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Abstract

In this paper we have investigated some old issues concerning four
color map problem. We have given a general method for constructing
counter-examples to Kempe’s proof of the four color theorem and then
show that all counterexamples can be rule out by re-constructing special
2-colored two paths decomposition in the form of a double-spiral chain of
the maximal planar graph.
In the second part of the paper we have given an algorithmic proof of the
four color theorem which is based only on the coloring faces (regions) of a
cubic planar maps. Our algorithmic proof has been given in three steps.
The first two steps are the maximal mono-chromatic and then maximal
dichromatic coloring of the faces in such a way that the resulting uncolored
(white) regions of the incomplete two-colored map induce no odd-cycles
so that in the (final) third step four coloring of the map has been obtained
almost trivially.

1 Introduction

Four color map coloring problem is to color regions of a (normal) map M with at
most four colors so that neighbor regions (countries) would have receive different
colors. This simple problem posed and conjectured to be true for all maps by
Guthrie in 1852 [1],[32]. Its correct proof was first given in 1976 and repeated
several times by the same method by the help of a computer [2]-[5]. The author
has given two non-computer proofs of the four color theorem based on spiral
chains in planar graphs [6],[7],[8].

In this paper we will give another one based on step-wise mono-chromatic col-
oring, two coloring and then four coloring of any given normal map M , i.e., four
coloring of the faces of any cubic planar graph. Therefore our proof suits with
the mathematics of the Victorian age [9],[33] in which the four color problem
arose. In order to make a smooth transition to the proof we will re-investigate
particularly counter-examples ("bad" examples) to Kempe’s proof. Michael
Rosellini in his undergraduate project summaries existing proofs together with
the historical initial efforts. For his study of an counter-example he has chosen
the paper of Holroyd and Miller entitled "The example that Heawood should
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have given" [10] which is actually same example given by Errera [31] but drawn
in the plane differently [11]. A close look to that example reveals a property
which leads to a general method for constructing a class of counter-examples.
On the otherhand we have given a method to re-color vertices of the "bad" maxi-
mal graph around the undecided degree five vertex for which Kempe’s argument
may fail, so that under the resulting four coloring the graph is decomposed into
edge disjoint two paths. Furthermore the shape of the paths as seen from the
Figure 1 is a double-spiral chain centered at the undecided vertex. Of course any
four coloring of G induces edge disjoint two bipartite graphs but not necessarily
connected and in the form of a double-spiral. We have also suggest surveys on
the early developments of the four color problem by Saaty [12] and Mitchem
[13].

The notion of equitable colorability was introduced by Meyer [17]. That
is the sizes of color classes differ by at most one. Similarly equitable labeling
of graphs introduced by the author in 1990 [18]. However, an earlier work of
Hajnal and Szemérdi [19] showed that a graph G with degree ∆(G) is equitably
k-colorable if k ≥ ∆(G)+1. In 1973, Meyer formulated the following conjecture:

Conjecture 1 (Equitable Coloring Conjecture (ECC) [17]). For any con-
nected graph G, other than a complete graph or an odd cycle, χ=(G) ≤ ∆(G).

The Equitable k-Coloring Conjecture holds for some classes of graphs, e.g.,
outerplanar graphs with ∆ ≥ 3 [20] and planar graphs with ∆ ≥ 13 [21]. How-
ever the four colorings given for bad-examples in Figure 1 are all equitable
4-coloring.

We have the following claim:

Claim. Let G be a maximal planar graph. Then there exits 4-coloring of G
for which at least the sizes of three color classes differ by at most one.

2 Bad Examples for Kempe’s Argument

After studying all known bad-examples to Kempe’s argument one can reach to
the conclusion that it is occurred only for specific planar graphs with specific
incomplete four-coloring. Gethner et. al. [22],[23] have investigated Kempe’s
flawed proof of the Four Color Theorem from a computational and historical
point of view. Kempe’s "proof" gives rise to an algorithmic method of coloring
planar graphs that sometimes yields a proper vertex coloring requiring four or
fewer colors. They also investigate a recursive version of Kempe’s method and
a modified version based on the work of I. Kittell [30].

Let G be an maximal planar graph with n vertices.Let T be the triangulation
of G. Let G1 ∈ {P1, C1} and G2 ∈ {P2, C2} be two vertex disjoint paths or cy-
cles such that |G1| ≈ |G2| and |G1|+|G2| = n if under such a decomposition of G
every triangle ti has exactly one edge either from G1 or G2 then we say triangu-
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Figure 1: All known counterexamples to Kempe’s "proof" with double-spiral
chain decompositions.
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Figure 2: Step-by-step resolution of an impasse in the Errera’s graph.
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lation T as β-triangulation. If |C1| ≡ |C2| ≡ 0(mod2) then 4-coloring of G easily
can be obtained. For example in Figure 1 for Fritch’s graph |P1| = 3, |P2| = 4,
for Sofier’s graph |P1| = 4, |P2| = 3, for Errera’s graph |P1| = 8, |P2| = 7, for
Poussin’s graph |P1| = 7, |P2| = 6, for Kittell’s graph |P1| = 10, |P2| = 11 and fi-
nally for Heawood’s graph |P ∗

1 | = 12, |P ∗

2 | = 11, where P ∗

1 , P
∗

2 are acyclic graphs.
We choose the four colors as {Red,Blue,Yellow,Green} or for another reason
{Brown,Green,darkBlue, lightBlue} or {1, 2, 3, 4}. Moreover white colored
vertex or region in a map means awaiting color from the four-color set.

One of the important property of an "real" bad-example to Kempe’s ar-
gument is that occurrence of Kempe tangling must be independent from the
order of the selection of Kempe-chains. For example Errera’s bad example
(first incomplete 4-coloring of Figure 2) satisfies this condition. Now con-
sider C5,in = {B,G,R,G, Y } that surrounds undecided white vertex. Con-
sider also two disjoint 2-colored cycles of length six (shown dashed lines),i.e.,
C6,in = {R,G,R,G,R,G} and C6,out = {B, Y,B, Y,B, Y } which forms an tri-
angulated ring [24]. After cyclically shifting the colors in C6,in, insert the Red
"joker" color instead of Blue vertex in C5,in = {B,G,R,G, Y }. Then the three
Kempe chain switchings; Ch(R, Y,R, Y ), Ch(R,B) and Ch(R, Y,R, Y,R, Y,R)
(see Figure 2) resolves the impasse and a double spiral chain results [25].

2.1 Construction of a class of bad-examples

A triangulated ring is a 2-connected planar graph Gr with two faces Fi and Fo

whose facial walks are the (induced) cycles Ci and Co respectively such that:
(a) V (Ci) ∪ V (Co) = V (G) and V (Ci) ∩ V (Co) = φ where indices i and o are
being used to denote the inner and outer cycles (faces)of the graph and (b) every
face other than Fi and Fo is a triangle. We further assume that all triangles
in Gr are of type β-triangle, that is exactly one edge of the triangle belongs Ci

or Co. Since we are interested in small size "bad-example" graphs we consider
only |Ci| = |Co| = 4, 6. Let us give a simple lemma first.

Lemma 1. A triangulated ring Gr with a β-triangulation and with |Ci| =
|Co| ≡ 0(mod2) can be 4-colored such that Ci and Co colored disjoint 2-color
classes.

Proof. Since the inner and outer cycles are of even length; color inner cycle,
say with blue and red and outer cycle with green and yellow. The β-triangulation
of Gr prevents any color conflicts in the four coloring.

Now we can construct a maximal planar graph G from Gr as follows: (i)
Place an edge ei inside of the inner face Fi and place also an edge eo inside of
the infinity (finite if the map embedded on sphere) outer-face Fo. (ii) Make a
maximal planar graph G by joining the end vertices of ei with the vertices of Fi

and by joining the end vertices of eo with the vertices of Fo such that resulting
triangulation is a β-triangulation and eo is an outer-edge of G. We say inner-
cycle Ci,in is a handcuffs for the inner-edge ei. Similarly we say outer-cycle
Ci,out is a handcuffs for the outer-edge eo. The reason of this terminology will
be clearer when we extract bad-examples for Kempe’s argument from G. We
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will be interested in the following four coloring of G: Color vertices of Ci,in and
eo by R and B colors and color vertices of Ci,out and ei by Y and G colors.
This four coloring of G is an proper coloring since under the cycle and edge
decomposition, the triangulation is a β-triangulation. In case of cycles are of
length six, let C6,in = {u1, u2, ..., u6}, eo = {u7, u8} and C6,out = {v1, v2, ..., v6},
ei = {v7, v8}. Let us assume that under the β-triangulation of G we also have
two special Kempe-chains as follow:
(i) (Y,R)-chain ⇒ ch(v1, u2, v7, u6, v5, u7)
(ii) (Y,B)-chain ⇒ ch(v1, u1, v7, u3, v5, u8)
Now we are ready to construct the twin-bad-example graphs for Kempe’s argu-
ment.

(a) Twin-graph G1. (Trouble in inner-face). Delete any two edges, other
than the edges of C6,in and ei, of β-triangulation bounded by C6,in and ei such
that the resulting new face F5,in contains the edge ei in its boundary cycle of
length 5. For example we have deleted edges (v7u3) and (v8u3) from G and
obtain a new cycle (face) C5,in = (v7, u2, u3, u4, v8). Now we claim that under
the existing four coloring of G if we place a new vertex vx inside of face F5,in and
join all vertices of C5,in to vertex vx then the resulting incomplete four coloring
of the modified planar graph G1 is an bad-example to Kempe’s argument. That
is the four colors appear in C5,in = {v7, v8, u4, u3, u2}, (i.e., see Figure 3(b):
(Y,G,R,B,R))cannot be reduced to three colors by any Kempe-chain switch-
ing. One reason of this impasse is that (Y,G) (resp. (R,B)) end-vertices col-
ored edge ei (resp. eo) cannot be extended due to (R,B) (resp. (Y,G) colored
handcuffs cycle. Moreover (G,B)-chain ch(v8, u5, u8, v2, u3) and (B, Y )-chain
ch(u3, v3, u8, v1, u1, v7) would prevent to reduce the number of colors to three
on the vertices of C5,in. Hence incomplete four coloring of the maximal planar
graph G1 with 17 vertices shown in Figure 3(b) is an bad-example to Kempe’s
argument.
Note that we have the same decomposition as above if we consider;
(G,R) cycle C6,in = {v6, u6, v8, u4, v4, u7} and e = {u2v2} and
(Y,B) cycle C6,in = {v1, u1, v7, u3, v3, u8} and e = {u5v5}.

(b) Twin-graph G2. (Trouble in outer-face). The second bad-example
graph G2 can be obtained from G by deleting edges (v1u7) and (v1u8). Outer-
cycle of G2 is C5,out = (u7, v6, v1, v2, u8) that has been colored by R,G, Y,G,B

(see Figure 3(b)). Now if we place the new vertex vx in the outer-face of G2 and
join to the vertices of C5,out then vx cannot be colored by the use of Kempe’s
argument.
This due to the (Y,R)- and (Y,B)-chains mentioned in (i) and (ii) before. More-
over switching of colors of the end-vertices of the edges (v6u1) or (v2u2) would
not reduce the number of colors on C5,out. Hence G2 is an bad-example graph
to Kempe’s argument.

In Figure 4(a) and (b) we have shown another twins bad-example graphs G1

and G2 with 13 vertices where the handcuffs cycles C4,in and C4,out are of length
four. Moreover comparing the known-bad-example graphs shown in Figure 1
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Twin “bad-example”  graphs to Kempe’s argument.

C5,in={R,B,R,G,Y}

C5,out={R,G,Y,G,B}

(a) (b)

Figure 3: Four coloring of an generator maximal planar graph with β-
triangulation: (a) and (b) twin bad-example graphs for the Kempe’s argument.

the graphs G1 and G2 are the smallest bad-examples in which occurrence of an
impasse is not depend on the order of Kempe chain switching.In Figure 4(c)
we also have illustrated double-spiral chain four coloring of the bad-example of
Figure 4(b). It is not difficult to show that this is possible for all bad-example
graphs [24].

In the next section we propose a new proof for the four color theorem without
using Kempe-chains based on step-by-step coloring of the faces of cubic planar
maps.

3 A New Proof of the Four Color Map Theorem

A more courageous title of this section would be "How to create a four colored
world in three steps?" It is well-known and without doubt that four color theo-
rem is true. What are the reasons for a lengthy existing proofs by the use of a
computer? One answer would be going to the long way which has been forced
by the false Kempe’s "proof", see for example Birkhoff’s reducibility of double
C5 (actually overlapped 4 cycles of length 5)[14]. Another answer would be
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C5,in={B,R,B,G,Y}C5,out={B,Y,G,Y,R}

x

x
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x
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Figure 4: (a),(b)Four coloring of twin bad-example maximal planar graphs with
2C4 ∪ {ein} ∪ {eout} and (c) double-spiral chain coloring of (b)
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(a)

(b)

Figure 5: Bad configurations in a maximal two colored map that require five
colors: (a) with unwanted spot (this was the case of a bad-example to Kempe’s
argument; see 2-color handcuffs cycle C6, (b) without unwanted spot but with
white odd-ring.

(a) (b)

(c) (d)

Figure 6: All maximal dichromatic colorings of the Birkhoff’s diamond creates
no bad-configuration.
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over looking difficulties of the planar three colorability problem in the light of
Grotzsch and Heawood’s theorems [15],[16]. Starting point of the classic tedious
proofs of the four color theorem is based on Kempe’s failure of the reducibility
of the pentagon case. That is the correct proof gives up on pentagons and turns
to larger reducible configurations for which Kempe’s argument is sound [1]-[5].
The first such configuration which has ring-size 6, was discovered by Birkhoff
[14] known as Birkhoff’s diamond. The Birkhoff’s diamond is also inspirational
starting point in our spiral ordering and maximal mono-chromatic and maximal
dichromatic coloring of the maps which leads to an non-computer proof. For
example in Figure 6 we have shown all possible maximal dichromatic colorings
of the Birkhoff’s diamond that creates no bad configurations. That is they all be
extended to proper four colorings of the map. In this section we will be giving
a new proof of the four color map theorem in which we have implicitly by pass
the three-coloring problem of planar graphs within the constructive proof.

In fact our algorithmic proof implies the following theorem without relying
on the four color theorem [26],[27]:

Theorem 1. Every planar graph can be decomposed into the edge disjoint
union of two bipartite graphs.

Let us denote by M an normal map with n+1 regions, where (n+1)th region
rn+1 is the outer-region of M. Without loss of generality we may further assume
that M is digon-free (two-side region) and triangle-free (three-side region). Since
if the map has a digon or triangle we shrink it to a point. Since then we can four
color the resulting map and put back digons and triangles; it’s surrounded by
at most three colors. so there is a spare color to color the digon or triangle, as
required. M can be equivalently represented by a cubic planar graph Gc(M) =
(Vc, Ec), where Vc is the set of vertices associated with the crossing of pairwise
three neighbor regions, and Ec is the set of edges in the form of Jordan curve
associate with the boarder of two neighbor regions between two vertices. In
order to make the map-coloring algorithm more visible and meaningful let us
define the four-color set as C = {B,G, dB, lB}, where
- B denotes brown color and when it is assigned on to the white background
color the corresponding region becomes a "high-land".
- G denotes green color and when it is assigned on to the white background
color the corresponding region becomes a "low-land".
- dB denotes dark-blue color and when it is assigned on to the white background
color the corresponding region becomes a "deep sea".
- lB denotes light-blue color and when it is assigned on to the white background
color the corresponding region becomes a "shallow-sea".
Initially the given map colored all by background color white and at the end
of the coloring algorithm (three steps) it will be colored by the colors C and
no white color remains on the map. Clearly we will show that this is always
possible for any map M.

By M(B) we denote a map in which maximal number of its regions colored
by B (mono-chromatic coloring) where the term maximal means that any ad-
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(a) (b)

Figure 7: Spiraling of the Haken and Appel’s and Martin Gardner’s maps.

ditional brown region (high-land) results color conflict and all the remaining
regions are background-color white. Similarly by M(B,G) we denote a map
obtained from M(B) in which maximal number of its white regions colored by
G. Hence M(B,G) is an maximal two-coloring of M .

Definition 1. In a mono-chromatic coloring of map M(B) if an vertex v

is not incident to any brown colored region then v is called unwanted-spot or
simply a spot . Furthermore if the map M(B) is spot-free then the map M(B)
is called clean map.

Definition 2. Spiraling of a map M is a process of ordering and labeling the
faces (regions), starting from the outer-region rn+1 and selecting always outer
next region ri neighbor to the previous region ri+1 in the form of a spiral.

Note that depending on the adjacency of the regions of the map M we may
have several spirals but the ordering of the regions is uniquely determined by the
initial region and next one with the direction selected e.g., clockwise or counter
clockwise. Start with the outer face and label it rn+1. Then, draw a curve from
a point in rn+1, crossing an edge into an adjacent face. Label that face rn. The
faces adjacent to rn (apart from rn+1) are ordered clockwise; choose the first
(i.e. leftmost) such face, cross into it, and label it rn−1. Proceed in this fashion,
always crossing into the leftmost available face that has not been visited already.
At some stage one will be unable to proceed. If all faces have been visited, then
the spiral chain S1 = {rn+1, ..., r1} is the spiral ordering. Otherwise, start at
the closest face to the last face of S1 and produce a new chain S2. And so on
till all faces are in some chain. Similar definition has been given for maximal
and cubic planar graphs in [6],[7]. For an illustration spiraling see the nested
three spirals shown in blue, red and green colors in Figure 7.

10



3.1 The map coloring algorithm.

Main feature of the coloring algorithm is the use of each of the four colors one-
by-one and preparing the conditions satisfied for the next step.

Step 1. Maximal mono-chromatic coloring of high-lands map M(B).
Let S = {rn+1, rn, rn−1, ..., r1} be the spiral ordering of the faces of map M .
Color outer-face rn+1 of M with B. Along the spiral S color next white region
ri ∈ S with B by the following rule:
(i) All the first neighborhood of the region ri remain in white (uncolored).
(ii) If any white region rj , j > i is colored, that is c(rj) = B then a color-conflicts
arises.
(iii) At least one of the second neighborhood region ri with maximum number
of sides would be colored by B. Note that all vertices of the map M can be
considered as spots since it is cubic planar and no region colored in brown.
Using (i)-(iii) and spiraling S the maximal mono-chromatic set of k regions can
be obtained. Let us call the map M after the coloring as M(B). Let us also
denote the spots of M(B) with a set P = {p1, p2, p3, ..., pk} where k < n. That
is P is the set of triply neighbor white regions of the map M(B) where some of
the white regions may be overlapped.
The output of the step 1 is simply maximal disjoint of highland islands all col-
ored in brown.

Step 2. Maximal dichromatic coloring of high-low-lands map M(B,G).
We use the same spiraling S of the map M(B). While assigning color green G

to a white region consider the following two conditions:
(i) Along the spiral ordering when assigning green color to white regions give
priority to the white-region which has maximum number of spot vertices in
M(B);
(ii) Do not create any (B,G)-ring R(B,G) which contains an inside odd white-
ring R(W ) and do not leave any spot vertices.

We have also the following simple property of M(B).

Lemma 2. The spots of the triply neighbor white regions of the map M(B)
cannot induces a cycle.

Proof. Let us assume that a region r colored by B has been surrounded by
an cycle of spot vertices. Hence regions in the second neighborhood must be
also all white. But (iii) we have colored at least one of the region in the second
neighborhood in B and that breaks the cycle of the spots into a path.
As it has been seen that Step 1 is rather straight forward and map M(B) can
easily be obtained for any M . Assuming the maximal mono-chromatic color-
ing of M(B) as a base, it is not such an easy task to obtain dichromatic map
M(B,G). In the next step we will give the details and proofs that starting
from mono-chromatic M(B) it possible to two-coloring of M(B,G) with a set
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of properties that satisfies four colorability of the whole map. That is we will
show that by assigning color green (color for low-land) to the some of the white
regions of M(B) we obtain maximal dichromatic coloring of M(B,G) without
any spots, without any even (B,G)-ring and without odd any W -ring (white-
rings in M(B,G)).
Let us remind the role of two-colored even cycles (handcuffs) in constructing
new counter-examples to Kempe’s argument in Section 2.
In Figure 5 we have demonstrated one of reason of an bad assignment of color
green in M(B). That is even-ring R(B,G) would prevent to complete coloring
of white regions with four colors.

Lemma 3. Mono-chromatic (green) spiral-chain coloring of the white re-
gions of the map M(B) results in a spot-free map M(B,G).

Proof. If a spot-vertex remain in M(B,G) it would be one of the bad con-
figurations illustrated in Figures 5. But this bad configuration can only occur
when green color assigned without considering the maximum number of spots of
the white region. However this has been protected by Step 2 (i) in the algorithm.

Lemma 4. The maximal di-chromatic map M(B,G) obtained by the algo-
rithm has no odd-white-ring of length 3.

Proof. Lemma follows since we assumed that the cubic planar map M has
no triangle and M(B,G) is spot-free.

Along the spiral ordering of B-coloring (brown color) of the regions of M
if we do not give priority to the region with the maximum number of spots
(Step 1(iii)) i.e., region with maximum sides, then there exists certain counter-
examples that spiral coloring algorithm requires the fifth color. Simplest map
with this property is shown in Figure 8(a) together with a dichromatic coloring
of M(B,G) when the face R is assumed as the outerface. This is possible
since the map can be redrawn so that the chosen region is the outside. The
resulting spiral chains is shown in Figure 8(b). Since M(B,G) of Figure 8(a)
has two odd-white rings of length 5, it cannot be extended to four coloring.
It is straightforward that pentagons P,Q must receive the same color in any
4-coloring, since any attempt with c(P ) 6= c(Q) results in use of fifth color on
the region neighbor to the outerface. This can only be resolved by the use of
appropriate Kempe’s switching that results in c′(P ) = c′(Q). On the otherhand
as in Figure 8(b) if in B-coloring we select region X with maximum number of
sides instead of brown square of Figure 8(a), the coloring of M(B,G) ends up
without odd-white cycles.

To show that spiral ordering uses no more than four colors, consider B-
coloring of Figure 8(c). Spiral ordering is shown in red-dashed curve. Outerface
is colored by B as usual. The second region colored by B is the square region
on the left side of the map. However Step 3 (iii) has not selected next square
(colored in light blue) since the neighbor region X has eight sides. The last
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region to be colored by B is R which is the first region of Figure 8(b). Now Step
2 of G-coloring chooses regions Y and the left and right regions since they all
have 8 sides and removes the 4 spots. Clearly M(B,G) has no odd-white rings
and can easily be extended to a four coloring.

3.2 Blocking big-odd-white cycles in M(B,G).

From the above discussion it is possible to claim that map coloring algorithm
would not generate M(B,G) with odd-white rings (cycles). It is difficult to
prove this claim, in the absence of control of detecting odd-white cycle of size
greater than 3 in the algorithm. We will give a simple dynamic binary labeling
algorithm that maintaining the parities of all white rings till the end of the map
coloring algorithm. Let M(B) be the maximal mono-chromatic coloring of M .
Let R = {rn+1, rn, ..., r1} be the set of regions of M(B). Clearly c(rn+1) = B

but we do not certain about other regions (islands) in color B. Any attempt to
color a white-region with B results a color conflict in M(B). Let Mo(B,G) be
the set of all maximal dichromatic maps that have at least one odd-white cycles
of length greater than 3. Call these odd cycles in Mo(B,G) as big-odd-white
(simply odd-cycle) cycles.

Define an binary labeling f of an region ri ∈ R as follows:

f(ri) = {1 if |ri| ≡ 1(mod2) and 0 if |ri| ≡ 0(mod2)}.

Beginning of the Step 2 (i = 1) we have the set Fi of binary labels

Fi = Fi(W )
⋃
Fi(B)

⋃
Fi(G)

Initially Fi(B,G) = ∅, (for i = 1) where Fi(B,G) is the set of all binary
labels corresponding to the disjoint sub-maps Mi(B,G) computed by

fi(M(B,G)) =
∑

rj∈Mi(B,G) f(rj)(mod2)

and Fi(W ) = {f(rj)|if c(rj) = W}, Fi(B) = {f(rj)|if c(rj) = B} and
Fi(G) = {f(rj)|if c(rj) = G}.

It is apparent that at each color "green" assignment of Step 2 the size of the
set Fi(B,G) increases at most by one and priority is given to the white region
with maximum spots and with the even sizes. At some step k we have obtained

Fi(B,G) = {f(M1), f(M2), ..., f(Mk)}

which corresponds to all disjoint sub-maps of the maximal di-chromatic col-
oring of M(B,G). If all f(Mi) = 0, i = 1, 2, ..., k then M(B,G) is white-odd
ring free.
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Definition 3. Let M(B,G) be a maximal dichromatic map. A region rj
colored by B or G is called an island if it is surrounded by the white regions.

Let Ms(B,G) be a maximal connected two colored sub-map of M(B,G).
Then the white ring R(Ms(B,G)) that surrounds Ms(B,G) is an white-odd
ring if and only if the number of odd faces (including induced white faces) in
Ms(B,G) is odd. That is white ring R(Ms(B,G)) is odd iff fsM(B,G) =≡
1(mod2).

This property is quite useful when we are testing whether or not an odd-ring
surrounds a maximal connected sub-map in M(B,G).

We will show that by using simple transformations on odd cycles cycles it
is possible to remove all odd cycles from Mo(B,G). This will be illustrated on
the counter-example map M(B,G) given in Figure 8(a) in two ways:

(a) Each individual odd ring blocked separately.
Consider the sub-map Ms′(B,G) containing green pentagon Q. Use Kempe
switching for the regions of Ms′(B,G). Now the upper and lower white regions
neighbor to the outerface are all surrounded by brown-white regions. Therefore
we can assign color green to these regions (denoted by b1 and b2) and block
the odd ring that surrounds Ms′(B,G). Now consider the sub-map Ms′′(B,G)
containing the pentagon P . The odd ring that surrounds Ms′′(B,G) can be
easily blocked by joining the two islands (brown square regions) by assigning
green color to the regions denoted by b3 and b4 and changing the green region of
Ms′′(B,G) into white color. Now as shown in Figure 9(a) the new two colored
map is free of white odd rings.

(b)Blocking the two overlapped odd rings.
Use Kempe-switching for the regions of the sub-map Ms′(B,G) and move green
regions to the white region neighbor to the pentagon P . Now the white regions
denoted by X and Y which are common for both odd-rings are surrounded by
brown and white regions. Therefore we can assign color green (b1) to either
region X or Y and block both odd rings. In Figure 9(b) odd-rings are block by
re-coloring region Y as c(b1) = G.

From the spiral coloring algorithm as well as blocking big-odd-white cycles
we observe that if the number of disjoint sub-maps Ms(B,G) is minimum then
there is no odd white cycles in the map M .

The following lemma is useful and confirms the discussions above in general.

Lemma 5. Let M(B,G) be a maximal dichromatic map which has mini-
mum number of disjoint sub-maps Ms(B,G). Then there is no odd-island in
M(B,G).

Proof. Since the regions neighbor to odd-island must be visited by the spiral
ordering if the odd-island colored by B (brown) in the first round of spiral col-
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oring at least one neighbor region must be colored by G (green) in the second
round of spiral coloring.

Note that there is a map for which spiral coloring produces an even-island
(see Figure 16 square island labeled 6 in the Tutte’s map). Brown squares in Fig-
ure 8(a) are not counted as island since they can be joined to the (motherland)
sub-map containing pentagon P without violating maximality of dichromatic
coloring.

The following lemma is important in establishing the non-computer proof of
the four color theorem. Enables to break any odd white ring in the dichromatic
coloring of the map by re-arranging green colored regions around the brown
regions.

Lemma 6. Let M(B,G) be a maximal di-chromatic map without spots. Let
R(W ) be a white odd-ring of length greater than 3 in M(B,G). Then M(B,G)
can be re-colored to make M ′(B,G) white odd-ring R(W ) free.

Proof. In fact we will show that for a given maximal di-chromatic coloring of
M(B,G) by the use of certain Kempe-chains switching it is possible to re-color
any selected white region r(w) (odd or even sizes) into green G or brown B

color. Let r(w) ∈ R(W ) where R(W ) is denoting white odd ring of size greater
than 3. Simplest case is when region r(w) is an square S. Let {r1, r2, r3, r4}
be the regions neighbor to S. The two non-adjacent regions must be white,
say c(r2) = c(r4) = W and if the other two non-adjacent regions are green
c(r1) = c(r3) = G then color c(r(w)) = B or if c(r1) = c(r3) = B then color
c(r(w)) = G. If c(r1) = B and c(r3) = G then we use Kempe switching to the
(B,G)-Kempe chain where r1 is the first region in the chain. So we can assign
c(r(w)) = B. Or we use Kempe switching for the (G,B)-Kempe chain, where
r3 is the first region in the chain. So we can assign c(r(w)) = G. Hence the case
of white square S is settled. Now consider the case when |r(w)| ≥ 5 which is a
bit different than the above. Let r(w) be a pentagon P with neighbor regions
{r1, r2, r3, r4, r5}. Clearly if c(r1) = c(r3) = G and c(r2) = c(r4) = c(r5) = W

then we assign c(P ) = B. So we assume c(r4) = B (or c(r5) = B) but not
c(r2) = G since the white pentagon P ∈ R(W ). Now consider a (B,W )-Kempe
chain in M(B,G) starting from the region r4 such that;
(i) (B,W )-Kempe chain ends up with a region colored by B surrounded by all
W and G regions or ends up with a region colored W surrounded by all W and
G regions and
(ii) when Kempe switching applies to (B,W )-Kempe chain no spots have been
generated.
Hence after the Kempe switching of (B,W )-Kempe chain we have c(r1) =
c(r3) = G and c(r2) = c(r4) = c(r5) = W and we assign again c(P ) = B.
Now if |r(w)| > 5 we apply one by one (B,W )-Kempe chain switching for each
brown neighbor region of r(w) ∈ R(W ) and make all neighbors of r(w) all col-
ored G and W . Then by coloring c(r(w)) = B we block the white odd-ring
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Figure 8: (a) A counter-example, (b) its resolutions when R is chosen as an
outerface and (c) when using spiral ordering from the outerface.

R(W ). Note that no Kempe’s tangling has occurred here since R(W ) divides
the dichromatic map M(B,G) into two parts and Kempe switching applied one
at a time.

In Figure 12 although there is no white odd ring we have demonstrated by
the use of the Kempe-chains how the regions labeled by X and X ′ can be re-
colored by brown by freeing up all neighbor regions from the color brown.

Theorem 2. The map M(B,G) obtained by the Map-Coloring-Algorithm
in Step 2 can be extended to a four coloring of M .

Proof. Proof follows from Lemmas 2,3,4 and 6.

Step 3. Four coloring of M(B,G, lB, dB).
Since maximal dichromatic map M(B,G) has only even white-rings and acyclic
white regions, i.e., forest of disjoint trees and paths we can easily color them
with light-blue lB and dark-blue dB.

That is at the end of Step 3 the initial all-white normal map M transformed
into four colored map of M(B,G, lB, dB) with the regions of high-lands, low-
lands, deep-seas and shallow-seas.
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Figure 9: Blocking big-odd-white rings

From Theorem 2 we re-state the famous four color map theorem.

Theorem 3. All cubic planar maps are 4-colorable.

3.3 Some illustrations of the map coloring algorithm

The map coloring algorithm has been illustrated by the two well-known maps.
Figure captions give the details. A normal map M has a strong four coloring if
there exists a four coloring of M such that the regions of M can be decomposed
exactly into two Kempe-chains each in the form of a tree. In the light of four
colorings of the maximal planar graphs given in Figure 1 and of the maps given
in Figures 13,14 and 16 we assert the following conjecture.

Conjecture 2. If the given map is hamiltonian then there exists a double-
spiral ordering that results in strong four coloring of the map.
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Figure 10: The Haken and Appel’s map. This map has been taken from Ed Pegg
Jr’s mathpuzzle.com/4Dec2001.htm. Haken and Appel needed a computer to
4-color the following hardest-case map, which has been presented in a slightly
different form. In this appendix we will explain step-by-step our algorithmic
proof of the four color theorem on this map.

Figure 11: Maximal mono-chromatic coloring of high-land (brown) regions.
Note that we start coloring from the outer region and must be all adjacent
to white (not colored) regions. Intersection of three adjacent regions have been
shown with small circles (unwanted spots) and must be vanished as shown in
Figure 10 in the maximal 2-coloring of the map.
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Figure 12: Maximal two coloring of high-land (brown) and low-land (green)
regions. Green coloring starts from the upper white region (can be started any
white region adjacent to outer region). Trace of green regions form a spiraling
in the clockwise direction and at each step at least one "circle" of Figure 11
is vanished by the assignment of the green color to a white region. By red-
dashed curves we have shown five even white-rings (even-cycles) around the
brown-green (high-lowland) islands. The rest of white regions induce an acyclic
graph. The trees (blue) show (B,W )-Kempe chain started from region Y to
change the color white of the region X into brown and (B,W )-Kempe chains
started from regions Y ′ and Y ′′ to change white X ′ into brown. This is the only
transformation that will be applied to break odd-white ring in M(B,G).
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Figure 13: Four coloring of Appel and Haken’s map; two coloring of deep sea
(dark blue) and shallow sea (light blue) regions of the two colored map of Figure
12. Here two colors is enough for the white regions since the induced dual-graph
is bipartite.
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(a) (b)

(c) (d)

Figure 14: Martin Gardner’s April Fool’s joke (1975). (a) The "counter-
example" map, (b) Brown highland islands, (c) Brown-green high-low islands
and (d) The four colored map. Note that (i) each color spiraling in the map
and (ii) white regions in (c) induced disjoint union of acyclic subgraphs. Wagon
has given four coloring of the April’s Fool’s map by using Kempe’s original
algorithm without facing any impasse [28],[29].
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Figure 15: A normal map M has a strong four coloring if there exists a four
coloring of M such that the regions of M can be decomposed exactly into two
Kempe-chains each in the form of a tree. Stein observed that a normal map
has such a coloring iff its associated cubic graph is hamiltonian. The difficult
direction of which is not difficult to see by tracing around the regions of one
(hence both) of the trees. So there are many examples, though not very small
ones. In the figure we have shown strong four coloring both for Appel and
Haken’s map and Gardner’s map by the use of double spiral chain ordering
and coloring. We have not proved but we suspect that if the given map is
hamiltonian then double-spiral ordering results in strong four coloring of the
map.

4 Concluding remarks

We extract the following from the first page of Appel and Haken’s paper [3]:

The first published attempt to prove the Four Color Theorem was made by A.B.

Kempe in 1879. Kempe proved that the problem can be restricted to the consid-

eration of "normal planar maps" in which all faces are simply connected polygons,

precisely three of which meet at each vertex. For such maps he derived from Euler’s

formula the equation

4p2 + 3p3 + 2p4 + p5 =
∑kmax

k=7 (k − 6)pk + 12

where pi is the number of polygons with precisely i neighbors and kmax is largest
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Figure 16: This is the famous Tutte’s graph (1946) which disproves Tait’s
conjecture that every 3-regular 3-edge-connected planar graph is hamiltonian.
When the Tutte’s graph as seen cubic planar map (normal map) is an example
of non-existence of a strong four coloring. In fact in 1971 Stein observed that
a normal map has strong 4-coloring or B-set [34] iff its associated cubic graph
is hamiltonian. However as shown above spiral ordering with the map coloring
algorithm results a 4-colored map.
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Figure 17: The three colored map M is an illustration of Heawood’s theorem
[16]: A normal map M is 3-colorable if and only if its dual planar graph G has
an even triangulation. In the figure three coloring of M is obtained by the Map
Coloring Algorithm. Numbers assigned shows the spiral order of the regions in
the coloring e.g., 1,2,3,4,5,6,7 (Step 1 for high-lands), 8,9,10,11,12,13 (Step 2
for low-lands)and 14,15,16,17 (Step 3 for shallow-seas). Here we may call the
shallow seas as lakes since they all surrounded by land regions.
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Figure 18: The map shown in the figure has been provided as an counter-
example map without triangle regions to the previous version of the map coloring
algorithm by the referee. Since adjacency of regions labeled x, a, b, c forms a
complete graph K4 on 4 vertices, for any four coloring of the map M the color
of the outer-face region y and central region x must be same. Indeed if we do
not select regions with maximum number of spots (i.e., maximum number of
neighbor regions) in M in Step 1 we will need the fifth color. Spiral ordering of
the regions for this map results strong four coloring e.g., decomposes into two
Kempe chains, hence showing that it is also Hamiltonian (see the boundaries in
bold-lines in the map (right)).

value of i which occurs in the map. This equation immediately implies that every

maximal planar map contains polygons with fewer then six neighbors. In order to

prove the Four Color Theorem by induction on the number p of polygons in the map

(p =
∑

pi), Kempe assumed that every normal map with p ≤ r is four colorable

and considered a normal planar map Mr+1 with r + 1 polygons. He distinguished

the four cases that Mr+1 contained a polygon P2 with two neighbors, or a triangle

P3 or a quadrilateral P4, or a pentagon; at least one of these must apply by the

equation.

This beautiful Victorian Age deduction works for Pi, i = 2, 3, 4 and unfortu-
nately fails for i = 5. I think no mathematician of that period would be able to
guess the possible length of a proof in future based on reducibility.
In this paper, by choosing direct proof, that is the opposite direction of the
above, we have given an algorithmic proof for the Four Color Theorem which
is based on an coloring algorithm and avoiding three-colorability in a maximal
two-colorable map. The last word about the proofs given in [6],[7],[8] and in-
cluding this one that uses spiral chains in the coloring algorithm. Simply enable
an efficient coloring algorithm and protect us to fall in a situation similar to
Kempe-tangling.

Again Appel and Haken argue strongly that [12],[13]:

...it is very unlikely that one could use their proof technique without the very
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important aid of a computer to show that a large number of large configurations

are reducible. Of course, this does not rule out the possibility of some bright young

person devising a completely new technique that would give a relatively short proof

of the theorem.

This paper does not prove the truth of the first sentence but it does prove
that the second sentence is wrong, not only just because of the length of the
proof.
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