and ease with which Python is being implemented has made it a language to reckon
with. As we have seen, it can easily interact with the micro-controllers using a simple interface
like Phoenix-M. Just by the mere tweakingofpython codes it becomes pretty simple to control the
Robots. It seems that more and more experiments will lead to some fascinating research in this
particular subject.

Appendix 1: The brief outline of Phoenix-M interface[1]

On the front panel you will find several 2mm banana sockets with different colors. Their functions
are briefly explained below.

1. 5V OUT - This is a regulated 5V power supply that can be used for powering external circuits.
It can deliver only upto 100mA current , which is derived from the 9V unregulated DC supply from
the adapter.

2. Digital outputs - four RED sockets at the lower left corner . The socket marked DO* is buffered
with a transistor; it can be used to drive 5V relay coils. The logic HIGH output on DO will be
about 4.57V whereas on D1, D2, D3 it will be about 5.0V. DO should not be used in applications
involving precise timing of less than a few milli seconds.

3. Digital inputs - four GREEN sockets at the lower left corner. It might sometimes be necessary
to connect analog outputs swinging between -5V to +5V to the digital inputs. In this case, you
MUST use a 1K resistor in series between your analog output and the digital input pin.

4. ADC inputs - four GREEN sockets marked CHO to CH3

5. PWG - Programmable Waveform Generator

6. DAC - 8 bit Digital to Analog Converter output

7. CMP - Analog Comparator negative input, the positive input is tied to the internal 1.23 V
reference.

8. CNTR - Digital frequency counter (only for 0 to 5V pulses)

9. 1 mA CCS - Constant Current Source, BLUE Socket, mainly for Re- sistance Temperature
Detectors, RTD.

10. Two variable gain inverting amplifiers, GREEN sockets marked IN and BLUE sockets marked
OUT with YELLOW sockets in between to insert resistors. The amplifiers are built using TL084 Op-
Amps and have a certain offset which has to be measured by grounding the input and accounted
for when making precise measurements.

11. One variable gain non-inverting amplifier. This is located on the bot- tom right corner of the
front panel. The gain can be programmed by connecting appropriate resistors from the Yellow
socket to ground.

12. Two offset amplifiers to convert -5V to +5V signals to 0 to 5V signals. This is required since
our ADC can only take 0 to 5V input range. For digitizing signals swinging between -5V to +5V
we need to convert them first to 0 to 5V range. Input is GREEN and output is BLUE.

Acknowledgements

| would like to thank the creators of Phoenix-M, without whom neither this interface nor this paper
would have seen the light of the day.

References

[1] Ajith Kumar B.P, Pramode C.E. "Innovative Experiments using Phoenix”, Version 1, 2006.
[2] http://en.wikipedia.org/wiki/Pheromone

[3] http://en.wikipedia.org/wiki/Ant_colony_optimization-Rank-based_ant system_.28ASrank.29
[4] http://www.iuac.res.in/ elab/phoenix/

