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Abstract: Tubular neighborhoods play an important role in differential
topology. We have applied these constructions to geometry of almost Hermitian
manifolds. At first, we consider deformations of tensor structures on a normal
tubular neighborhood of a submanifold in a Riemannian manifold. Further, an
almost hyperHermitian structure has been constructed on the tangent bundle TM
with help of the Riemannian connection of an almost Hermitian structure on a
manifold M then, we consider an embedding of the almost Hermitian manifold M
in the corresponding normal tubular neighborhood of the null section in the tangent
bundle TM equipped with the deformed almost hyperHermitian structure of the
special form.

As a result, we have obtained that any smooth manifold M of dimension n
can be embedded as a totally geodesic submanifold in a Kaehlerian manifold of
dimension 2n and in a hyperKaehlerian manifold of dimension 4n.

1. Deformations of tensor structures on a normal tubular
neighborhood of a submanifold

1°.  Let (M',g') be a k-dimensional Riemannian manifold isometrically
embedded in a n-dimensional Riemannian manifold (M, g). The restriction of g to
M’ coincides with g' and forany p € M’.

T,(M)=T,(M)@T (M')".

So, we obtain a vector bundle M’'—>T(M')":p—T,(M’)" over the
submanifold M'. There exists a neighborhood U, of the null section O, in
T(M’)" such that the mapping

xexp:v—(z(v) expﬂ(v)v),VEJO,
is a diffeomorphism of U, onto an open subset U = M . The subset U is called
a tubular neighborhood of the submanifold M’ in M .



For any point p € M we can consider a set {5(p)} of positive numbers such
that the mapping expy s, is defined and injective on U(5(p))<=T,(M). Let

&(p)=sup{s(p)}.

p

Lemma, [6]. The mapping M — R, : p — &(p) is continuous on M.
If we take the restriction of the function £(p) on U then it is clear that there
exists a continuous positive function &(p) on M’ such that for any p € M’ open

&(p)

geodesic balls B(p;T)C B(pig(p))cﬁ. For compact manifolds we can

choose a constant function &(p)=s>0. We denote U, =exp(J, ~T,(M")"),
D( p;@j = B( p;%p)jmﬁp, D(p;&(p))=B(p;&(p))nU,. It is obvious that

dimU , =dim D(p;&(p))=n—k. For any point o€ M’ we can consider such an
orthonormal  frame (Xlo,...,Xno) that  To,(M’)=L[X,,...X, ] and

T,(M')" = L[X,,y, .- X, ]. There exist coordinates x;,..., X in some neighborhood

\7O c M’of the point o that i: Xio,izl,_k. We consider orthonormal vector

ily

fields Xy, ..., Xn Which are cross—sections of the vector bundle p —>Tp(M ’)L over
V, and the neighborhood W, = JuU,. The basis {Xy,, ,...X, } defines the

PV
normal coordinates X1, ..., X, on U ; [8]. For any point x e W, there exists such

unique point p € V, that x=exp,(t&), [&]=1 &eT,(M’)". A pointx € W, has
the coordinates X, ..., Xk, Xk+1, -y Xn Where Xy, ..., X, are coordinates of the point p in

- . .~ o .
V, and X1, ..., Xn are normal coordinates of x in U o We denote X, =—,i=1n,

OX;
on W, . Thus, we can consider tubular neighborhoods
Tb(M’;%p)j: UD(p;%p)j and  Th(M"£(p))= UD(p:e(p) of the
peM’ peM’

submanifold M.

2°.  Let K be a smooth tensor field of type (r, s) on the manifold M and for
x e W,, let

Ki= 32 kit (XX, ®.0X ®Xre..®X}),



where  {X},...X{} is the dual basis of T;(M) x=exp,(t&),
|€|=1 &eT,(M’)". We define a tensor field K on M in the following way.

a) Xe D( p;%p)j, then

Ki= X kp i:(p)xilx®"'®xirx®Xxj1®---®xx"s;

b) x e D(p;&(p))\ D( p;%p)j, then

K= Y k' (exp,(2t-e(p)e)X, ®..0X, ®@X}ro. .@X):;

c) xeM \UD(p;g(p)), then

Rx - KX .
It is easy to see the independence of the tensor field K on a choice of
coordinates in W, for every point oe M’

Definition 1. The tensor field K is called a deformation of the tensor field K
on the normal tubular neighborhood of a submanifold M’.

Remark. The obtained tensor field K is continuous but is not smooth on the

boundaries of the normal tubular neighborhoods Tb(M ,;%p)) and Tb(M’; &(p)),

K is smooth in other points of the manifold M.

3°.  We consider a deformation g of the Riemannian metric g on the
normal tubular neighborhood Th(M’;&(p)) of a submanifold M’. For x e W,,
x=exp,(t&), & =1 &£eT,(M'), we define the Riemannian metric g by the
following way.

a) g,=9, forany peM’;

D) g, (XX, )=g,(0) in ¢

g;;(p), where Xi:i, i=Ln, X;=—,

OX; j

2

j:]_,_n, on VVO,X IS D[p;ip)j;



§i,- (epr((Zt _5(p))§))’ for any

c) §X(Xi,xj)=§ij(x)
X e D(p;g(p))/D(p;%p)j;

d) g, =g, foreach point xe M\ |UD(p;e(p)).
peM’
The independence of g on a choice of local coordinates follows and the

correctly defined Riemannian metric g on M has been obtained.

It is known from [9] that every autoparallel submanifold of M is a totally
geodesic submanifold and a submanifold M’ is autoparallel if and only if
V.Y eT(M’) forany X,Y e 7(M’), where V is the Riemannian connection of g.

B Theorem 1. Let M’ be a submanifold of a Riemannian manifold (M, g) and
g be the deformation of g on the normal tubular neighborhood Tbh(M’;&(p)) of
M’ constructed above. Then M’ is a totally geodesic submanifold of

Loy

Proof. For any point X e D( p;@) cVV0 the functions 6” (x)= gij(p) and

7,

r =0, I=k+Ln on D(p;%p)j because the vector fields X,=i are
I

OX
tangent to D[ p;@]. By the formula of the Riemannian connection V of the
Riemannian metric g, [8], we obtain for i, j=1k, I=k+1n

(1.1) 29p(v><ixj’x|): xipg(xj’xl)+x' g(Xi, X )_XI g(xiix') +

+ g, (%0 x 1 x)+ g, 06, X1 %)+ 9, (%X xS ])__ﬂ:

Here we use the fact that [X,,XJJ—[X,,X,]—[X,,XJJ—O and that
9(X;, %, )=9(X;,X,)=0 because X, eT(M')".
Thus, Vx, X eT(M’) and from the remarks above the theorem follows.

B QED.
Corollary 1.1. Let R be the Riemannian curvature tensor field of V. Then

R vanishes on every D( p;%p)j for peM’.

Proof. From the formula (1.1) it is clear that Vx, X =0 for I,m=k+1,n.

The rest is obvious.
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QED.
2. Almost hyperHermitian structures (ahHs) on tangent bundles

0°. Let (M, g) be a n—dimensional Riemannian manifold and TM be its
tangent bundle. For a Riemannian connection V we consider the connection map
K of V [2], [6], defined by the formula

(2.1) V,Z=KzZ.X,
where Z is considered as a map from M into TM and the right side means a vector
field on M assigning to p € M the vector KZ. X j e M.

If UeTM, we denote by Hy the kernel of K, = and this n-dimensional

subspace of TM,, is called the horizontal subspace of TM,; .

Let 7 denote the natural projection of TM onto M, then 7 is a C”—map of
TTM onto TM. If UeTM, we denote by Vy the kernel of z.,, = and this
n—-dimension subspace of TM, is called the wvertical subspace of
T™M, (dimTM, =2dimM =2n). The following maps are isomorphisms of
corresponding vector spaces (p = z(U))

and we have
TM, = H, @V,
If X ex(M), then there exists exactly one vector field on TM called the

«horizontal lifty (resp. «vertical lift») of X and denoted by Yh(f\/), such that for
allU eTM :

(2.2) X0 = X
(2.3) X0 =0,y KX0=X,y)

Let R be the curvature tensor field of V, then following [2] we write

(2.4) [X',Y"1=0,

(25) [X".Y'1=(V,Y)

(26) (X" ¥"L )=1x,¥1,

2.7) K([Y“,\?“]U): R(X,Y .

For vector fields X =X @X' and Y=Y @Y’ on TM the natural

Riemannian metric §=<,> is defined on TM by the formula
5

< h
vy KXU=0:0),
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(2.8) <X,Y>=g(mX,zY)+g(KX,KY).
It is clear that the subspaces Hy and Vy are orthogonal with respect to <, >.
—h v &

It is easy to verify that X1, Xp,...,Xn, X1, X 2,...,X n are orthonormal vector
fields on TM if X,, X,,...,X,, are those on M i.e. g( X;, X j):5}.

1°.  We define a tensor field J; on TM by the equalities
(2.9) Jlfh :YV,Jlfv :—Yh, X e;((l\/l )
For X e 7(M) we get

IZX = Jl(Jl(Y“ @YV»: Jl(—fh @Y“): —(x "® x“): ~1X

and
I =-1.
For X,Y e y(M) we obtain
<J; Y J; \7>—<—Yh @YV —Vh aY" >—<—Yh Y’ >+<YV,\7V >,
< X Y >=< X @Yv Vh@)Y >=< X Yh >+<YV,\7V >

and it follows that <J, X,JlY >=<X,Y >,(TM, J,,<,>) is an almost Hermitian
manifold.

Further, we want to analyze the second fundamental tensor field h' of the
pair (J;, <,>) where h'is defined by (2.11), [3].

The Riemannian connection ¥ of the metric &=<,> on TM is defined by
the formula (see [6])

(2.10) <€ Y,z >:%(Y<\?,Z>+\?<Z,Y>—Z<Y,\?>+

+<Z,[X,Y]>+<Y,[Z,X]>+<X,[Z,Y]>), X,Y,Z € (M)
For orthonormal vector fields X,Y,Z on TM we obtain

— — 1 — — —
(211) hl,=<hlY,Z >= <€ Y +3€.0)Y,Z>=
6V, 25— <60,7,0,Z5)-

:%(<[Y,\?],Z>+<[Z,Y],\?>+<[Z,\?],Y>—

—<[X,3,Y1,3,Z >-<[3,Z,X],3,Y >—<[J,Z,3,Y], X>).
Using (2.4) — (2.7) and (2.11) we consider the following cases for the tensor
field h* assuming all the vector fields to be orthonormal.

o 1 1, oh ghy5h —h —h, Sh
1.1°) [ _Z(<[X Y'1.Z >+<[Z X 1Y >+



+<[Z" Y"1 X" s <X 3Y",3,Z2" > - <[3,2" X", 3,Y" > -
-<3,2" Y"1 X">) = 2 (00X Y1.2)+ 9((Z, X1 )+ 6(Z.¥1. X) -
—<IX" Y12 > —<[Z2" XY > —<[Z' Y'1.X">)=
=2 0(V,Y.2)-4 8V Y, 2)-9(V,2.Y)) -

—~(9(v,Y,2)-g(v,,2) =0

2.1°) hlyh\?hzv :%(<[Yh,\7h],zv>+<[Zv,fh],\7h >+
—Vv —h, —h —h —h =V —Vv —-h —h

+<[Z )Y ], X >—<[X,3Y 1,3, Z >-<[J,Z X ],J)Y >-

_<[J12V,Jl\?“],i%):%(g(R(x,Y)U,Z)+<[Z“,Y“],\?V >):

:%(Q(R(X,YN,ZH g(R(Z, X .Y))=

=—%(g(R(X,Y)Z,U)+ g(R(Z,X)Y,U))

By similar arguments we obtain

3.1°) ht =—%(g(R(Z,X)Y,U)+g(R(X,Y)Z,U)).

X"y z"
1

4.1°) ht =—Z(g(R(Z,Y)X,U)).

xX'y"z"
1

5.1°) hi,_,_, ==(g(R(Z,Y)X,U))

X'Y'z" g

6.1° hi, . ,=0.

XY z

7.1° hi,_,_,=0.

XY Z

8.1°) hi, ,,=0.
XY Zz

It is obvious that (J,, ) is a Kaehlerian structure if and only if h* =0.

2°.  Now assume additionally that we have an almost Hermitian structure J
on (M, g). We define a tensor field J, on TM by the equalities

(212) 3,X"=(x), 3,X"=—(X), XexM).

For X ey(M) we get

12X = 3,(1,(X" @ X" )= 3,(X ) @ (% ) )= -(x"@ X" )-1X
and



For X,Y e (M) we obtain
< JZY, JZV >=< (J_X)h @® —(J_X)V, (J_Y)h @® —(J_Y)v >=< (J_X)h(J_Y)h >+
+<(3x),(aY) >=g(3x, 3Y)+ g(3X, 3¥ )= g(X,Y)+ g(X,Y) =

e X Y o< X Y s XX Y @Y =< XY >.
Further, we obtain
3,(9,%)=3,(X ) @ ~(3x)' )= (X @ (3x )",
3,(3,X)=3,- X" @ X" )= (X ) @ (3"
Thus, we get J,J, =-J,J; = J; and ahHs (J,,J,,J;,<,>) on TM has been
constructed.
For orthonormal vector fields X,Y,Z on TM we obtain

(213)  h_=<hlVZ >:% <6.Y 43,6 3,Y,7 >=

XYZ

:%(< $.V.Z>-<6.3,Y,3,Z >)=%(<[Y,\?],Z > 1
+ < [Z,Y],\? >+ < [Z,\?],Y >—< [Y,JZV],JZZ > —
—<[3,Z,X1,3,Y >-<[3,Z,3,Y],X>)
Using (2.4) — (2.7) and (2.13) we consider the following cases for the tensor
field h? assuming all the vector fields to be orthonormal.
O 2 1, h ghy5h —h —h, =h
1.2°) - _Z(<[X Y12 >+<[Z2 X 1Y >+

h =h

+<[Z Y ],Yh >—<[Yh,J2\7h],JZZh >—<[J22h,fh],J2\7h > —

—<[J22“,J2?“],Y“>)=%(g([x,vl,z)+g([z,X],Y)+g([z,Y],x)—

~9([X,9¥1,32)-9([9Z, X1,3Y)-9([3Z,3Y1. X)) =

1
=2(0(V Y. 2)- (VY. 32)) =y

2.2%) 2, :%(<[Y“,\?“],ZV s <[Z X"V s+
+<[ZV,\7h],Yh >—<[Yh,J2\7h],JZZV >—<[J22V,Yh],32\7h >
—<[JZZV,JZVh],Yh>):%(g(R(X,Y)J,Z)+ g(R(X,IYU,JZ))=

:_%(g(R(X,Y)Z,U)+ g(R(X,3Y)dz,0))

By similar arguments we obtain
32°) h2, .\ = —%(g(R(X ,Z)Y,U)+g(R(X,JZ)IY,U))

4.2°) hoonon = —%(g(R(Z,Y)X U)-g(R(JZ,IY)X,V)).

8



5.2°) h2,,_, =0.
XY z
6.2°) h2,_,_,=0.

XY z

7.2°) h2, ., =0.

X'¥"z
o 1
8.2°) h;hyvzv:E(Q(VXY!Z)_Q(VXJY“JZ)):hxvz-

Here h is the second fundamental tensor field of the pair (J, g) on M.

3. Embeddings of almost Hermitian manifolds in almost
hyperHermitian those

For an almost Hermitian manifold (M, J, g) we have constructed in 2 ahHs
(J;,J,,J5, €) on TM. The manifold M can be considered as the null section Oy in

™ (p <>0, €0y —TM) and it is clear from (2.8) that &\v =g . All the results of
1 can be applied to a submanifold M in (TM, §), see [7]. So, we can consider the

normal tubular neighborhoods Tb(M,%p))ch(M,g(p))cTM and the

deformations J1,J2,Js,g of the tensor fields J,,J,, J;, § respectively.

Theorem 2. Let (M, J, g) be an almost Hermitian manifold and Tb(M, £(p))
be the corresponding normal tubular neighborhood with respect to =<, > on
TM. Then M(Oy) is a totally geodesic submanifold of the almost hyperHermitian

manifold (Tb(M,@),L,jz,jg,@j, where the ahHs (31,32,33,6) is the

deformation of the structure (J1,32, Js, €) obtained in 2°, 1. The structure (J1,9)

is Kaehlerian one.
Proof. It follows from theorem 1 that M is a totally geodesic submanifold of

the Riemannian manifold (Tb[M %p))@

Let VVO be a coordinate neighborhood in TM considered in 1°, 1. A point
X eVVO has the coordinates X, ..., Xn, Xn+1, ..., Xon Where Xy, ..., X, are coordinates

of the point p in \7ocM and Xps1, ..., Xon are normal coordinates of X in
&(p)

Dl p,——=|.

(p 2 j

We denote
0 . — —k

Xp=—- i=12n, ﬁxixj=%ﬁ;xk, Vx X; =2 TiiX,, ij:%ijxk,

|



J— _k J— J—

X=X X 6 (X, X;) g;=9(x;,X;) where ¢ and V are

Riemannian connections of metrics & and g, J is any tensor field from J,,J,,J..
Using the construction in 2°, 1 we have g;(x)=&;(p), T5(x)=3(p) on

— o1 109y dg, 99
3.1 == j ik _ “Yij
34) 2.9yl 2( ox o ox,

! J

Tb(M %p)j mVVO. According to [8] we can write

It follows from (3.1) that Tij(x)=Ti(p) and Ti(x)=0 i.e. Vx,X; =0 for
i =n+12n. Further, we get
(gxlj)xj ngljxj _WXIXJ :zgxljljxk -
k
~ =k k= =k
k k
SIS :z(j',-fh_f!,-jhxijﬁ)xk,
((WJ) )= (J T —Tid0 +X, 3 k X)X 1 =

((J F.|—F:,J Xp)+ (X, T J0))X
It follows that in J :0 for i=n-+12n.
Fori=1n (XJ'}X )= ( kXp and we obtain
(Vx, 3)x )(x ( VS LI+ X35 )(p)X e
From the other side we can wrlte

(€5, 3)x;Xp)= ( INE - Byl + X35 )Xo

According to [3] we have (inJ)Xj _(ZhXiJXjXp) where the second

fundamental tensor field h is defined by (2.11). From 1.1°) — 8.1°) it follows that
hy =0 for any peM(U =0,€0, ). Thus, we have obtained VJ,=0 and the

structure (J1,g) is Kaehlerian one on Tb(l\/l @j

QED.
As a corollary we have got the following

Theorem 3 [4]. Let (M, g) be a smooth Riemannian manifold and
Tb(M, &(p)) be the corresponding normal tubular neighborhood with respect to
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g =<,>o0nTM. Then M(Oy) is a totally geodesic submanifold of the Kaehlerian
manifold (Tb(M %F))leﬁj

The classification given in [5] can be rewritten in terms of the second
fundamental tensor field h, [3]. Let dimM > 6 and 243(X)=d&D(JX), where
®(X,Y)=g(JX,Y), then we have

Class Defining condition
K h=0
U, =NK hyX=0
U, =AK ohyy; =0
U;=SKnH hyvz —Nixovaz :ﬁ(Z):O
U h =#[<X,Y>,6’Z—<X,Z>ﬂY <X, JY > pIZ2)+
XYZ 2(n—1)
+< X,3Z > pAY)]
U, ® U, =0K hyvaz = haxvz
Us@®U,=H N(J)=0 or hyy, =—hyy,
Ui @ U Nyxy —Naxaxy :,B(Z)ZO
1
U2 & Uy G[hXYJZ_m<‘]X’Y>ﬂ(Z)]:O
U,eu 1
19U, hyxy :_Z(n——1)[< X,Y > BOX) = X[* BY )< X, 3Y > B(IX)]
U, @ Us olhyyy, + Ny 1= B(Z)=0
U@ U, ® U= B=0
= SK
U, @eu,®u 1
P e hXYJZ_hJXYZ:(n—_l)[< XY > BQZ)-<X,Z> pQY )+
+< X, Y > B(Z2)-<X,3Z > pY)]
U, ® U@ Uy yaxy +Naxxy =0
U, ® Us @ Uy olhyysz +Nyxyz] =0
U No condition

Proposition 4. Let (J, g) be from some class from the table above. Then the
structure (32, g) has the analogous class on Tb(M @j

11




Proof. From 1.2°) — 8.2°) it follows that hZ_. = 2h,,,. The rest is obvious
from the table.

QED.

4. Complex and hypercomplex numbers in differential geometry

For the manifold M we consider the products M 2 = M x M =
={x;y)|xyeMh,M*=M2xM2={(x;y;u; V)| Xy, u;ve M} and the
diagonals A (M ?) = {(x; x) € M2}, AM*) ={(x; x; x; X) € M *}. It is obvious that
the manifold A (M 2) and A (M *) are diffeomorphic to M (A (M %) = A (M %) = M).

Theorem 5 [6]. Let (M, V) be a manifold with a connection V and
7. TM — M be the canonical projection. Then there exists such a neighborhood
N, of the null section Oy, in TM that the mapping

pirxexp: X = (7(X),exp,x) X)
is the diffeomorphic of Ny on a neighborhood N, of the diagonal A (M .

Further, V is a Riemannian connection of the Riemannian metric g.
Combining the theorems 3, 5 we have obtained the following.

Theorem 6. The diffeomorphism ¢ induces the Kaehlerian structure (J1,g)
on the neighborhood N, of the diagonal A(M ?) and A(M % =M is a totally
geodesic submanifold of the Kaehlerian manifold (N,,J1,9).

Remark. Generally speaking, the complex structure of the Kaehlerian
manifold (NA,31,§) is not compatible with the product structure of M 2. It means
that if z,l1=1,n are the complex coordinates of a point (x; y) € N,, then,
generally speaking, we can not find such real coordinates x,,y,,I=1,n of the
points X, y € M respectively that z, = x, +iy, where i* =-1.

Combining the theorems 2, 3, 4, 5, 6 we have obtained the following.

Theorem 7. There exists the hyperKaehlerian structure (31,32,33,5) on a
neighborhood N, of the diagonal A (M %) and A(M *) = M is a totally geodesic
submanifold of the hyperKaehlerian manifold (N, J1,32,33,9)

Remark. Generally speaking, the hypercomplex structure of the
hyperKaehlerian manifold (Na,J1,32,33,9) is not compatible with the product
structure of M *. It means that if q,,1 =1,n are the hypercomplex coordinates of a
point (x; y; u; V) € N, then, generally speaking we can not find such real
coordinates x,y,,u,,v;, 1=1,n of the points x; y; u; v e M respectively that
q =X +iy, + ju, + kv, where i’ = > = k* =1, ij =i = k.

12



5. A local construction of Kaehlerian and Riemannian metrics.
1°. We consider a Riemannian manifold (M, g) as a totally geodesic

subanifold of the Kaehlerian manifold Tb(M ,%p),j = Jl,ﬁ) (see theorem 3) then

9, =9
Let xy, ..., X, be coordinates in some coordinate neighborhood U < M and
ai,...,aa be the corresponding vector fields. We can choose a neighborhood

Xl Xn

U=UxD= UD(p;g)ch(M,@j where es%p) for every point peU. It

peU
is clear from 3° 1 that U x D is a Riemannian product with respect the metric g.

0 —

. =J——,j=1n and the
OX jy

For every point xeU where z(x)=p we denote Y,

vector fieds Y; define the coordinates yi, ..., yn on Dy, hence Y; = o IS tangent

j
to D, for j= in.

So, U is an coordinate neighborhood of the Kaehlerian manifold

(Tb(M,g(zp)j,J_,ﬁ], with complex coordinates z; = x; +iy;, j=1n,i?=-1, and

the vector fields o _1f 0 —i 0 , o _1f @ +i 0 o, B=1n. It is
oz, 2\ox, oy,)oz, 2\ox, oy,

known [9] that the Kaehlerian metric g° hason U the following decomposition

where u is a real-valued function on U .

We have

u_ _1] u _ du [ du du )|,
Gzaﬁzﬁ 4 axaaxﬁ ayotayﬁ 8yotaxﬁ axaayﬁ ,

13



Pu__1] du _ du  f du | _
8Za87ﬂ 4 6Xa5Xﬂ ayaayﬂ ayaaxﬁ axaayﬂ
It follows that

o’u _ du o 4

KOk o0y XDy YKy

Further, we obtain

g = o%u 1 o%u N o%u i u o 1 o%u i o%u
P 02,025 4 |0X,0X5 0Y,0¥, OX, 0¥ 5 OY,0Xpg 2| OX,0X5  OX, 0¥ 5
0, = ou 1] o4 .\ ou _ ou  du )| _1f & _ ou
“p 07,025 4 |0X,0X5 0Y,0Y, X, 0¥ 5  OY,0Xg 2| OX,0%5  OX,0Yp '

Finally, we get

| 0o 0 1. ¢ 0 0 1_ ¢ O o 0 0 & .
g —,— |==-Reg"| —,— |==Reg + : + =Re(gaﬂ+g:+
X, ' OXg ) 2 X, OXg | 2 oz, 015 015 0, “”

o

+g§ﬁ+g§ﬁ) ( ap T gaﬂ) . ayﬂ

We can consider the restriction of g and the function u on the neighborhood
U. So, we have obtained

Theorem 8 Let (M, g) be a Riemannian manifold and x;, ..., X, be
coordinates is some coordinate neighborhood U — M. There exists a smooth
2
functionu: U —» R that g;;=¢ 0 : 0 = ou on U.
OX; OXj | OX0X;

2°. Let (M, J, g) be a Kaehlerian manifold Xy, ..., X, Y1, ..., Yn, b€ coordinates

iIs some coordinate neighborhood U — M, where i—Jai a=1n. We
o X

consider a function u: U - R from theorem 5. Then, we have the following

conditions on this function.
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o%u 0 ) o 0 o%u
=g ,J =—0|Jd——— |=- ,
X, 0¥ 5 X, 0%y OX, OXg 0Y,0Y s

2 2 L
o°u :g\]ﬂ,\]ﬁ _g 6’6 _ ou @ p=1in.
X,  OXg OX, OXg OX, 0K
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