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In Graph Theory a number of results were devoted to studying the computational complexity of 

the number modulo 2 of a graph’s edge set decompositions of various kinds, first of all including 

its Hamiltonian decompositions, as well as the number modulo 2 of, say, Hamiltonian 

cycles/paths etc. While the problems of finding a Hamiltonian decomposition and Hamiltonian 

cycle are NP-complete, counting these objects modulo 2 in polynomial time is yet possible for 

certain types of regular undirected graphs. Some of the most known examples are the theorems 

about the existence of an even number of Hamiltonian decompositions in a 4-regular graph and 

an even number of such decompositions where two given edges e and g belong to different 

cycles (Thomason, 1978), as well as an even number of Hamiltonian cycles passing through any 

given edge in a regular odd-degreed graph (Smith’s theorem). The present article introduces a 

new algebraic technique which generalizes the notion of counting modulo 2 via applying fields 

of Characteristic 2 and determinants and, for instance, allows to receive a polynomial-time 

formula for the number modulo 2 of a 4-regular bipartite graph’s Hamiltonian decompositions 

such that a given edge and a given path of length 2 belong to different Hamiltonian cycles – 

hence refining/extending (in a computational sense) Thomason’s result for bipartite graphs. This 

technique also provides a polynomial-time calculation of the number modulo 2 of a graph’s edge 

set decompositions into simple cycles each containing at least one element of a given set of its 

edges what is a similar kind of extension of Thomason’s theorem as well. Additionally, it gives a 

polynomial-time algorithm for the number modulo 2 of a graph’s edge set decompositions into 

simple paths such that each vertex is an end of exactly one path, as well as the number modulo 2 

of such decompositions into odd simple paths and into even simple paths. 

 

In the paper all the considered undirected graphs are assumed to be loopless (unless mentioned 

otherwise), while they may contain multiple edges.       

 

Theorem (in any field of Characteristic 2): 

 

Let G=(V,E) be an undirected graph all whose vertices are of even degrees; U  be the adjacency 

matrix of the arc-weighted digraph whose vertex set is the 2|E| directed edges of G such that the 

entries 
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kikjji ru   , where ][ jR  is a symmetric unitary )deg()deg( jj  -matrix with a zero 

diagonal, and all the other entries are equal to zero; w be a |E|-vector of weights of edges of G, 

w


 be the 2|E|-vector of weights of directed edges of G equal to the weights of the corresponding 

undirected ones.  
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where Eulerdec(G) is the set of decompositions of E into cycles with no repeated edges,  



2U  denotes mmiju }{ 2 . 

 

Proof: 

 

first of all, for an mm-matrix A and an m-vector d  let’s define the cycle polynomial 
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where M={1,…,m} and for MX   ),( XXA denotes the sub-matrix of  A whose sets of rows and 

columns both are X. 

 

If  A is unitary, i.e. m
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If we define ),(),( )( ijjiopposite def   then we can vertex-wise subject any system of the 

digraph’s directed cycles to this mapping hence receiving a partition of the set of these systems 

into pairs and “singles” (equal to their opposite ones). Due to the symmetry the equalities 

),(),,(),(),,( ijjkkjji uu  , ),(),(),( jiijji www 


 generate,  a system of directed cycles and its opposite 

one (if these are two different systems) have the same entries ),(),,( kjjiu -s and ),( jiw


-s. Hence we 

can take into account (because of Characteristic 2) only those systems which are mapped onto 

themselves (“singles”), namely the systems where each directed cycle is paired with its opposite 

one. Because 0),(),,( ijjiu  for all Eji ),( , those systems consist of directed cycles which can’t 

contain both (i,j) and (j,i), hence any directed cycle of theirs paired with its opposite one forms 

an undirected edge-unrepeated cycle of the original graph G (as any undirected edge-unrepeated 

cycle of G has precisely two directions of going around). Eventually we get 

  
  


)(

2

),(

),(

2

)),(),,((

),(),,( )1()(),(
GEulerdecD DC Cji

ji

Dkjji

kjji wuwUcycle


 where Eulerdec(G) is the set of 

decompositions of E into undirected cycles with no repeated edges (or the Eulerian cycles of its 

edge-subgraphs), what completes the proof of Theorem. 

 

 

 



Definition: for an undirected graph G=(V,E) each of whose vertices j of degree deg(j) is 

assigned a symmetric )deg()deg( jj  -matrix ][ jR  and each of whose edges ),( ji is assigned a 

weight ),( jiw  over a field of Characteristic 2, let’s define the cycle-decomposition polynomial by  
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Denotation: for a natural number m let’s denote by m1  the m-vector all whose entries are 1. 

 

To be symmetric, unitary, and zero-diagonaled, ][ jR  is constructed as ][][
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where Dec(G) is the set of decompositions of E into simple cycles (because in such a case all the 

passage coefficients are equal to 1, while any undirected graph which isn’t a simple cycle has an 

even number of Eulerian cycles). 

 

Generally, if we call a vertex with T

j

jP )deg(

][ 1  simple-cycled then we can claim that   
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where simpleV  is the set of simple-cycled vertices , Eulerdec(G, simpleV ) is the set of 

decompositions of E into cycles with no repeated edges and no repeated simple-cycled vertices 

(or the Eulerian cycles of its edge-subgraphs with simple-cycled vertices of degree 2 or 0).  Let’s 

call ][

,

j

kir  the passage coefficient between i  and k  through  j. Due to the passage coefficients, we 

can solve in polynomial time (modulo randomization, i.e. the class RP), for instance, such 

problems as the decomposability of an undirected graph (edge-weighted over a field of 

Characteristic 2) into edge-unrepeated cycles such that the products of their edge-weights  

are not 1 -- it follows directly from the cycle-decomposition polynomial’s definition and  

the linear independence of all the possible products of passage coefficients which can be 

generated by a cycle-decomposition, in the generic case of ][ jP , qq

Tjj PP  0)( ][][ . 

 

Lemma 1:  if G=(V,E) is a 2h-regular graph,  ),(),( 1 jijiw   then  
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 where Hamdec(G) is the set of Hamiltonian 

decompositions of G. Particularly, in the case of all the lambdas equal to 1, we receive the 

number modulo 2 of Hamiltonian decompositions for graphs with an odd number of vertices.  

 

Lemma 2: if G=(V,E) is a graph, F is a subset of E, FE \1  is the |E|-vector whose entries are 0 

when indexed by elements of F and 1 otherwise then )1,( \ FEGcycledec  is the number modulo 2 of 

decompositions of E into simple cycles containing at least one element of F.  

 

Let’s call an edge supporting if its weight isn’t 1 and let’s define the set of supporting edges of a 

cycle C as the supporting set of C.  We’ll also say that a cycle C is supported by its supporting 

set if the product of its weights isn’t 1 and is not supported otherwise. 

 



Lemma 2.1: if  G=(V,E) is a 4-regular graph of order n,  e, 1g , 2g  are its pair-wise distinct 

edges, 1,},,,{),(1
21
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the number modulo 2 of decompositions of E into a simple cycle of length n-1 or n containing e  

and either two simple cycles each containing one of the edges 21, gg  and vertex-disjoint in all 

their vertices except possibly one or a Hamiltonian cycle containing both 21, gg . 

 

Proof : 

 

the proof of this lemma is based on Thomason’s theorem about the existence of an even number 

of Hamiltonian decompositions of a quartic multi-graph with at least two vertices where two 

given edges belong to different cycles. The theorem implies that any graph has an even number 

of its edge set’s decompositions into two simple cycles possessing more than one common 

vertex such that two given edges belong to different cycles -- because any connected graph 

whose edge set is decomposable into two simple cycles such that two given edges are in different 

cycles is homeomorphic to a quartic multi-graph (with possible loops) where the two given 

edges of the original graph would transform into two edges of the new multi-graph and such 

pairs of cycles of the original graph would one-to-one correspond to Hamiltonian pairs of the 

new multi-graph such that those two new edges are in different cycles. Let’s also notice that a 

disconnected graph whose edge set is decomposable into two simple cycles is a pair of disjoint 

simple cycles. Hence, given a simple cycle C of G containing e and not containing 1g  or/and 2g , 

the graph )\,(\ CEVG C   (i.e. the rest of G’s edge set) can have an odd number of 

decompositions into two simple cycles such that 1g , 2g  are in different cycles only in case if it’s 

homeomorphic to a pair of loops (possibly connected), hence being a pair of simple cycles with 

at most one common vertex such that 1g , 2g  are in different cycles. It completes dealing with the 

case where edges e, 1g , 2g  belong to three pair-wise distinct cycles with each cycle containing 

exactly one element of the set {e, 1g , 2g }.  

   Therefore there remains, due to the equalities 1
21
 gege wwww , just the option of e belonging 

to one cycle and both 1g , 2g  to another one (as a quartic graph’s edge set is decomposable into 

not fewer than two simple cycles, while e, 1g , 2g  are the only supporting edges and, by the 

definition of cycledec(G,w), we can consider only decompositions of E into cycles having at 

least one of them and supported by their supporting sets – but cycles with the supporting sets 

{e, 1g } and {e, 2g } are not supported by them). By the latter conclusion, the whole proof of 

Lemma is completed too since in both cases (of two and three cycles) we receive the cycle-

decomposition polynomial’s summands 

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 corresponding to the cycle-

decompositions of G mentioned in Lemma.  

 

-------------------------------------------------------------------------------------------------------------------- 

 

If G is bipartite and hence can’t have a cycle of length n-1 (where n is its order) then we 

immediately receive 

 

Corollary 2.1.1: if  G=(V,E) is a 4-regular bipartite graph, e, 1g , 2g  are its pair-wise distinct 

edges, 1,},,,{),(1
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the number modulo 2 of decompositions of E into a Hamiltonian cycle containing e  and either 



two simple vertex-disjoint cycles each containing one of the edges 21, gg  or a second 

Hamiltonian cycle containing both 21, gg . 

 

And at last, in case if 1g , 2g  are adjacent and hence can’t belong to two different vertex-disjoint 

cycles, we receive the following refinement of Thomason’s theorem:  

 

Corollary 2.1.2: if  G=(V,E) is a 4-regular bipartite graph, e, 1g , 2g  are its pair-wise distinct 

edges, { 1g , 2g } is a path of length 2, 1,},,,{),(1
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 is the number modulo 2 of G’s Hamiltonian pairs where e and the 

path { 1g , 2g } belong to different cycles.   

 

 

Definition: let’s call a cycle q-simple in the vertex j if it goes through it at most q times. 

 

Lemma 2.2: if  G=(V,E) is a graph, 21, FF   are two disjoint sets of its edges, 
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 where   is a formal variable then ),(|2| wGcycledeccoeff F
 is the number 

modulo 2 of decompositions of E into simple cycles each containing at least one element of 

21 FF   but not containing edges from them both. 

 

Proof: 

to prove this lemma, we just need to notice that, due to the cycle-decomposition polynomial’s 

definition,  under the conditions given in Lemma ),( wGcycledec  is a polynomial in   of degree 

|||| 21 FF   divided by || 1F . 

 

Definition: 

for a graph G=(V,E) and two disjoint sets of its edges 21, FF  let’s denote by )(
21 , Gcycledec FF  the 

number modulo 2 of decompositions of E into simple cycles each containing at least one element 

of 21 FF   but not containing edges from them both. 

 

Corollary 2.2.1: 

let G=(V,E) be a graph, },{ 11 ge ,…, },{ mm ge  be pair-wise disjoint pairs of its edges. 

Then 
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\},{...},{, )(  is the number modulo 2 of decompositions of E 

into cycles each containing at least one element of },{...},{ 11 mm gege   and not containing any 

pairs },{ 11 ge ,…, },{ mm ge  such that the corresponding multi-graph whose vertices are these 

cycles and whose edges are formed by the pairs },{ 11 ge ,…, },{ mm ge  is connected and bipartite. 

 

Definition: let A be a qq -matrix, then  
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Hamiltonian  q-permutations. 

 

From the definition of the cycle polynomial (given in the proof of Theorem), it follows that  
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polynomial-time computable for any unitary A. 

 

 

Lemma 3: 
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),...,,( ||1 VqqGEulerdec  is the set of decompositions of E into edge-unrepeated cycles which are  

jq -simple in the vertex j,  j=1,…,|V| (or ( ||1,..., Vqq )-simple cycle decompositions). 

 

Proof: 

 

By the definition, ),,...,,( |][|]1[ wRRGcycledec V   
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Let’s take a cycle-decomposition from Eulerdec(G) with a cycle C which goes q  times through 

the vertex j. Let q  > jq  and the neighbors of j in the cycle C be qq kiki ,,...,, 11 (which are pair-

wise distinct due to having no repeated edges), while the other patterns of the cycle C (the 

“interpaths” between those neighbors) be between 1 k  and 1i  ,…, qk  and qi .  We can denote 

them by ),( 11 ikPath ,…, ),( qq ikPath  correspondingly (let’s denote this set of paths by 

Interpath(C,j) and call it a j-Interpath). Then there are (q-1)!  edge-unrepeated cycles consisting 

of the edges C consists of (i.e. the set E(C)) and containing Interpath(C,j). Let’s  call these cycles 

j-equivalent to C. By the j-equivalence relation of cycles (which partitions the set of cycles of 

G), Eulerdec(G) is also partitioned into sets of (j,Interpath(C,j))-equivalent cycle-

decompositions which differ only in the cycle with the same j-Interpath and only in the vertex j .   

 

For the sets },...,{ 1 qkkK  , },...,{ 1 qiiI  and },...,1{ qT   let’s denote by TT IK ,  the subsets of 

IK ,  correspondingly consisting of their elements with sub-indexes from T,  by TT IK \\ ,  the sets 

TKK \ , TII \  correspondingly. Let’s define the passage coefficient of a cycle through a vertex 

as the product of its related passage coefficients through the vertex.  Then the sum of the  

(j,Interpath(C,j))-equivalent cycles’ passage coefficients through  j  is  
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The last equality is due to the symmetry of ][ jR . The expression in the left side doesn’t depend 

on the diagonal entries of ][ jR , hence the right side can be re-written as  
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is equal to zero. Therefore, given a cycle-decomposition 

DEulerdec(G), upon supposing the pair (j,Interpath(C,j)) to be its lexicographical minimum 

among all such pairs (x,Interpath(Y,x)) with the condition xY qx )(deg  (where Y is a cycle of D 

having the vertex x, )(deg xY  is the number of times Y goes through x), it completes the proof of 

Lemma because if D isn’t ( ||1,..., Vqq )-simple then it has such a unique lexicographical minimum 



(j,Interpath(C,j)) and the corresponding (j,Interpath(C,j))-equivalence class doesn’t intersect any 

other equivalence class. Hence all the ( ||1,..., Vqq )-nonsimple summands of the cycle-

decomposition polynomial’s expansion are partitioned into sets whose sums are zeroes.  

 

Lemma 4:  Let G=(V,E) be a graph,   be an |E|-vector, j
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Then there exists a decomposition of E into at most h ( ||1,..., Vqq )-simple cycles.  

 

Definition: 

let’s define a graph’s normal cycle-path-decomposition as a partition of its edge set into cycles 

and paths with no repeated edges such that each vertex is an end of exactly one path. 

 

Definition: 

given a graph G=(V,E), let’s define the doubling of G as two copies of G with each pair of 

corresponding vertices connected by an edge, i.e. the graph Double(G)=( "' VV  ,Double(E)) 

where |||"||'| VVV  , both sub-graphs induced by ",' VV  are G (under the vertex maps 

ii ' , ii "  correspondingly)  and the edges between ",' VV  are only )"1,'1( ,…, )|"|,|'(| VV . 

Let’s call the vertex map '","' iiii   its intercopy-mapping. Let’s also consider a directed 

edge (i,j) as the returning passage ((i,j),(j,i)) and say that a path which ends in the vertex j and 

goes through the undirected edge (i,j) has this passage (which we’ll also call an endedge).     

 

Lemma 5: 
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)(GrdecNormaleule is the set of normal cycle-path-decompositions of G, C denotes a cycle,  

P denotes a path whose end-vertices are )(),( 21 PendPend . 

Proof: 

the proof of this lemma is based on the symmetry of Double(G) and resembles the proof of the 

present article’s main theorem. By the intercopy-mapping, the set of cycle-decompositions of 

Double(G) is partitioned into “pairs” and “singles” where each “pair” consists of its two cycle-

decompositions having the same product of their passage-coefficients while each “single” is two 

copies of a normal cycle-path-decomposition of G with the ends of corresponding paths 

connected by edges )",'( ii . 

 

Now, for an undirected graph whose vertices, edges, paths of length 2 (passages) and directed 

edges (endedges) are weighted over a field of Characteristic 2, let’s define the cycle-path-

decomposition polynomial by defV wRRGeccyclepathd ),,...,,( |][|]1[
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All the above theory for the cycle-decomposition polynomial can be transferred to the cycle-

path-decomposition polynomial as well. First of all, if each passage-coefficient matrix ][ jR  

(whose rows and columns correspond to the vertex  j and its neighbors) is unitary, symmetric and 

zero-diagonaled then it’s polynomial-time computable because in such a case the corresponding 

matrices ]"[ˆ jR , ]"[ˆ jR  are unitary, symmetric and zero-diagonaled too as the index maps 



ii ' , ii "  transform them into ][ jR  (by re-indexing their rows and columns). Let’s call all G’s 

passages except its endedges proper and denote the proper passage-coefficient matrices by 
],[ properjR . Then we get the following extension of Lemma 4 (upon defining a path q-simple in a 

vertex in the same manner that we did for a cycle when considering only proper passages 

through the vertex as going through it): 

 

Lemma 4.1 :   

Let G=(V,E) be a graph, ,1 Eeforw ee   Viforw ii   21 , 

jj

properj qRrank  )I( )deg(

],[  for  j=1,…,|V|, 0),,...,,( |][|]1[ wRRGeccyclepathdcoeff V
h

. 

Then there exists a normal decomposition of E into at most h ( ||1,..., Vqq )-simple cycles and paths.  

 

By analogy with the cycle-decomposition polynomial, if all the passage-coefficients (including 

those of endeges) are equal to one then we get the primitive case of 
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where Normaldec(G) is the set of normal simple cycle-path-decompositions of G, i.e. 

decompositions of its edge set into simple cycles and paths such that each vertex is an end of 

exactly one path. In such a case we immediately receive 

 

Lemma 5.1: 

)ˆ),((),( wGDoublecycledecwGeccyclepathd    where ,ˆˆ
),()","()','( jijiji www  iii ww )",'(

ˆ  

 

Particularly, if G is a graph of an even order n, 1),( jiw  and 1iw  for all i,j then 

),(2/ wGeccyclepathdcoeff n
 is the number modulo 2 of its edge set’s normal decompositions into 

simple paths each having an odd number of edges for 0  and an even number of edges for 

1 .  

 

At last, if we slightly modify the definition of a normal cycle-path-decomposition into the 

definition of an odd-normal cycle-path-decomposition defined as a partition of a graph’s edge 

set into cycles and paths with no repeated edges such that each odd-degreed vertex is an end of 

exactly one path and the definition of the doubling of a graph into the definition of the odd-

doubling defined as its two copies with each pair of corresponding odd-degreed vertices 

connected by an edge then we can modify all the above theory for the cycle-path-decomposition 

polynomial into an analogous one for the odd cycle-path-decomposition polynomial 

defV wRRGthdecoddcyclepa ),,...,,( |][|]1[
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where Oddnormaleulerdec(G) is the set of odd-normal cycle-path-decompositions of G. 
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