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Abstract

In the present article in terms of measurability conception, in-
troduced in the previous papers of the author, the quantum theory is
studied. Within the framework of this conception several examples
are investigated in Schrodinger picture, analogs of Fourier transfor-
mations are constructed. It is shown how to produce measurable
the analog of Heisenberg picture. At the end of the article the re-
ceived results are used for substantiation, of other (more overall)
definition of measurability conception, which, on the one hand,
isn’t grounded on Heisenberg Uncertainty Principle and its general-
ization, being the fundamental provisions of the previous papers of
the author, and, on the other hand, it is equally suitable either for
non-relativistic, or for relativistic cases.

1 Introduction.

The present work continues the previous papers, published by the author
on the issue under research. [1]–[11]. The main idea and target of these
works is to construct a correct quantum theory and gravity in terms of the
variations (increments) dependent on the existent energies.

1E-mail: a.shalyt@mail.ru; alexm@hep.by
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It is clear that such a theory should not involve infinitesimal space-time
variations

dt, dxi, i = 1, ..., 3. (1)

The main instruments specified in the above mentioned articles was mea-
surability conception, introduced in [2].
Within the framework of the conception the theory becomes discrete, but at
low energy levels E distant from the plank energies ones E ≪ Ep it becomes
very close to the initial theory in continuous space-time paradigm.
In the present work quantum mechanics is studied in terms of measura-
bility notion. In Sections 2,3 there are a short presentation, specializing
and some supplementation of the previous results received by the author in
relation to the non-relativistic and relativistic quantum theories.
Hereinafter in Section 4 measurable an analog of the Wave function and
the Schrodinger Equation is considered, as well as main differential opera-
tors, appearing in quantum mechanics, in particular, the Laplace operator.
Measurable analogs of the momentum projection operator and mo-
mentum angular projection operator are studied.
In terms of measurability concept, analogs of Fourier transformations are
constructed. It is shown how to produce the measurable analog of the
Heisenberg picture.
At the end of the article, in Section 5, the received results are used for sub-
stantiation, of other (more overall) definition of measurability conception,
which, on the one hand, isn’t grounded on Heisenberg Uncertainty Princi-
ple and its generalization, being the fundamental provisions of the previous
papers of the author, and, on the other hand, it is equally suitable either
for non-relativistic, or for relativistic cases.
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2 Measurability Conception

2.1 Primary Measurability in Non-relativistic Case.
Brief Reminding

In this Subsection we briefly recall the principal assumptions [2], that un-
derlie further research.

According to Definition I. from [2] we call as primarily measurable

variation any small variation (increment) ∆̃xi of any spatial coordinate xi
of the arbitrary point xi, i = 1, ..., 3 in some space-time system R if it may
be realized in the form of the uncertainty (standard deviation) ∆xi when
this coordinate is measured within the scope of Heisenberg’s Uncertainty
Principle (HUP)[13],[14].

Similarly, we call any small variation (increment) ∆̃x0 = ∆̃t0 by primarily
measurable variation in the value of time if it may be realized in the form
of the uncertainty (standard deviation) ∆x0 = ∆t for pair “time-energy”
(t, E) when time is measured within the scope of Heisenberg’s Uncertainty
Principle (HUP) too.
Next we introduce the following assumption:
Supposition II. There is the minimal length lmin as a minimal measure-
ment unit for all primarily measurable variations having the dimension
of length, whereas the minimal time tmin = lmin/c as a minimal measure-
ment unit for all quantities or primarily measurable variations (incre-
ments) having the dimension of time, where c is the speed of light.
According to HUP lmin and tmin lead to Pmax and Emax. For definiteness, we
consider that Emax and Pmax are the quantities on the order of the Planck
quantities, then lmin and tmin are also on the order of Planck quantities
lmin ∝ lP , tmin ∝ tP . Definition I. and Supposition II. are quite nat-
ural in the sense that there are no physical principles with which they are
inconsistent.
The combination of Definition I. and Supposition II. will be called the
Principle of Bounded Primarily Measurable Space-Time Varia-
tions (Increments) or for short Principle of Bounded Space-Time
Variations (Increments) with abbreviation (PBSTV).
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As the minimal unit of measurement lmin is available for all the primarily
measurable variations ∆L having the dimensions of length, the “Inte-
grality Condition” (IC) is the case

∆L = N∆Llmin, (2)

where N∆L > 0 is an integer number.
In a like manner the same “Integrality Condition” (IC) is the case for all
the primarily measurable variations ∆t having the dimensions of time.
And similar to Equation (2), we get the for any time ∆t:

∆t ≡ ∆t(Nt) = N∆ttmin, (3)

where similarly N∆t > 0 is an integer number too.

Definition 1(Primary or Elementary Measurability.)
(1) In accordance with the PBSTV let us define the quantity having the di-
mensions of length or time as primarily (or elementarily) measurable,
when it satisfies the relation Equation (2) (and respectively Equation (3)).
(2)Let us define any physical quantity primarily (or elementarily) mea-
surable, when its value is consistent with points (1) of this Definition.

Here HUP is given for the nonrelativistic case. In the next subsection we
consider the relativistic case for low energies E ≪ EP and show that for this
case Definition 1 (Primary Measurability) keeps its meaning. Further
everywhere for convenience, we denote the minimal length lmin ̸= 0 by ℓ
and tmin ̸= 0 by τ = ℓ/c.

2.2 Primary Measurability in Relativistic Case

In the Relativistic case HUP has the distinctive features ([16],Introduction).
As known, in the relativistic case for low energies E ≪ EP , when the total
energy of a particle with the mass m and with the momentum p equals [17]:

E =
√
p2c2 +m2c4, (4)
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a minimal value for ∆x in general case takes the form ([16],formula(1.3))

∆q ≈ c~
E

=
~√

p2 +m2c2
. (5)

Nothing in this case prevents existing minimal length ℓ ̸= 0, and time
τ = ℓ/c and execution of the conditions (2) and (3). Particularly, in the
equation (2) for ∆L = ∆q due to the fact that E ≪ EP , we result in the
following:

∆q = N∆qℓ;N∆q ≫ 1. (6)

The formula (5) can be rewritten as follows:

E ≈ c~
N∆qℓ

(7)

And due to the fact that the integral number N∆q ≫ 1, in general, energy E
may vary almost continuously, similar as in the canonical theory with ℓ = 0.
The similar equation (7) in this case can be applied for the momentum p
from the right side of (5) as well. Obviously, p changes almost continuously.
The analogue of (7) equation is easily to produce in the Ultrarelativistic
case (E ≈ p) and in a rest frame of a particle (E ≈ mc2). It is absolutely
obvious that at low energies due to the abovementioned equations we re-
ceive almost continuous picture.
Therefore in relativistic case, at least at low energies E ≪ EP ,Definition
1 (Primary Measurability) of the previous subsection keeps its meaning,
however, within the framework of the Uncertainty Principle for Rela-
tivistic System ([16],Introduction).

3 Generalized Measurability

3.1 Generalized Measurability and Generalized Un-
certainty Principle

Basic results of this Subsection are contained in [2] and [15].
Further it is convenient to use the deformation parameter αa. This pa-
rameter has been introduced earlier in the papers [18],[19],[20]–[23] as a
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deformation parameter (in terms of paper [24]) on going from the canoni-
cal quantum mechanics to the quantum mechanics at Planck’s scales (Early
Universe) that is considered to be the quantum mechanics with the minimal
length (QMML):

αa = ℓ2/a2, (8)

where a is the measuring scale. It is easily seen that the parameter αa from
Equation (8) is discrete as it is nothing else but

αa = ℓ2/a2 =
ℓ2

N2
a ℓ

2
=

1

N2
a

. (9)

At the same time, from Equation (9) it is evident that αa is irregularly
discrete.
It should be noted that, physical quantities complying with Definition 1
won’t be enough for the research of physical systems.
Indeed, such a variable as

αNaℓ(Naℓ) = p(Na)
ℓ

~
= ℓ/Na, (10)

(where αNaℓ = αa is taken from formula (9) at a = Naℓ, and p(Na) =
~

Naℓ
is

the corresponding primarily measurable momentum), is fully expressed
in terms only Primarily Measurable Quantities of Definition 1 and
that’s why it may appear at any stage of calculations, but apparently doesn’t
comply with Definition 1. That’s why it’s necessary to introduce the fol-
lowing definition generalizing Definition 1:

Definition 2. Generalized Measurability
We shall call any physical quantity as generalized-measurable or for
simplicity measurable if any of its values may be obtained in terms of
Primarily Measurable Quantities of Definition 1.

In what follows, for simplicity, we will use the term Measurability in-
stead of Generalized Measurability. It is evident that any primarily
measurable quantity (PMQ) is measurable. Generally speaking, the
contrary is not correct, as indicated by formula (10).
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It should be noted that Heisenberg’s Uncertainty Principle (HUP) [14] is
fair at low energies E ≪ EP . However it was shown that at the Planck
scale a high-energy term must appear:

∆x ≥ ~
∆p

+ α′l2p
△p
~

(11)

where lp is the Planck length l2p = G~/c3 ≃ 1, 6 10−35m and α′ is a con-
stant. In [25] this term is derived from the string theory, in [26] it follows
from the simple estimates of Newtonian gravity and quantum mechanics, in
[27] it comes from the black hole physics, other methods can also be used
[29],[28],[34]. Relation (11) is quadratic in ∆p

α′l2p (∆p)
2 − ~∆x∆p+ ~2 ≤ 0 (12)

and therefore leads to the minimal length

∆xmin = 2
√
α′lp

.
= ℓ (13)

Inequality (11) is called the Generalized Uncertainty Principle (GUP) in
Quantum Theory.
Let us show that the generalized-measurable quantities are appeared
from the Generalized Uncertainty Principle (GUP) [25]–[36] (formula
(11)) that naturally leads to the minimal length ℓ (13).
Really solving inequality (11), in the case of equality we obtain the apparent
formula

∆p± =
(∆x±

√
(∆x)2 − 4α′l2p)~

2α′l2p
. (14)

Next, into this formula we substitute the right-hand part of formula (2) for
L = x. Considering (13), we can derive the following:

∆p± =
(N∆x ±

√
(N∆x)2 − 1)~ℓ
1
2
ℓ2

=

=
2(N∆x ±

√
(N∆x)2 − 1)~
ℓ

. (15)
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But it is evident that at low energies E ≪ Ep;N∆x ≫ 1 the plus sign in the
nominator (15) leads to the contradiction as it results in very high (much
greater than the Planck’s) values of ∆p. Because of this, it is necessary to
select the minus sign in the numerator (15). Then, multiplying the left and
right sides of (15) by the same number N∆x +

√
N2

∆x − 1 , we get

∆p =
2~

(N∆x +
√
N2

∆x − 1)ℓ
. (16)

∆p from formula (16) is the generalized-measurable quantity in the sense
of Definition 2. However, it is clear that at low energies E ≪ Ep, i.e. for

N∆x ≫ 1, we have
√
N2

∆x − 1 ≈ N∆x. Moreover, we have

lim
N∆x→∞

√
N2

∆x − 1 = N∆x. (17)

Therefore, in this case (16) may be written as follows:

∆p
.
= ∆p(N∆x, HUP ) =

~
1/2(N∆x +

√
N2

∆x − 1)ℓ
≈ ~
N∆xℓ

=
~
∆x

;N∆x ≫ 1,(18)

in complete conformity with HUP. Besides, ∆p
.
= ∆p(N∆x, HUP ), to a high

accuracy, is a primarily measurable quantity in the sense of Definition
1.
And vice versa it is obvious that at high energies E ≈ Ep, i.e. for N∆x ≈ 1,
there is no way to transform formula (16) and we can write

∆p
.
= ∆p(N∆x, GUP ) =

~
1/2(N∆x +

√
N2

∆x − 1)ℓ
;N∆x ≈ 1. (19)

At the same time, ∆p
.
= ∆p(N∆x, GUP ) is a Generalized Measurable

quantity in the sense of Definition 2.
Thus, we have

GUP → HUP (20)

for
(N∆x ≈ 1) → (N∆x ≫ 1). (21)
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Also, we have
∆p(N∆x, GUP ) → ∆p(N∆x, HUP ), (22)

where ∆p(N∆x, GUP ) is taken from formula (19), whereas ∆p(N∆x, HUP )
from formula (18).

Comment 2*.
From the above formulae it follows that, within GUP, the primarily mea-
surable variations (quantities) are derived to a high accuracy from the
generalized-measurable variations (quantities) only in the low-energy
limit E ≪ EP

Next, within the scope of GUP, we can correct a value of the parameter
αa from formula (9) substituting a for ∆x in the expression 1/2(N∆x +√
N2

∆x − 1)ℓ.
Then at low energies E ≪ Ep we have the primarily measurable quantity
αa(HUP )

αa
.
= αa(HUP ) =

1

[1/2(Na +
√
N2

a − 1)]2
≈ 1

N2
a

;Na ≫ 1, (23)

that corresponds, to a high accuracy, to the value from formula (9).
Accordingly, at high energies we have E ≈ Ep

αa
.
= αa(GUP ) =

1

[1/2(Na +
√
N2

a − 1)]2
;Na ≈ 1. (24)

When going from high energies E ≈ Ep to low energies E ≪ Ep, we can
write

αa(GUP )
(Na≈1)→(Na≫1)−→ αa(HUP ) (25)

in complete conformity to Comment 2*.
Remark 3.1 What is the main difference between Primarily Measur-
able Quantities (PMQ) and Generalized Measurable Quantities
(GMQ)? PMQ defines variables which may be obtained as a result of
an immediate experiment. GMQ defines the variables which may be cal-
culated based on PMQ, i.e. based on the data obtained in previous clause.
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Remark 3.2. It is readily seen that a minimal value of Na = 1 is unattain-
able because in formula (19) we can obtain a value of the length l that is
below the minimum l < ℓ for the momenta and energies above the maximal
ones, and that is impossible. Thus, we always have Na ≥ 2. This fact was
indicated in [18],[19], however, based on the other approach.

The above mentioned formula result to the fact that generalized mea-
surable momenta at all energies are the following:

p1/N
.
= p(1/N, ℓ), N ̸= 0 (26)

where ℓ = κlp and κ is the constant of order 1.
Therefore, p1/N depends only on three fundamental constants c, ~, G, con-
stant κ and discrete parameters 1/N .
However, at N ≫ 1, i.e. at E ≪ Ep imaging τ : 1/N ⇒ p1/N will be almost
continuous, which provides high match accuracy of this discrete model co-
incidence with the initial continuous theory.
The main objective target by the author is to get the quantum theory and
the gravitation within the concepts of primarily measurable quantities.
As in this case the theories become discrete, there will be a need of further
lattice representation.

3.2 Space andMomentum Lattices of Generalized Mea-
surable Quantities, and α− lattice

In this Subsection are refined and supplemented ed the results from [2],[10].
So, provided the minimal length ℓ exists, two lattices are naturally arising
according to the formulas of the previous subsection.
I. At low energies (LE) E ≪ Emax ∝ EP , lattice of the space variation—
LatS[LE] representing, for sets integers |Nw| ≫ 1 to within the known
multiplicative constants, in accordance with the above formulas for each of
the three space variables w

.
= x; y; z.

LatS[LE] = (Nw
.
= {Nx, Ny, Nz}), |Nx| ≫ 1, |Ny| ≫ 1, |Nz| ≫ 1. (27)
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At high energies (HE) E → Emax ∝ EP to within the known multiplica-
tive constants too in accordance with the formulas previous subsection we
have the lattice LatS[HE] for each of the three space variables w

.
= x; y; z.

LatS[HE]
.
= (±1/2[(Nw +

√
N2

w − 1)]); 2 ≤ (Nw
.
= {Nx, Ny, Nz}) ≈ 1.

(28)
II. Next let us define the lattice momentum variation LatP as a set

to obtain (px, py, pz) for low energies E ≪ EP , where all the components
of the above sets conform to the space coordinates (x, y, z) are given by
corresponding formulae from the previous subsection.
From this it is inferred that, in analogy with point I of this subsection,
within the known multiplicative constants, we have lattice LatP [LE]

LatP [LE]
.
= (

1

Nw

), (29)

where Nw are integer numbers from Equation (27).
In accordance with formulas (19), (28), the high-energy (HE) momentum
lattice LatP [HE] takes the form

LatP [HE]
.
= (± 1

1/2[(Nw +
√
N2

w − 1)]
), (30)

where Nw are integer numbers from Equation (28).
It is important to note the following.

In the low-energy lattice LatP [LE] all elements are varying very
smoothly enabling the approximation of a continuous theory.
It is clear that lattices LatS[LE] and LatP [LE] are lattices primarily mea-
surable quantities, while lattices LatS[HE] and LatP [HE] are lattices gen-
eralized measurable quantities.

We will expand the space lattice LatS[LE] to space-time lattice LatS−T [LE]:

LatS−T [LE]
.
= (Nw, Nt), Nw

.
= {Nx, Ny, Nz},

|Nx| ≫ 1, |Ny| ≫ 1, |Nz| ≫ 1, |Nt| ≫ 1 (31)
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Now primarily lattice LatS−T [LE] will be replaced with “α−lattice“,mea-
surable space-time quantities, which will be denoted by LatαS−T [LE]:

LatαS−T [LE]
.
= (αNwℓNwℓ, αNtτNtτ) = (

ℓ2

~
p(Nw),

ℓ2

~
p(Nt)) = (

ℓ

Nw

,
τ

Nt

).(32)

In the last formula by the variable αNtτ we mean the parameter α corre-
sponding to the length (Ntτ)c:

αNtτ
.
= α(Ntτ)c. (33)

And p(Nw) it is taken from formula (10), whereNt corresponds formula (32).
As low energies E ≪ EP are discussed, αNwℓ in this formula is consistent
with the corresponding parameter from formula (23):

αNwℓ = αNwℓ(HUP ) (34)

As it was mentioned in the previous section, in the low-energy E ≪ Emax ∝
EP all elements of sublattice LatP−E[LE] are varying very smoothly en-
abling the approximation of a continuous theory.
It is similar to the low-energy part of the LatαS−T [LE] of lattice Lat

α
S−T will

vary very smoothly:

LatαS−T [LE] = (
ℓ

Nw

,
τ

Nt

); |Nx| ≫ 1, |Ny| ≫ 1, |Nz| ≫ 1, |Nt| ≫ 1. (35)

In Section 5 of [2] three following cases were selected:

(a)“Quantum Consideration, Low Energies”:

1 ≪ |Nw| ≤ Ñ, 1 ≪ |Nt| ≤ N̂

(b)“Quantum Consideration, High Energies”:

|Nw| ≈ 1, |Nt| ≈ 1;
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(c)“Classical Picture”:

|Nw| → ∞, |Nt| → ∞.

Here Ñ, N̂ is a cutoff parameters, defined by the current task [2] and cor-
rected in this paper.
Let us for three space coordinates xi; i = 1, 2, 3 we introduce the following
notation:

∆(xi)
.
= ∆̃[αN∆xi

] = αN∆xi
ℓ(N∆xi

ℓ) = ℓ/N∆xi
;

∆N∆xi
[F (xi)]

∆(xi)
≡ F (xi +∆(xi))− F (xi)

∆(xi)
, (36)

where F (xi) is ”measurable” function, i.e function represented in terms
of measurable quantities.
Then function ∆N∆xi

[F (xi)]/∆(xi) is ”measurable” function too.
It’s evident that

lim
|N∆xi

|→∞

∆N∆xi
[F (xi)]

∆(xi)
= lim

∆(xi)→0

∆N∆xi
[F (xi)]

∆(xi)
=
∂F

∂xi
. (37)

Thus, we can define a measurable analog of a vectorial gradient ∇

∇N∆xi
≡ {

∆N∆xi

∆(xi)
} (38)

and a measurable analog of the Laplace operator

∆(N∆xi
) ≡ ∇N∆xi

∇N∆xi
≡

∑
i

∆2
N∆xi

∆(xi)2
(39)

Respectively, for time x0 = t we have:

∆(t)
.
= ∆̃[αN∆t

] = αN∆tτ (N∆tτ) = τ/N∆t;

∆N∆t
[F (t)]

∆(t)
≡ F (t+∆(t))− F (t)

∆(t)
, (40)
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then

lim
|N∆t|→∞

∆N∆t
[F (t)]

∆(t)
= lim

∆(t)→0

∆N∆t
[F (t)]

∆(t)
=
dF

dt
. (41)

We shall designate for momenta pi; i = 1, 2, 3

∆pi =
~

N∆xi
ℓ
;

∆piF (pi)

∆pi
≡ F (pi +∆pi)− F (pi)

∆pi
=
F (pi +

~
N∆xi

ℓ
)− F (pi)

~
N∆xi

ℓ

. (42)

From where similarly (37) we get

lim
|N∆xi

|→∞

F (pi +∆pi)− F (pi)

∆pi
= lim

|N∆xi
|→∞

F (pi +
~

N∆xi
ℓ
)− F (pi)

~
N∆xi

ℓ

=

= lim
∆pi→0

F (pi +∆pi)− F (pi)

∆pi
=
∂F

∂pi
. (43)

Therefore, in low energies E ≪ EP , i.e. at |N∆xi
| ≫ 1; |N∆t| ≫ 1, i =

1, ..., 3 in passages to the limit (37),(41),(43) it’s possible to obtain from
”measurable” functions partial derivatives like in case of continuous space-
time. That is, the partial derivatives of from ”measurable” functions can
be considered as ”measurable” functions with any given precision.
In this case the infinitesimal space-time variations (1) are appearing in the
limit from measurable quantities too

(αN∆tτN∆tτ =
τ

N∆t

= pN∆tc
ℓ2

c~
)
N∆t→∞−→ dt,

(αN∆xi
ℓN∆xi

ℓ =
ℓ

N∆xi

= pN∆xi

ℓ2

~
)
N∆xi

→∞
−→ dxi, 1 = 1, ..., 3. (44)

Remark 3.2.1
Thereinafter, as it is mentioned above, we suppose that energies E are low,
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i.e. E ≪ Ep.
Up to the present moment there was a default precondition that all numbers
N∆xi

, N∆t are integral, which means they produce primarily measurable
spacetime quantities N∆xi

ℓ and N∆tτ . Currently we realize that this limi-
tation is irrelevant, taking into account the fact that unless specially noted
otherwise, N∆xi

ℓ,N∆tτ are generalized measurable (or simply measur-
able) quantities. At that, due to the fact that energies E are low E ≪ EP

the following condition is preserved:

|N∆xi
| ≫ 1; |N∆t| ≫ 1, i = 1, ..., 3. (45)

Therefore, in the formula (44) momenta pN∆xi
, pN∆tc from this moment are

generalized measurable quantities. The evident example of such mo-
menta can be accurate (not approximate) value from the equation (18)

pN∆xi
=

~

1/2(N∆xi
+
√
N2

∆xi
− 1)

ℓ;N∆xi
≫ 1, (46)

It is also obvious that if N∆xi
ℓ and N∆tτ are measurable quantities, then

numeric coefficients N∆xi
and N∆t are also measurable quantities.

In this case any measurable triplet Nq = {N∆xi
}, |N∆xi

| ≫ 1, i = 1, ..., 3
corresponds to small measurable momentum pNq

.
= {pN∆xi

}, with com-
ponents pN∆xi

, |pN∆xi
| ≪ Ppl:

N∆xi

p−→ pN∆xi
=

~
N∆xi

ℓ
(47)

And vice versa any small measurable momentum pq with non-zero com-
ponents pq = {pi}; 0 ̸= |pi| ≪ Ppl corresponds to measurable triplet
Nq = {N∆xi

}, |N∆xi
| ≫ 1, i = 1, ..., 3, satisfying the condition (45):

pi
x−→ N∆xi

=
~
piℓ

(48)

Then, for simplification, instead of N∆xµ we will use Nxµ , µ = 0, ..., 3.
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4 Quantum Mechanics in Term of Measur-

able Quantities

4.1 General Remarks on Wavefunction Representa-
tion

Now for any coordinate u from the set q
.
= (x, y, z) ∈ R3 and some mea-

surable quantity Nuℓ; |Nu| ≫ 1 one can correlate measurable quantity
∆Nu(u) = ℓ/Nu, and for Nq

.
= {Nx, Ny, Nz} – measurable product

∆Nq(q) = |∆Nx(x) ·∆Ny(y) ·∆Nz(z)| =
ℓ3

|NxNyNz|
(49)

Then it becomes clear that for measurable of the wave function Ψ(q),
(Ψ(q) is determined within the framework of the concepts of measurable
of the spatial coordinates q, i.e. all changes of q are measurable), we can
determine the value

|Ψ(q)|2∆Nq(q), (50)

which is the probability that the measurement carried out with the system
presents the coordinate value in measurable in volume element ∆Nq(q) of
configuration space.
At that, known condition for total probability in the continuous case [14]:∫

|Ψ(q)|2dq = 1 (51)

with any predefined accuracy is replaced by the condition∑
q

|Ψ(q)|2∆Nq(q) = 1. (52)

Actually, due to the equation (44) measurable the volume element ∆Nq(q)
of configuration space can be considered as close as it can to dq which means
that measurable element q+∆Nq(q) can be considered close to nonmea-
surable element q + dq.
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It is obvious that set of measurable functions create space, in which inte-
grals of the continuous theory, if any, are replaced into the correspondent
sums for measurable values, and dq is replaced onto ∆Nq(q). This space
very close to the correspondent Hilbert space in the continuous theory in
limit of large |Nq|.
In particular, normalization condition for measurable eigenfunction Ψn of
the given measurable physical value f changes from continuous consider-
ation to the measurable consideration, as follows:

(

∫
|Ψn|2dq = 1) 7→ (

∑
q

|Ψn|2∆Nq(q) = 1) (53)

We have similarly: ∫
ΨΨ∗dq 7→

∑
q

ΨΨ∗∆Nq(q) (54)

It is easily noticeable that for spaces measurable of the functions, all main
properties of the canonical quantum mechanics can be redefinied with the
replacement of the integrals by the corresponding sums and dq onto ∆Nq(q)
(as in the formula (53),(54)).

4.2 Schrodinger Equation and Other Equations of Quan-
tum Mechanics in ”Measurable” Format

4.2.1 Schrodinger Equation for Free Particle

Let us consider the Schrodinger Equation [14] in terns of measurable
quantities. As it is shown in the formula (44) taking into accountRemark
3.2.1 in low energies E ≪ EP (i.e. at |Nxµ | ≫ 1), the infinitesimal space-
time variations dxµ, µ = 0, ..., 3 are occurred within the limits of |Nxµ | → ∞
from measurable momenta pNxi

, (pNtc) multiplied by the constant ℓ2

~ , (
ℓ2

c~)
which is nothing else than ℓ/Nxi

, τ/Nt.
Therefore in all cases we should comply to the following conditions: |Nxi

| ≫
1, |Nt| ≫ 1; i = 1, ..., 3

17



Then measurable Nt-analog of the derivative measurable wavefunction
Ψ(t) in the continuous case will be nothing else than

∆Nt [Ψ(t)]

∆(t)
.
=

Ψ(t+ τ/Nt)−Ψ(t)

τ/Nt

, (55)

and measurable Nt-analog of the Schrodinger Equation

dΨ(t)

dt
=

1

ı~
ĤΨ(t) (56)

will be the following:

∆Nt [Ψ(t)]

∆(t)
=

Ψ(t+ τ/Nt)−Ψ(t)

τ/Nt

=
1

ı~
ĤmeasΨ(t), (57)

where Ĥmeas – some measurable analog of the Hamiltonian Ĥ in the con-
tinuous case, which means Ĥmeas – operator, expressed in the terms of
measurable values.
We consider the example of the Schrodinger Equation for a free particle [14]

ı~
∂

∂t
Ψ(r, t) = − ~2

2m
∆Ψ(r, t), (58)

where ∆ ≡ ∇∇ ≡ ∂2

∂x2 +
∂2

∂y2
+ ∂2

∂z2
is a Laplace operator and m is a particle’s

mass.
The formula(39) initially considered for the case integral numbersNxi

, |Nxi
| ≫

1. However, due to Remark 3.2.1, it remains right for any measurable
numbers Nxi

, |Nxi
| ≫ 1.

From this formula we can conclude that

lim
|Nxi |→∞

∆(Nxi )
= ∆ (59)

Then the condition |Nt| ≫ 1, |Nxi
| ≫ 1 allows to state that measurable

Schrodinger Equation analog (58):

ı~
∆Nt

∆(t)
Ψ(r, t) = − ~2

2m
∆(Nxi )

Ψ(r, t), (60)
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at rather large, but finite |Nt|, |Nxi
| complies to the Schrodinger Equation

in the continuous case with any preset accuracy.
Similary, from the formula formeasurablemomentum value at low energies
E ≪ EP

pNxi
=

~
Nxi

ℓ
(61)

as well as the equation (38) for measurable analog of a vectorial gradient
∇N∆xi

, and the equations (36),(37) leads to the fact that accordance in
measurable case

pNxi

.
= pNq 7→ ~

ı
∇Nq , (62)

can with any preset accuracy reproduce the accordance in the continuous
case

p 7→ ~
ı
∇ (63)

As it is for measurable energy value

ENq =
p2Nq

2m
=
p2Nx

+ p2Ny
+ p2Nz

2m
(64)

the accordance

ENq 7→ ı~
∆Nt

∆(t)
(65)

reproduces the accordance

E 7→ ı~
∂

∂t
(66)

of the continuous theory.
So,in terms ofmeasurable quantities we can get the discrete model as close
as it can to the source continuous theory.
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From this we can make a direct conclusion that measurable wavefunction
Ψmeas(r, t,Nq, Nt), which has form

Ψmeas(r, t,Nq, Nt) = Aexp{ı(
pNqr

~
−

ENqr

~
)}, (67)

where r and t – measurable with an exact accuracy reproduces the corre-
spondent wavefunction Ψ(r, t) in the continuous case [14].
The certain example is presented above in the text. However, it is abso-
lutely obvious that on its basis we can make more common conclusions.
Measurable analog Ĥmeas of Hamiltonian Ĥ from the equation (57) has
the following form on the common case

Ĥmeas = Ĥmeas(Nq), (68)

where Nq is measurable and

lim
|Nq |→∞

Ĥmeas = Ĥ. (69)

And as

lim
|Nt|→∞

∆Nt [Ψ(t))]

∆(t)
=
dΨ(t)

dt
, (70)

then in the common case in the passage to the limit at |Nq| → ∞, |Nt| → ∞
from measurable analog of the Schrodinger equation (57) we can get the
Schrodinger equation (56) in the continuous picture.
At that we can suppose that all variables including time t, influencing the
wavefunction ψ are measurable quantities, the similar supposition is cor-
rect for the Hamiltonian Ĥmeas.
Now we can suppose without losing commonness that the values |Nq| ≫ 1
are large enough and we can practically think that measurable the Hamil-
tonian analog Ĥmeas with an high accuracy is equal to the Hamiltonian in
the continuous case

Ĥmeas = Ĥ (71)
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Then at the fixed large module Nt and measurable ψ measurable analog
of the Schrodinger equation (57) can be solved recurrently

Ψ(t+ τ/Nt) = (
τ

ıNt~
Ĥ + 1)Ψ(t). (72)

Taking as an some initial point t measurable value ψ(t) (possibly t = 0),
placing it to the right side (72), and then repeating this procedure but for
the calculated value from the left side Ψ(t + τ/Nt) we can get function
Ψ(t + ∆t) for arbitrary ∆t = Kτ/Nt, where K is any natural number.
It is obviously that if Nt– integer number then primarily measurable
variations in this case will correspondent to the integer K;K = MNt,
where M – integer number. And as (E ≪ EP ), then |M| ≫ 1.
Further denoting

(
τ

ıNt~
Ĥ + 1)

.
= Û(τ/Nt) (73)

we receive that

1

ı~
Ĥ =

Û(τ/Nt)− 1

τ/Nt

(74)

Here we, as a matter of course, can suppose that U(0) = 1 and according
(57)

∆Nt [Û(t
′)]

∆(t)
.
=
Û(t′ + τ/Nt)− Û(t′)

τ/Nt

, (75)

we receive, that

∆Nt [Û(t
′)]

∆(t)
|t′=0 =

1

ı~
Ĥ (76)

which is in an exact accordance to the known formula in the continuous
case

Ĥ = ı~
dÛ(t′)

dt′
|t′=0 (77)
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Operator Û(t′), satisfying to the equations (73)–(76) can be denoted as ÛNt .
It is trivial implication from the abovementioned formula that

Ψ(t+ τ/Nt) = Û(τ/Nt)Ψ(t) (78)

The presented calculations can be generalized for non-autonomous systems,
when the hamiltonian Ĥ, (Ĥmeas) depends on time t, i.e. Ĥ = Ĥ(t) and
the condition (71) is preserved. In this case we can suppose that all values
(operators and wavefunction) are measurable quantities,therefore we can
receive:

Ψ(t+ τ ′) = Û(t+ τ ′, t)Ψ(t),

∆Nt

∆(t)
Ψ(t) =

∆Nt [Û(t+ τ ′, t)]

∆(τ ′)
|(∆(τ ′)=τ/Nt)Ψ(t) =

1

ı~
Ĥ(t)Ψ(t),

Ĥ(t) = ı~
∆Nt [Û(t+ τ ′, t)]

∆(τ ′)
|∆(τ ′)=τ/Nt (79)

Obviously, in the present equation one can reproduce all main formulas of
the continuous case replacing dt onto τ/Nt, particular:

Û †(t+ τ/Nt, t) = (1̂ +
τ

Nt

Ĥ

ı~
+ o(

τ

Nt

))† = 1̂− τ

Nt

Ĥ†

ı~
+ o(

τ

Nt

) =

= Û−1(t+ τ/Nt, t) = (1̂ +
τ

Nt

Ĥ

ı~
+ o(

τ

Nt

))−1 = 1̂− τ

Nt

Ĥ

ı~
+ o(

τ

Nt

) (80)

What is the meaning of changing dt onto τ/Nt and transition from contin-
uous case to discrete case in the terms of measurable quantities? It is
assumed that the following Hypothesis is valid :

at low energies E ≪ EP , i.e. at |Nt| ≫ 1 for any wavefunction Ψ(t)
exists such natural number N(ψ), |N(ψ)| ≫ 1 which is dependent from Ψ(t)
with unimprovable approximation of the Schrodinger equation (56) by the
discrete equation (57). Of course, obviously, that 1 ≪ |Nt| ≤ |N(ψ)|.

4.2.2 The Linear Momentum Operator

It is known, the task for eigenvalues and eigenfunctions of momentum pro-
jection p̂xi

in case of continuous space-time can be reduced to the differential
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equation [37]:

−ı~∂Ψ(xi)

∂xi
= pxi

Ψ(xi). (81)

One can find continuous single-valued and bounded solutions of this equa-
tion of all real values of pxi

in the interval −∞ < pxi
< ∞ with eigenfunc-

tions

Ψp(xi) = Aexp(ı
p

~
xi). (82)

Thus there is one eigenfunction (no degeneracy) for each eigenvalue pxi
= p.

As it was stated above, in the measurable case under consideration in the
left side (82) for some measurable fixed |Nxi

| ≫ 1 replacing occurs

∂

∂xi
7→

∆Nxi

∆(xi)
(83)

and the eigenvalues pNxi
of the operator p̂xi

become discrete numbers Nxi

pNxi
=

~
Nxi

ℓ
, |Nxi

| ≫ 1 (84)

but due to the condition |Nxi
| ≫ 1 we receive discrete spectrum of operator

p̂xi
, which is almost continuous.

Taking into account that at |Nxi
| large enough with any preset accuracy we

have

∆Nxi

∆(xi)
=

∂

∂xi
, (85)

and taking into account the formula (84), we can get the analog of formula
(82) in the considered case

ΨpNxi
(xi) = Aexp(ı

xi
Nxi

ℓ
) (86)

This shows that for the fixed xi the correspondent discrete set of eigenfunc-
tions also changes almost continuously.
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It should be noted that the condition −∞ < pxi
< ∞ in this case is non-

correct, because

((pxi
= pNxi

) → ±∞) ≡ (|Nxi
| → 1), (87)

which contradicts to the condition |Nxi
| ≫ 1.

However, for the real task the abstract condition |Nxi
| ≫ 1. is always

replaced by some certain condition

|Nxi
| ≥ N∗ ≫ 1. (88)

Then the condition −∞ < pxi
< ∞ in the continuous case is replaced in

the studied case with the condition p−N∗ ≤ pxi
≤ pN∗ with the separated

point pxi
= 0, which is evidently doesn’t belong to the equation (84) at the

finite Nxi
.

It is clear that the case Nxi
= ±∞ appropriate of the point pxi

= 0 is the
degenerate case, that is why if we would like to consider the finite Nxi

the
condition (88) should be replaced with the condition

N∗ ≥ |Nxi
| ≥ N∗ ≫ 1. (89)

and then pxi
∈ [p−N∗ , p−N∗ ]

∪
[pN∗ , pN∗ ]

Further, we denote as ∆N∗,N∗(pxi
) intervals union

∆N∗,N∗(pxi
)
.
= [p−N∗ , p−N∗ ]

∪
[pN∗ , pN∗ ], (90)

and as ∆N∗(p)

∆N∗,N∗(p) =
∏
i

∆N∗,N∗(pxi
) (91)

4.2.3 The z-component of the Angular Momentum L̂z

In the accepted quantum mechanics the task of eigenvalues and eigenfunc-
tions of angular momentum operator L̂z

L̂z = −ı~(x ∂
∂y

− y
∂

∂x
) (92)
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is reduced to the differential equation solution [37]

−ı~∂Ψ(ϕ)

∂ϕ
= LzΨ(ϕ), (93)

where 0 ≤ ϕ ≤ 2π.
In the considered case we can suppose that ϕ = ϕ(x, y, z)–measurable
function from variables x, y, z, having in case of continuity well defined
partial derivative for each of them.
It is obvious that substitution into the formula (37) F (xi) = ϕ(x, y, z) gives

lim
|N∆xi

|→∞

∆N∆xi
[ϕ(x, y, z)]

∆(xi)
= lim

∆(xi)→0

∆N∆xi
[ϕ(x, y, z))]

∆(xi)
=
∂ϕ

∂xi
. (94)

On the abovementioned basis we can state that there is measurable func-
tion ∆Ψ/∆ϕ and we have

lim
∆ϕ→0

∆Ψ

∆ϕ
= lim

|N∆xi
|→∞

∆Ψ

∆ϕ
=
∂Ψ

∂ϕ
, (95)

where ∆ϕ(xi) =
∑

i(ϕ(xi +∆xi)−ϕ(xi)) and measurable increments ∆xi
are taken from the formula (36).
Taking into account that for enough large |Nxi

| with an high accuracy
∆Nxi

/∆(xi) = ∂/∂xi and ∆Ψ(ϕ)/∆ϕ = ∂Ψ(ϕ)/∂ϕ we conclude that the
equation (93) with an high accuracy can be used in measurable case for
ϕ(x, y, z)) measurable function from measurable {x, y, z}.
Then the solution (93) are presented as an exponent

Ψ(ϕ) = Aexp(ı
Lz

~
ϕ), (96)

where ϕ = ϕ(x, y, z)–measurable function from measurable variables
x, y, z.
At that, eigenfunctions for discrete spectrum Lz = ~m;m = 0,±1,±2, ... of
operator L̂z as in the continuous case will be

Ψm(ϕ) = (2π)−1/2eımϕ, (97)
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where ϕ is a measurable quantity.
However, at normalization condition in the continuous case [37], in the
present form the integral is replaced by the sum:

(

∫ 2π

0

|Ψm|2dϕ = 1) ⇒ (
∑

0≤ϕ≤2π

|Ψm|2∆(ϕ) = 1), (98)

where ∆(ϕ) is taken from the formula (95).

4.3 Position andMomentum Representations and Fourier
Transform in Terms of Measurability

Now, using the formulas of the previous sections we can analyze in terms of
measurably quantities issue of quantum representations and the Fourier
transformation. Scalar (inner) product in position representation in the
continuous case is determined by the equation [14],[38]:

(φ1, φ2) =

∫
R3

φ∗
1(x)φ2(x)dx (99)

Both operators of coordinates xj and momentum pj,(j = 1, 2, 3) in position
representation are introduced by the equations [14]:

xj.φ(x) = xjφ(x),

pj.φ(x) = −ı~ ∂

∂xj
φ(x) (100)

In the abovementioned denotations x = q is taken from the formula (49)
therefore integral from the equation (100) is replaced by the sum

(φ1, φ2)meas =
∑
x∈R3

φ∗
1φ2∆Nx(x), (101)

where x – measurable coordinates.
It is clear that the passage to the limit takes place

lim
Nxi→∞

(φ1, φ2)meas = (φ1, φ2) (102)
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where {Nxi
} = Nq from the equation (49) and at enough large {Nxi

} = Nq

with high precision
(φ1, φ2)meas = (φ1, φ2) (103)

In the considered case the first equation from (100) is preserved for all mea-
surable values of the left and right side, while the second one is replaced
by

pNxj
.φ(x) = −ı~

∆Nxj

∆(xj)
φ(x)

.
=

.
= −ı~

φ(xi̸=j, xj + ℓ/Nxj
)− φ(x)

ℓ/Nxj

, (104)

where pNxj
– measurable momentum j-component presented as follows:

pNxj
=

~
Nxj

ℓ
. (105)

And the function φ(xi ̸=j, xj + ℓ/Nxj
) differs from φ(x) only with its “shift”

to ℓ/Nxj
in j-component.

From the formulas above and, particularly, the formula (37), we can make a
clear supposition that in this case of low energies E ≪ EP , i.e. at |Nxj

| ≫ 1
with an high precision we have

∆Nxj

∆(xj)
=

∂

∂xj
. (106)

Then, due to the formula (104)–(106) in the case of low energies E ≪ EP

for measurable quantities with an high precision we get

[x,p].φ(x) = xp.φ(x)− px.φ(x) = ı~φ(x) (107)

In momentum representation in the continuous picture:

xj.φ(p) = ı~
∂

∂pj
φ(p),

pj.φ(p) = pjφ(p) (108)
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In the measurable case the second equation (108) for measurable mo-
menta remains unchanged. According to the formula (42) and (43) in the
measurable case in the first equation from (108) a replacement takes place

∂

∂pj
7→

∆pj

∆pj
, (109)

where

pj
.
= pNxj

=
~

Nxj
ℓ
;

∆pjφ(p))

∆pj
≡ φ(p+ pj)− φ(p)

pj
=
φ(p+ ~

Nxj ℓ
)− φ(p)

~
Nxj ℓ

, (110)

and φ(p+ pj) differs from φ(p) with the value pj only in j-component.
Then from the expression (43) due to the fact |Nxj

| ≫ 1 with an high
exactness we get

∆pj

∆pj
=

∂

∂pj
(111)

Now let us consider [x,p].φ(p) in momentum representation. Taking into
account the formula (111) we receive

[xj,pj].φ(p) = xjpj.φ(p)− pjxj.φ(p) =

= ı~(φ(p) + pj
φ(p+ pj)− φ(p)

pj
−

−pj
φ(p+ pj)− φ(p

pj
) =

= ı~.φ(p). (112)

Thus, the expressions (106)–(112) show that

[xi,pj] = ıδij~ (113)

takes place in measurable case both in position representation and mo-
mentum representation.
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In the continuous picture the Fourier transformation has the following form
[38]:

φ(x) = (
1

2π~
)3/2

∫
R3

e
ı
~pxφ(p)dp (114)

And the operator pj applied to the formula (114), gives [38]:

pj.φ(x) = −ı~ ∂

∂xj
φ(x) = −ı~ ∂

∂xj
(

1

2π~
)3/2

∫
R3

e
ı
~pxφ(p)dp =

= (
1

2π~
)3/2

∫
R3

e
ı
~pxpjφ(p)dp (115)

However, as it was indicated in the formulas (87),(88) in the considered
measurable case of low energies the |p| values are bounded, therefore p
doesn’t fill in all space R3, and belongs only to its part ∆N∗,N∗(p) (formula
(91)).
That is why the integral in the equation (114) should be replaced by the
sum:

φmeas(x) = (
1

2π~
)3/2

∑
p∈∆N∗,N∗ (p)

e
ı
~pxφmeas(p)∆p(pNx), (116)

where x,p and φmeas(p) are measurable quantities and

∆p(pNx) =
∏
j

pNxj
, (117)

where pNxj
is taken from the equation (110).

And as |Nxj
| ≫ 1, then in the limit |Nxj

| → ∞ the sum in the right side
of the equation (116) is replaced by the integral that’s why, with an high
precision, we receive

(
1

2π~
)3/2

∫
∆N∗,N∗ (p)

e
ı
~pxφ(p)dp = (118)

= (
1

2π~
)3/2

∑
p∈∆N∗,N∗ (p)

e
ı
~pxφmeas(p)∆p(pNx)
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It should be noted that in this case the domain of the function changes
only for the momenta. Due to the abovementioned equations it is tapered:
{p ∈ R3} 7→ {p ∈ ∆N∗,N∗(p)}. For coordinates it remains {x ∈ R3}.
The function φ(p) in the continuous case is the following form [38]:

φ(p) = (
1

2π~
)3/2

∫
R3

e−
ı
~pxφ(x)dx (119)

As the definition domain in the position representation remains the same
{x ∈ R3}, then for measurable case φmeas(p) has the following form

φmeas(p) = (
1

2π~
)3/2

∑
R3

e−
ı
~pxφmeas(x)∆Nx(x), (120)

where x = q from the formula (49), i.e.

∆Nx(x) =
∏
j

∆Nxj
(xj) =

ℓ3

NxNyNz

(121)

In this case due to the condition |Nxj
| ≫ 1 we produce the following:

(
1

2π~
)3/2

∫
R3

e−
ı
~pxφ(x)dx ≈ (

1

2π~
)3/2

∑
R3

e−
ı
~pxφmeas(x)∆Nx(x), (122)

where all values in the right side of (122) are measurable.
Thus, the equations (116) and (120) are analogues of direct and inverse
Fourier transformation in terms of measurable quantities or better to say
of measurable of the direct and inverse Fourier transformation.
In the present formalism we can easily produce measurable analog of the
equation (115) with replacement pj 7→ pNxj

,∂/∂xj 7→ ∆Nxj
/∆(xj),φ(x) 7→

φmeas(x) and
∫
R3 7→

∑
∆N∗ (p)

.
Similar for the corresponding replacement in measurable variant it is pos-
sible to receive the analogue of the accordance

xj.φ(p) 7→ ı~
∂

∂pj
φ(p) (123)
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in the continuous picture.

Here it is necessary to make some important explanations:

Commentary 4.3.

4.3.1. As we considered minimal length ℓ and time τ at Plank level
ℓ ∝ lp, τ ∝ tp, The use of the measurable quantities ℓ/Nxi

; i = 1, ..., 3
and τ/Nt at |Nxi

| ≫ 1, |Nt| ≫ 1 as a replacement of dxi, dt in the contin-
uous case is absolutely correct and justified. Actually, as in this case ℓ has
the order ≈ 10−33cm, then ℓ/Nxi

will have the order of ≈ 10−33−lg |Nxi |cm,
which is, without doubts, will exceed any practical computations preci-
sion. The similar statement is true for the value τ/Nt as well, where τ has
the order of Plank time tp, i.e. ≈ 10−44sec. For this reason, it is correct
to use pNxi

instead of dpi and ∆Nxi
/∆(xi),∆Nt/∆(t),∆pi/∆pi instead of

∂/∂xi, ∂/∂t, ∂/∂pi, accordingly, in the continuous case.

4.3.2. For the sake of generality in Remark 3.2.1 we supposed that
Nxi

, Nt are generalized measurable quantities. However, due to |Nxi
| ≫

1, |Nt| ≫ 1 we can regard without loss of generality the numbers Nxi
and

Nt as primarily measurable quantities. It is clear that

[Nxi
] ≤ Nxi

≤ [Nxi
] + 1, (124)

where [ℵ] defines the entier of number ℵ. Then |Nxi
|−1 gets into the inter-

val with the points |[Nxi
]|−1 and |[Nxi

] + 1|−1 (which is larger among these
numbers and which is less depends on sign of the number Nxi

). In any case
we have |N−1

xi
− [Nxi

]−1| ≤ |([Nxi
] + 1)−1 − [Nxi

]−1| = |([Nxi
] + 1)[Nxi

]|−1.
In any case, the difference between ℓ/Nxi

and ℓ/[Nxi
] (accordingly between

∆Nxi
/∆(xi) and ∆[Nxi ]

/∆(xi) and so on) is almost insignificant. The similar
computations are correct for τ/Nt and τ/[Nt] as well.

4.3.3a. It should be noted that despite the fact that in measurable case
there is an analogue of direct and inverse Fourier transformation set by the
equations (116) and (120) the difference between position and momentum
representations is significant. Indeed, the first one has all three dimensional
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space R3 as domain definition, while the second one has some part of finite
sizes ∆N∗,N∗(p), ”cut out” in three dimensional space ∆N∗,N∗(p) ⊂ R3

4.3.3b. Significant difference between position representation and momen-
tum representation in measurable case lays in their different nature in
this formalism. Position representation in this case is formed, in general,
the same as the correspondent representation in the continuous case. Mo-
mentum representation inmeasurable case , as it follows from the formulas
Remark 3.2.1 is formed in the basis of measurable variations in the po-
sition representation.
It should be noted that as ℓ with an accuracy up to multiplicative constant
corresponds to lp, and pNx with an accuracy up to multiplicative constant
corresponds to ℓ/Nx (formula (44)), then the summing measures in mea-
surable case in the equations (116) and (120) in momentum and position
spaces also match with an accuracy up to multiplicative constant

∆Nx(x) =
ℓ6

~3
∆p(pNx) (125)

4.3.4. It can be easily noticed that the abovementioned formalism of the
Schrodinger picture’s studying in terms of measurability can be applied
for Heisenberg picture [14],[38]. Indeed, in the paradigm of the continuous

space and time the motion equation for Heisenberg operators ˆL(t) are as
follows [14],[38]:

dL̂(t)

dt
=
∂L̂(t)

∂t
+ [Ĥ, L̂(t)], (126)

where Ĥ – Hamiltonian and [Ĥ, L̂(t)] = 1
ı~(L̂(t)Ĥ−Ĥ, L̂(t))–quantum Pois-

son bracket [38].
In measurable case quantum Poisson bracket preserves its form for mea-
surable quantities inside it. ∂L̂(t)/∂t is replaced to ∆Nt [L̂(t)]/∆(t), where
the operator ∆Nt [L̂(t)]/∆(t) can be produced from the equation (75) with

the replacement Û(t′) onto L̂(t) at |Nt| ≫ 1.
Then the analogue (126) in measurable case will be the equation:

∆̃Nt [L̂(t)]

∆(t)
.
=

∆Nt [L̂(t)]

∆(t)
+ [Ĥ, L̂(t)], (127)
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It is clear that

lim
|Nt|→∞

∆̃Nt [L̂(t)]

∆(t)
=
dL̂(t)

dt
. (128)

Thus, at enough large |Nt| the equation (127) matches with the equation
(126) with the high accuracy.

5 More Overall Measurability Definition

Now, basing on the abovementioned information, we can give the definition
measurability, which is, as we concern, is more general that the initial
one.
We, as it was performed before, begin with some minimal (universal) unit for
length measurement ℓ, which corresponds to some maximal energy Eℓ =

~c
ℓ

and universal time measurement unit τ = ℓ/c. Without the loss of gener-
ality we can consider ℓ and τ at Plank level, i.e. ℓ = κlp, τ = κtp, where
numeric constant κ is order of 1. Consequently, Eℓ ∝ Ep with the suitable
coefficient of proportionality.
We intentionally use in this case for ℓ and τ besides the phrase ”minimal
measurement unit” the phrase ”universal measurement unit” as well, be-
cause in our case it presents full coverage of its sense.
Now we shall consider in the space of the momenta P the domain defined
by the conditions

p = {pxi
}, i = 1, .., 3;Ppl ≫ |pxi

| ̸= 0, (129)

where Ppl–Plank momentum. Then we can easily calculate the numeric
coefficients Nxi

Nxi
=

~
pxi
ℓ
, or (130)

pxi

.
= pNxi

=
~

Nxi
ℓ

|Nxi
| ≫ 1,
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where the last part of the equation (130) is determined by the formula (129).

Definition 1*
1*.1 Let’s call the momenta p, set by the formula (129) primarily mea-
surable, if all numbers Nxi

from the equation (130) are integer numbers.
1*.2 Let’s call any variation of ∆xi coordinates xi and ∆t of time t for
energies E ≪ Ep as primarily measurable, if

∆xi = Nxi
ℓ,∆t = Ntτ, (131)

where Nxi
satisfies the condition 1*.1 and |Nt| ≫ 1 – natural number.

1*.3 Let us define any physical quantity primarily or elementarily mea-
surable at low energies E ≪ Ep, when its value is consistent with points
1*.1 and 1*.2 of this Definition.

Further for the sake of convenience we denote the momenta domain, satis-
fying the conditions (129) (or (130)) as PLE..
In Commentary 4.3.2 it is shown that at low energies E ≪ EP (|Nxi

| ≫ 1)
primarily measurable of momenta are enough to, with the high accuracy,
produce all domain of momenta PLE.
This means that in the abovementioned domain the discrete set primarily
measurable of momenta pNxi

; i = 1, ..., 3, (where Nxi
-natural number, and

|Nxi
| ≫ 1), changes almost continuously, practically covering the whole this

domain.
That is why further PLE means the domain consisting of primarily mea-
surable momenta, satisfying the conditions of the formula (129) (or (130)).

Then the boundaries of the region PLE are determined by the condition
(89) for each coordinate

N∗ ≥ |Nxi
| ≥ N∗ ≫ 1,

where large positive numbers N∗,N∗ are determined by the task solvable.
The choice of number N∗ has particular importance. If N∗ <∞, then it is
clear that the studied momenta lay within PLE. If to make a precondition
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that N∗ = ∞, then for PLE we should add for each coordinate xi ”non-
intrinsic” (or ”singular”) point pxi

= 0 (we name these cases degenerate).
In any case for each coordinate xi the boundaries of PLE are as follows:

pN∗ ≤ |pNxi
| ≤ pN∗ (132)

Therefore, for distinctness we can note PLE with certain boundaries set by
the formula (132) per PLE[N

∗,N∗].
It is obvious that in such formalism small increments for any component
pNxi

of momentum p ∈ PLE are momentum values pN ′
xi
, for which |N ′

xi
| >

|Nxi
|. And then, incrementing |N ′

xi
| we can receive as much as desired

small increments for momenta p ∈ PLE.
Therefore in this case the definition of “measurable partial derivative” for
momentum pNxi

shall be correct, denoted in the equation (42) and (43)

through
∆pNxi

∆pNxi

. As it was shown in the equations (42) and (43) and due to

the contents of the previous paragraph at the values of |Nxi
| large enough,

with any predetermined precision the equality
∆pNxi

∆pNxi

= ∂
∂pi

takes place (for

example formula (111)).
Obviously, that primarily measurable measurements ∆xi of coordinates
xi and ∆t of time t from 1*.2 of Definition 1* can’t be considered as small
variations of space and time. Still, the equation (44) and its application in
the further text of the article gives us a basis to state that space and time
values

τ

Nt

= pNtc
ℓ2

c~
ℓ

Nxi

= pNxi

ℓ2

~
, 1 = 1, ..., 3, (133)

are small values and, as it is shown, in (44) they can be as small as desired
at enough large values of |Nxi

|, |Nt|. Here pNxi
, pNtc are corresponding pri-

marily measurable momenta.
It is clear that space and time quantities τ

Nt
, ℓ
Nxi

won’t be primarily mea-

surable space-time quantities despite the fact that they, with up to constant
accuracy are equal primarily measurable momenta.
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Therefore, the following definition makes sense:

Definition 2*.(Generalized Measurability in Low Energies).
We shall call any physical quantity at low energies E ≪ Ep as generalized-
measurable or for simplicity measurable if any of its values may be ob-
tained in terms of Primarily Measurable Quantities of Definition 1*.

Now, withdrawing the restriction Ppl ≫ |pxi
| in the equation (129) nd,

the same option, |Nxi
| ≫ 1 in the formula (130), i.e. considering momenta

space p at all energies scales

p = {pxi
}, i = 1, .., 3; |pxi

| ̸= 0; (134)

Nxi
=

~
pxi
ℓ
, or

pxi

.
= pNxi

=
~

Nxi
ℓ
,

1 ≤ |Nxi
| <∞, or E ≤ Eℓ

we we introduce the following definition

Definition 3*(Primarily and Generalized Measurability at All En-
ergies Scales).
3*.1. Let us call the momenta p, set by the formula (134) primarily mea-
surable, of all numbers Nxi

from this formula (134) are integer.
3*.2. Any variation ∆xi of coordinates xi and ∆t of time t at all energies
scales E ≤ Eℓ can be called primarily measurable, if

∆xi = Nxi
ℓ,∆t = Ntτ, (135)

where Nxi
satisfy the condition 3*.1 and the integer number Nt are within

the interval of 1 ≤ |Nt| <∞.
3*.3. Let us define any physical quantity primarily or elementarily
measurable at all energies scales E ≤ Eℓ, when its value is consistent with
points 3*.1 and 3*.2 of this Definition.
3*.4. Finally, we shall call any physical quantity at all energies scales
E ≤ Eℓ, as generalized-measurable or for simplicity measurable if any
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of its values may be obtained in terms of Primarily Measurable Quan-
tities of points 3*.1–3*.3 in Definition 3*.

”Non-intrinsic” points, at the values |Nxi
| = ∞ and |Nt| = ∞ can be

added to the equation (134) and Definition 3* accordingly, as at the low
energies case.
As it was shown above Primarily Measurable Momenta practically
cover all momenta region PLE at low energies E ≪ Ep (or same E ≪ Eℓ).
However, this is no longer the case at all energies scales E ≤ Eℓ.
Therefore the main target of the author is quantum theory construction at
all energies scales E ≤ Eℓ in terms of measurable (or same primarily
measurable) quantities of Definition 3*.
In this theory the values of physical quantity G can be represented as the
numeric function F as follows

G = F(Nxi
, Nt, ℓ) = F(Nxi

, Nt, G, ~, c, κ), (136)

where Nxi
, Nt–integer numbers from the formula (134),(135) and G, ~, c are

fundamental constants. The last equality in (136) is determined by the fact
that ℓ = κlp and lp =

√
G~/c3.

If Nxi
̸= 0, Nt ̸= 0 (non-degenerated case), then it is clear that (136) can

be rewritten as follows:

G = F(Nxi
, Nt, ℓ) = F̃((Nxi

)−1, (Nt)
−1, ℓ) (137)

And then at low energies E ≪ Ep, i.e. at |Nxi
| ≫ 1, |Nt| ≫ 1 the function

F̃ is the function from variables, changing practically continuously, despite
the fact that these variables run over discreet set of the values. It can be
naturally supposed that F̃ changes fluently, (it means practically contin-
uously). As a result we get the model with discrete nature which as it is
shown above, with an high accuracy reproduces the known theory in the
continuous space-time.
Obviously, at low energies E ≪ Ep the formula (137) can be presented as
follows:

G = F(Nxi
, Nt, ℓ) = F̃((Nxi

)−1, (Nt)
−1, ℓ) = (138)

= F̃P(pNxi
, pNtc , ℓ),
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where pNxi
, pNtc are primarily measurable momenta from formula (44).

It should be noted that the approach to the concept measurability, set
forth in present Section is much more overall, then in Sections 2,3 for two
reasons:
a)it is not connected directly with Heisenberg Uncertainty Principle and its
generalizations;

b)it can be successfully used both for the non-relativistic case [14] and for
the relativistic case [39].

6 Final Comments and Further Perspectives

6.1. Thus, at all energies scales we get some model (which should be con-
structed) depending on the same discrete parameters, which is at low ener-
gies E far from Planck E ≪ Ep is very close to the initial theory, that is
why it reproduces with an high accuracy, all main results of canonic quan-
tum theory in continuous spacetime. At high (Planck) energies E ≈ Ep the
abovementioned discrete model will present new results.
The author supposes that this model will be deprived principal drawbacks
of canonical quantum theory – ultraviolet and infrared divergences [39]. It
will be finite at all orders of the perturbation theory and due to this reason
it won’t need renormalization [39].

6.2. The formula (44) and (133) show that measurable analogues small
and infinitesimal space-time quantities coincide (up to constants) with the
primarily measurable momenta.
This allows for gravity [40] to state the same problem as it was stated for
the quantum theory in the paragraph 6.1.:

Construction of measurable model of gravity, depending on the same dis-
crete parameters Nxi

, Nt, which is at low energies E ≪ Ep is practically
continuous and ”very close” to General Relativity, and at high energies
E ≈ Ep, (E ≈ Eℓ) it will present the correct quantum theory without ul-
traviolet divergences.
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Hovewer, the phrase ”very close” in the last item doesn’t mean exact corre-
spondence of the abovementioned model with General Relativity [40]. Ac-
cording to my assumption in the studied model there should be no the
”nonphysical” solutions of the General Relativity (for example, the solu-
tions involving the Closed Time-like Curves (CTC) [41]–[44]).

6.3. At the moment each of the abovementioned theories – Quantum The-
ory and Gravity, considered within continuous space-time are presented by
various theories at low energies E ≪ Ep and at high energies E ≈ Ep.
Therefore let us summarize the points 6.1. and 6.2. as follows:

In measurable format each of theories (quantum theory and gravity) will
be unified theory at all energies scales E ≤ Eℓ. Word ”unified” means that
at all energies scales they should be determined by the same discrete set of
parameters Nxi

, Nt and constants G, ~, c, κ.
The main problem in this case will be correct determination and computa-
tions of functions F and F̃ from formula (136)–(138).
In Subsection 3.1 within the framework of Generalized Uncertainty Princi-
ple we have already determined function F for all measurable momenta
pi,meas; i = 1, .., 3 at all energies scales E ≤ Eℓ by formula (18),(19):

pi,meas = F(Nxi
, ℓ) =

~
1/2(Nxi

+
√
N2

xi
− 1)ℓ

. (139)
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