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_________________________________________________________________ 

Abstract: Tubular neighborhoods play an important role in differential 

topology. We have applied these constructions to geometry of almost Hermitian 

manifolds. At first, we consider deformations of tensor structures on a normal 

tubular neighborhood of a submanifold in a Riemannian manifold. Further, an 

almost hyperHermitian structure has been constructed on the tangent bundle TM 

with help of the Riemannian connection of an almost Hermitian structure on a 

manifold M then, we consider an embedding of the almost Hermitian manifold M 

in the corresponding normal tubular neighborhood of the null section in the tangent 

bundle TM equipped with the deformed almost hyperHermitian structure of the 

special form. 

As a result, we have obtained that any smooth manifold M of dimension n 

can be embedded as a totally geodesic submanifold in a Kaehlerian manifold of 

dimension 2n and in a hyperKaehlerian manifold of dimension 4n. 

__________________________________________________________________ 

 

1. Deformations of tensor structures on a normal tubular 

neighborhood of a submanifold  

 

1. Let  gM ,  be a k–dimensional Riemannian manifold isometrically 

embedded in a n–dimensional Riemannian manifold  gM , . The restriction of g to 

M coincides with g' and for any p  M  . 

      MTMTMT ppp . 

So, we obtain a vector bundle      MTpMTM p:  over the 

submanifold M  . There exists a neighborhood 0

~
U  of the null section MO   in 

 MT  such that the mapping  

     0

~
,exp,:exp Uvvvv v   , 

is a diffeomorphism of 0

~
U  onto an open subset MU 

~
. The subset U

~
 is called  

a tubular neighborhood of the submanifold M   in M . 
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For any point p  M we can consider a set   p  of positive numbers such 

that the mapping   pU exp  is defined and injective on     MTpU p . Let 

    pp  sup . 

 

Lemma, [6]. The mapping  ppRM   :  is continuous on M. 

If we take the restriction of the function  p  on U
~

 then it is clear that there 

exists a continuous positive function  p  on M   such that for any p  M   open 

geodesic balls 
 

   UppB
p

pB
~

;
2

; 










. For compact manifolds we can 

choose a constant function   0  p . We denote    MTUU pp 0

~
exp

~
, 

   
pU

p
pB

p
pD

~

2
;

2
; 
















 
,       pUppBppD

~
;;   . It is obvious that  

   knppDU p  ;dim
~

dim . For any point Mo   we can consider such an 

orthonormal frame  
00

,...,1 nXX  that   ],...,[
0010 kXXLMT   and 

  ],...,[
0010 nk XXLMT 


 . There exist coordinates x1,..., xk in some neighborhood 

MV 0

~
of the point o that kiX

x
i

i

,1,
0

0





. We consider orthonormal vector 

fields Xk+1, ..., Xn which are cross–sections of the vector bundle   MTp p  over 

0

~
V  and the neighborhood p

Vp

UW
~~

0

~0 


 . The basis },...,{ 1 pp nk XX   defines the 

normal coordinates xk+1, ..., xn on pU
~

 [8]. For any point  x  0

~
W  there exists such 

unique point p  0

~
V  that     MTtx pp  ,1,exp . A point x  0

~
W  has 

the coordinates x1, ..., xk, xk+1, ..., xn where x1, ..., xk are coordinates of the point p in 

0

~
V  and xk+1, ..., xn are normal coordinates of x in pU

~
. We denote ni

x
X

i

i ,1, 



 , 

on 0

~
W . Thus, we can consider tubular neighborhoods 

   



















 2
;

2
;

p
pD

p
MTb

Mp


  and      ppDpMTb

Mp

 ;; 


  of the 

submanifold M  . 

 

2. Let K be a smooth tensor field of type (r, s) on the manifold M and for 

x  0

~
W , let 

  s

xrx

sr

r

s

j
x

j
xii

jjii

ii

jjx XXXXxkK   ...... 1

1

11

1

1
,...,,,...,

,...,

,..., , 
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where },...,{ 1 n
xx XX  is the dual basis of    ,exp,* txMT px    

  MTp ,1 . We define a tensor field K  on M in the following way. 

 

 

a) 
 











2
;

p
pDx


, then 

  s

xrx

sr

r

s

j
x

j
xii

jjii

ii

jjx XXXXpkK   ...... 1

1

11

1

1
,...,,,...,

,...,

,..., ; 

 

b)   
 











2
;\;

p
pDppDx


 , then 

     s

xrx

sr

r

s

j
x

j
xiip

jjii

ii

jjx XXXXptkK   ......2exp 1

1

11

1

1
,...,,,...,

,...,

,...,  ; 

 

c)   ppDMx
M

;\ 


 , then  

xx KK  . 

It is easy to see the independence of the tensor field K  on a choice of 

coordinates in 0

~
W  for every point Mo  . 

 

Definition 1. The tensor field K  is called a deformation of the tensor field K 

on the normal tubular neighborhood of a submanifold M  . 

 

Remark. The obtained tensor field K  is continuous but is not smooth on the 

boundaries of the normal tubular neighborhoods 
 











2
;

p
MTb


 and   pMTb ; , 

K  is smooth in other points of the manifold M. 

 

3. We consider a deformation g  of the Riemannian metric g on the 

normal tubular neighborhood   pMTb ;  of a submanifold M  . For x  0

~
W , 

   MTtx pp
  ,1,exp , we define the Riemannian metric g  by the 

following way. 

a) pp gg   for any Mp  ; 

b)      pgxgXXg ijijjix , , where ,,,1,
j

j

i

i
x

Xni
x

X








   

,,1 nj   on 0

~
W , x  

 









2
;

p
pD


; 
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c)     xgXXg ijjix ,      ptg pij 2exp , for any 

  ppDx ; 
 










2
;

p
pD


; 

d) xx gg   for each point Mx \   ppD
Mp

;


. 

The independence of g  on a choice of local coordinates follows and the 

correctly defined Riemannian metric g  on M has been obtained. 

It is known from [9] that every autoparallel submanifold of M is a totally 

geodesic submanifold and a submanifold M   is autoparallel if and only if 

 MTYX
  for any  MYX , , where  is the Riemannian connection of g. 

 

Theorem 1. Let M   be a submanifold of a Riemannian manifold (M, g) and 

g  be the deformation of g on the normal tubular neighborhood   pMTb ;  of 

M   constructed above. Then M   is a totally geodesic submanifold of 

 
















 g

p
MTb ,

2
;


. 

 

Proof. For any point 
 

0

~

2
; W

p
pDx 











 the functions    pgxg ijij   and 

nkl
x

g

l

ij
,1,0 




 on 

 









2
;

p
pD


 because the vector fields 
l

l
x

X



  are 

tangent to 
 










2
;

p
pD


. By the formula of the Riemannian connection   of the 

Riemannian metric g , [8], we obtain for nklkji ,1,,1,   

(1.1)         jillijljiljXp XXgXXXgXXXgXXXg
pppi

,,,,2   + 

 +          0,,,,,, 





l

ij

jlipjilpljip
x

g
XXXgXXXgXXXg . 

Here we use the fact that       0,,,  jlilji XXXXXX  and that 

    0,,  lilj XXgXXg  because   MTX l . 

Thus,  MTX jX i
  and from the remarks above the theorem follows. 

 

QED. 

Corollary 1.1. Let R  be the Riemannian curvature tensor field of  . Then 

R  vanishes on every 
 










2
;

p
pD


 for Mp  . 

Proof. From the formula (1.1) it is clear that 0 mX X
l

 for nkml ,1,  . 

The rest is obvious. 
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QED. 

2. Almost hyperHermitian structures (ahHs) on tangent bundles 

 

0. Let (M, g) be a n–dimensional Riemannian manifold and TM be its 

tangent bundle. For a Riemannian connection   we consider the connection map 

K of   [2], [6], defined by the formula 

(2.1) XKZZX * , 

where Z is considered as a map from M into TM and the right side means a vector 

field on M assigning to p  M the vector pp MXKZ * . 

If TMU , we denote by HU the kernel of 
UTM

K  and this n–dimensional 

subspace of UTM  is called the horizontal subspace of UTM . 

Let  denote the natural projection of TM onto M, then * is a C –map of 

TTM onto TM. If UTM, we denote by VU the kernel of 
UTM*  and this  

n–dimension subspace of UTM  is called the vertical subspace of  

UTM   nMTMU 2dim2dim  . The following maps are isomorphisms of 

corresponding vector spaces   Up   

pUTMpUTM
MVKMH

UU
 :,:*  

and we have 

UUU VHTM   

If  MX  , then there exists exactly one vector field on TM called the 

«horizontal lift» (resp. «vertical lift») of X and denoted by  vh
XX , such that for 

all TMU  : 

 

(2.2)    U

h
UU

h
U XKXX  0,*  , 

(2.3)    ,,0* U

v
UU

v
U XXKX    

Let R be the curvature tensor field of , then following [2] we write 

(2.4) ],[
vv

YX =0, 

(2.5)  vX

vh
YYX ],[  

(2.6)   ],[],[* YXYX U

hh
 , 

(2.7)    UYXRYXK U

hh
,],[  . 

For vector fields 
vh

XXX   and 
vh

YYY   on TM the natural 

Riemannian metric ,€g  is defined on TM by the formula  
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(2.8)    YKXKgYXgYX ,,, **   . 

It is clear that the subspaces HU and VU are orthogonal with respect to < , >. 

It is easy to verify that 
v
n

vvh
n

hh
XXXXXX ,...,,,,...,, 2121  are orthonormal vector 

fields on TM if nXXX ,...,, 21  are those on M i.e.   i
jji XXg , . 

 

1. We define a tensor field J1 on TM by the equalities 

(2.9) ,, 11

hvvh
XXJXXJ   MX  . 

For  MX   we get 

       XIXXXXJXXJJXJ
vhvhvh

 111
2
1  

and 

IJ 2
1 . 

For  MYX ,  we obtain 





vvhhvhvh

vvvhvhvh

YXYXYYXXYX

YXYXYYXXYJXJ

,,,,

,,,,, 11  

and it follows that   ,,,,,, 111 JTMYXYJXJ  is an almost Hermitian 

manifold. 

Further, we want to analyze the second fundamental tensor field h
1
 of the 

pair (J1, <,>) where h
1 
is defined by (2.11), [3]. 

The Riemannian connection €  of the metric ,€g  on TM is defined by 

the formula (see [6]) 

(2.10)   YXZXZYZYXZY
X

,,,
2

1
,€  

  .,,,],[,],[,],[, MZYXYZXXZYYXZ   

For orthonormal vector fields ZYX ,,  on TM we obtain 

(2.11)  ZYJJYZYhh
XXXXYZ

,€€
2

1
, 11

11  

     ZJYJZY
XX 11 ,€,€

2

1
 

    XYZYXZZYX ],,[],,[],,[
4

1
– 

 – <  XYJZJYJXZJZJYJX ],,[],,[],,[ 111111 . 

Using (2.4) – (2.7) and (2.11) we consider the following cases for the tensor 

field h
1
 assuming all the vector fields to be orthonormal. 

1.1)    
hhhhhh

ZYX
YXZZYXh hhh ],,[],,[

4

11  
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      



      

     .0,,
2

1

,,
4

1
,

2

1

],,[],,[],,[

],,[],,[],,[
4

1
],,[

],,[],,[],,[

11

1111











ZYgZYg

YZgZYgZYg

XYZYXZZYX

XYZgYXZgZYXgXYJZJ

YJXZJZJYJXXYZ

XX

XXX

hvvvhvvvh

hhh

hhhhhhhhh

 

 

 

2.1)    
hhvvhh

ZYX
YXZZYXh vhh ],,[],,[

4

11  

    

     

      .,,,,
4

1

,,,,
4

1

],,[,,
4

1
],,[

],,[],,[],,[

11

1111

UYXZRgUZYXRg

YUXZRgZUYXRg

YXZZUYXRgXYJZJ

YJXZJZJYJXXYZ

vhhhhv

hhvvhhhhv









 

By similar arguments we obtain 

3.1) 1
hvh

ZYX
h       .,,,,

4

1
UZYXRgUYXZRg 

 

4.1) 1
hhv

ZYX
h    .,,

4

1
UXYZRg

 

5.1) 1
vvv

ZYX
h   .,,

4

1
UXYZRg  

6.1) 1
hvv

ZYX
h = 0.

 

7.1) 1
vhv

ZYX
h = 0. 

8.1) 1
vvh

ZYX
h = 0. 

It is obvious that  gJ €,1  is a Kaehlerian structure if and only if 01 h . 

 

2. Now assume additionally that we have an almost Hermitian structure J 

on (M, g). We define a tensor field J2 on TM by the equalities 

(2.12)      MXJXXJJXXJ
vvhh

 ,, 22 . 

For  MX   we get 

          XIXXJXJXJXXJJXJ
vhvhvh
 222

2
2  

and  

.2
2 IJ   
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For  MYX ,  we obtain 

           

           

.,,,,

,,,,,

,,, 22







YXYYXXYXYX

YXgYXgJYJXgJYJXgJYJX

JYJXJYJYJXJXYJXJ

vhvhvvhh

vv

hhvhvh

 

Further, we obtain 

           ,121

vhvh
JXJXJXJXJXJJ   

        .212

vhvh
JXJXXXJXJJ   

Thus, we get 31221 JJJJJ   and ahHs  ,,,, 321 JJJ  on TM has been 

constructed. 

For orthonormal vector fields ZYX ,,  on TM we obtain 

(2.13)   ZYJJYZYhh
XXXXYZ

,€€
2

1
, 22

22  

 

  

.],,[],,[

],,[],,[],,[

],,[
4

1
,€,€

2

1

2222

22

22







XYJZJYJXZJ

ZJYJXXYZYXZ

ZYXZJYJZY
XX

 

Using (2.4) – (2.7) and (2.13) we consider the following cases for the tensor 

field h
2
 assuming all the vector fields to be orthonormal. 

1.2)   
hhhhhh

ZYX
YXZZYXh hhh ],,[],,[

4

12  

       

     

     .,,
2

1

],,[],,[],,[

],,[],,[],,[
4

1
],,[

],,[],,[],,[

22

2222

XYZXX

hhh

hhhhhhhhh

hJZJYgZYg

XJYJZgJYXJZgJZJYXg

XYZgYXZgZYXgXYJZJ

YJXZJZJYJXXYZ









 

2.2)   
hhvvhh

ZYX
YXZZYXh vhh ],,[],,[

4

12  

      

     .,,,,
4

1

,,,,
4

1
],,[

],,[],,[],,[

22

2222

UZJJYXRgUZYXRg

ZJUJYXRgZUYXRgXYJZJ

YJXZJZJYJXXYZ

hhv

hhvvhhhhv







 

By similar arguments we obtain 

3.2) 2
hvh

ZYX
h       .,,,,

4

1
UJYJZXRgUYZXRg 

 

4.2) 2
hhv

ZYX
h        .,,,,

4

1
UXYJJZRgUXYZRg 
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5.2) 02 vvv
ZYX

h . 

6.2) 2
hvv

ZYX
h = 0.

 

7.2) 2
vhv

ZYX
h = 0. 

8.2) 2
vvh

ZYX
h      .,,

2

1
XYZXX hJZJYgZYg   

Here h is the second fundamental tensor field of the pair (J, g) on M. 

 

 

 

 

3. Embeddings of almost Hermitian manifolds in almost 

hyperHermitian those 

 

For an almost Hermitian manifold (M, J, g) we have constructed in 2 ahHs 

 gJJJ €,,, 321  on TM. The manifold M can be considered as the null section OM in 

TM  TMOop Mp   and it is clear from (2.8) that gg M |€ . All the results of 

1 can be applied to a submanifold M in  gTM €, , see [7]. So, we can consider the 

normal tubular neighborhoods 
 

   TMpMTb
p

MTb 










,

2
,  and the 

deformations gJJJ ,,, 321  of the tensor fields gJJJ €,,, 321  respectively. 

Theorem 2. Let (M, J, g) be an almost Hermitian manifold and   pMTb ,  

be the corresponding normal tubular neighborhood with respect to g€=< , > on 

TM. Then M(OM) is a totally geodesic submanifold of the almost hyperHermitian 

manifold 
 

















gJJJ

p
MTb ,,,,

2
, 321


, where the ahHs  gJJJ ,,, 321  is the 

deformation of the structure  gJJJ €,,, 321  obtained in 2, 1. The structure  gJ ,1  

is Kaehlerian one. 

Proof. It follows from theorem 1 that M is a totally geodesic submanifold of 

the Riemannian manifold 
 

















g

p
MTb ,

2
,


.  

Let 0

~
W  be a coordinate neighborhood in TM considered in 1, 1. A point 

0

~
Wx  has the coordinates  x1, …, xn, xn+1, …, x2n where x1, …, xn are coordinates 

of the point p in MV 0

~
 and xn+1, …, x2n are normal coordinates of x in 

 









2
,

p
pD


. 

We denote 

,,Г,Г€€,2,1, k
k

k
jjk

k

k
ijjXk

k

k
ijjX

i

i XJJXXXXXni
x

X
ii

 




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   jiijjiijk
k

k

jj XXggXXggXJXJ ,,,€€,   where €  and   are 

Riemannian connections of metrics g€ and g , J is any tensor field from 321 ,, JJJ . 

Using the construction in 2, 1 we have        pJxJpgxg i
j

i

jijij  ,€  on 

 
0

~

2
, W

p
MTb 







 
. According to [8] we can write 

(3.1)  





























k

ij

j

ik

i

kj

l

l
ijlk

x

g

x

g

x

g
g

2

1
Г  

It follows from (3.1) that    px
l
ij

l
ij ГГ   and   0Г x

l
ij  i.e. 0 jX X

i
 for 

nni 2,1 . Further, we get 

  

 

  

 

      

      .ГГ

ГГ

,ГГГ

Г

|
,

|
,

,,

xk
k
ji

k
l

l
ij

k
il

lk

l

j

xk

k

ji

k

l

l
ij

lk

k
il

l

jjX

k

k

ji

k

l

l
ij

lk

k
il

l

jk

k

l

lk

l
ij

k
k

k

jikX

k

j

k
k

k
ij

k
k

k

jXjXjXjX

XxJXpJJ

XxJXJJxXJ

XJXJJXJ

XJXXJXJ

XJXJXJXJ

i

i

iiii





























 

It follows that 0 J
iX  for nni 2,1 . 

For      pJXxJXni k
ji

k

ji  ,1  and we obtain 

       xk
k
ji

k
l

l
ij

lk

k
il

l
jjX XpJXJJxXJ

i |
,

Г€Г€   . 

From the other side we can write 

       pk
k
ji

k
l

l
ij

lk

k
il

l
jjX XpJXJJpXJ

i |
,

Г€Г€€   . 

According to [3] we have     pJXhXJ jXjX
ii

2  where the second 

fundamental tensor field h is defined by (2.11). From 1.1) – 8.1) it follows that 

01 ph  for any  Mp OoUMp  . Thus, we have obtained 01 J  and the 

structure  gJ ,1  is Kaehlerian one on 
 










2
,

p
MTb


. 

 

QED. 

As a corollary we have got the following 

 

Theorem 3 [4]. Let (M, g) be a smooth Riemannian manifold and 

  pMTb ,  be the corresponding normal tubular neighborhood with respect to  
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g = < , > on TM. Then M(OM) is a totally geodesic submanifold of the Kaehlerian 

manifold 
 

















gJ

p
MTb ,,

2
, 1


. 

The classification given in [5] can be rewritten in terms of the second 

fundamental tensor field h, [3]. Let dimM  6 and    JXX 2 , where 

   YJXgYX ,,  , then we have 

 

 

 

 

Class Defining condition 

K h = 0 

U1 = NK hXX = 0 

U2 = AK 0XYZh  

U3 = SK  H   0 Zhh JXJYJZXYZ   

U4 

 
     

 ],

,,,[
12

1

JYJZX

JZJYXYZXZYX
n

hXYZ











 

U1  U2 = QK JXYZXYJZ hh   

U3  U4 = H   JXYZXYJZ hhJN  or0  

U1  U3   0 Zhh JXJXYXXY   

U2  U4 

 
  0],

1

1
[ 


 ZYJX

n
hXYJZ   

U1  U4 

 
     ],,[

12

1 2
JXJYXYXXYX

n
hXXY  


  

U2  U3   0][  Zhh JXYZXYJZ   

U1  U2  U3=  

= SK 

0  

U1  U2  U4 

 
   

   ],,

,,[
1

1

YJZXZJYX

JYZXJZYX
n

hh JXYZXYJZ











 

U1  U3  U4 0 JXXYXJXY hh  

U2  U3  U4 0][  JXYZXYJZ hh  

U No condition 

 

Proposition 4. Let (J, g) be from some class from the table above. Then the 

structure  gJ ,2  has the analogous class on 
 










2
,

p
MTb


. 
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Proof. From 1.2) – 8.2) it follows that XYZXYZ
hh 22  . The rest is obvious 

from the table. 

 

QED. 

                   

   4. Complex and hypercomplex numbers in differential geometry 

 

For the manifold M we consider the products M 
2
 = M  M =  

= {(x; y) | x; y  M}, M 
4
 = M 

2
  M 

2
 = {(x; y; u; v) | x; y, u; v  M} and the 

diagonals  (M 
2
) = {(x; x)  M 

2
},  (M 

4
) = {(x; x; x; x)  M 

4
}. It is obvious that 

the manifold  (M 
2
) and  (M 

4
) are diffeomorphic to M ( (M 

2
)   (M 

4
)  M). 

Theorem 5 [6]. Let (M, ) be a manifold with a connection  and  

 : TM  M be the canonical projection. Then there exists such a neighborhood 

N0 of the null section OM in TM that the mapping 
    XXX X exp,:exp:   

is the diffeomorphic of N0 on a neighborhood N  of the diagonal  (M 
2
). 

Further,  is a Riemannian connection of the Riemannian metric g. 

Combining the theorems 3, 5 we have obtained the following. 

Theorem 6. The diffeomorphism  induces the Kaehlerian structure  gJ ,1  

on the neighborhood N  of the diagonal  (M 
2
) and  (M 

2
)  M is a totally 

geodesic submanifold of the Kaehlerian manifold  gJN ,, 1 . 

Remark. Generally speaking, the complex structure of the Kaehlerian 

manifold  gJN ,, 1  is not compatible with the product structure of M 
2
. It means 

that if nlzl ,1,   are the complex coordinates of a point (x; y)  N , then, 

generally speaking, we can not find such real coordinates nlyx ll ,1,,   of the 

points x, y  M respectively that lll iyxz   where 12 i . 

Combining the theorems 2, 3, 4, 5, 6 we have obtained the following. 

Theorem 7. There exists the hyperKaehlerian structure  gJJJ ,,, 321  on a 

neighborhood N  of the diagonal  (M 
4
) and  (M 

4
)  M is a totally geodesic 

submanifold of the hyperKaehlerian manifold  gJJJN ,,,, 321 . 

Remark. Generally speaking, the hypercomplex structure of the 

hyperKaehlerian manifold  gJJJN ,,,, 321  is not compatible with the product 

structure of M 
4
. It means that if nlql ,1,   are the hypercomplex coordinates of a 

point (x; y; u; v)  N , then, generally speaking we can not find such real 

coordinates nlvuyx llll ,1,,,,   of the points x; y; u; v  M respectively that 

lllll kvjuiyxq   where i
2
 = j

2
 = k

2
 = –1, ij = –ji = k. 
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5. A local construction of Kaehlerian and Riemannian metrics. 

1
o
. We consider a Riemannian manifold (M, g) as a totally geodesic 

subanifold of the Kaehlerian manifold 
 









 gJJ

p
MTb ,,

2
, 1


 (see theorem 3) then 

gg
M
 . 

Let x1, …, xn be coordinates in some coordinate neighborhood MU  and 

nxx 






,...,

1

 be the corresponding vector fields. We can choose a neighborhood 

  









 2

)(
,;

p
MTbpDDUU

Up


  where 

 
2

p
   for every point Up . It 

is clear from 3
o
, 1 that DU   is a Riemannian product with respect the metric g . 

For every point Ux  where   px   we denote nj
x

JY
jx

jx ,1, 



  and the 

vector fieds jY  define the coordinates y1, …, yn on  ;pD  hence 
j

j
y

Y



  is tangent 

to  ;pD  for nj ,1 . 

So, U  is an coordinate neighborhood of the Kaehlerian manifold 

















gJ

p
MTb ,,

2

)(
,


, with complex coordinates 1,,1, 2  injiyxz jjj , and 

the vector fields n
y

i
xzy

i
xz

,1,,
2

1
,

2

1

















































. It is 

known [9] that the Kaehlerian metric 
c

g  has on U  the following decomposition 








 zddz

u
gzddzgds cc

2

,

2 ,2


  , 

where u is a real-valued function on U . 

We have  

,0
4

1 22222




















































 yx

u

xy

u
i

yy

u

xx

u

zz

u
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.0
4

1 22222




















































 yx

u

xy

u
i

yy

u

xx

u

zz

u
 

It follows that  

 xy

u

yx

u

yy

u

xx

u

















 2222

, . 

Further, we obtain  

,
2

1

4

1 2222222















































































yx

u
i

xx

u

xy

u

yx

u
i

yy

u

xx

u

zz

u
g c

.
2

1

4

1 2222222















































































yx

u
i

xx

u

xy
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Finally, we get 
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u
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

2

. 

We can consider the restriction of g  and the function u on the neighborhood 

U. So, we have obtained  

Theorem 8 Let (M, g) be a Riemannian manifold and x1, …, xn  be 

coordinates is some coordinate neighborhood MU  . There exists a smooth 

function u: RU  that 
jiji

ij
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u
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
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2

,  on U. 

2
o
. Let (M, J, g) be a Kaehlerian manifold x1, …, xn,  y1, …, yn, be coordinates 

is some coordinate neighborhood MU  , where n
x

J
y

,1, 












. We 

consider a function u: RU  from theorem 5. Then, we have the following 

conditions on this function. 
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