Deformations of tensor structures on tagent bundles. Riemannian, Kaehlerian, and hyperKaehlerian manifolds in differential geometry. Alexander A. Ermolitski

IIT-BSUIR, Minsk, Belarus.
E-mail: ermolitski@mail.by
Key words: Riemannian manifolds, almost Hermitian and almost hyperHermitian structures, tangent bundle.
Code numbers: 53C15, 53C26, 53C21.

Abstract

Tubular neighborhoods play an important role in differential topology. We have applied these constructions to geometry of almost Hermitian manifolds. At first, we consider deformations of tensor structures on a normal tubular neighborhood of a submanifold in a Riemannian manifold. Further, an almost hyperHermitian structure has been constructed on the tangent bundle $T M$ with help of the Riemannian connection of an almost Hermitian structure on a manifold M then, we consider an embedding of the almost Hermitian manifold M in the corresponding normal tubular neighborhood of the null section in the tangent bundle $T M$ equipped with the deformed almost hyperHermitian structure of the special form.

As a result, we have obtained that any smooth manifold M of dimension n can be embedded as a totally geodesic submanifold in a Kaehlerian manifold of dimension $2 n$ and in a hyperKaehlerian manifold of dimension $4 n$.

1. Deformations of tensor structures on a normal tubular neighborhood of a submanifold
$\mathbf{1}^{\circ}$. Let $\left(M^{\prime}, g^{\prime}\right)$ be a k-dimensional Riemannian manifold isometrically embedded in a n-dimensional Riemannian manifold (M, g). The restriction of g to M^{\prime} coincides with g^{\prime} and for any $p \in M^{\prime}$.

$$
T_{p}(M)=T_{p}\left(M^{\prime}\right) \oplus T_{p}\left(M^{\prime}\right)^{\perp} .
$$

So, we obtain a vector bundle $M^{\prime} \rightarrow T\left(M^{\prime}\right)^{\perp}: p \rightarrow T_{p}\left(M^{\prime}\right)^{\perp}$ over the submanifold M^{\prime}. There exists a neighborhood \tilde{U}_{0} of the null section $O_{M^{\prime}}$ in $T\left(M^{\prime}\right)^{\perp}$ such that the mapping

$$
\pi \times \exp : v \rightarrow\left(\pi(v), \exp _{\pi(v)} v\right), v \in \tilde{U}_{0}
$$

is a diffeomorphism of \tilde{U}_{0} onto an open subset $\tilde{U} \subset M$. The subset \tilde{U} is called a tubular neighborhood of the submanifold M^{\prime} in M.

For any point $p \in M$ we can consider a set $\{\delta(p)\}$ of positive numbers such that the mapping $\exp _{U(\delta(p))}$ is defined and injective on $U(\delta(p)) \subset T_{p}(M)$. Let $\bar{\varepsilon}(p)=\sup \{\delta(p)\}$.

Lemma, [6]. The mapping $M \rightarrow R_{+}: p \rightarrow \bar{\varepsilon}(p)$ is continuous on M.
If we take the restriction of the function $\bar{\varepsilon}(p)$ on \tilde{U} then it is clear that there exists a continuous positive function $\varepsilon(p)$ on M^{\prime} such that for any $p \in M^{\prime}$ open geodesic balls $B\left(p ; \frac{\varepsilon(p)}{2}\right) \subset B(p ; \varepsilon(p)) \subset \tilde{U}$. For compact manifolds we can choose a constant function $\varepsilon(p)=\varepsilon>0$. We denote $\tilde{U}_{p}=\exp \left(\tilde{U}_{0} \cap T_{p}\left(M^{\prime}\right)^{\perp}\right)$, $D\left(p ; \frac{\varepsilon(p)}{2}\right)=B\left(p ; \frac{\varepsilon(p)}{2}\right) \cap \tilde{U}_{p}, D(p ; \varepsilon(p))=B(p ; \varepsilon(p)) \cap \tilde{U}_{p}$. It is obvious that $\operatorname{dim} \tilde{U}_{p}=\operatorname{dim} D(p ; \varepsilon(p))=n-k$. For any point $o \in M^{\prime}$ we can consider such an orthonormal frame $\left(X_{1_{0}}, \ldots, X_{n_{0}}\right)$ that $T_{0}\left(M^{\prime}\right)=L\left[X_{1_{0}}, \ldots, X_{k_{0}}\right] \quad$ and $T_{0}\left(M^{\prime}\right)^{\perp}=L\left[X_{k+1_{0}}, \ldots, X_{n_{0}}\right]$. There exist coordinates x_{1}, \ldots, x_{k} in some neighborhood $\tilde{V}_{0} \subset M^{\prime}$ of the point o that $\frac{\partial}{\partial x_{\left.i\right|_{0}}}=X_{i_{0}}, i=\overline{1, k}$. We consider orthonormal vector fields X_{k+1}, \ldots, X_{n} which are cross-sections of the vector bundle $p \rightarrow T_{p}\left(M^{\prime}\right)^{\perp}$ over \tilde{V}_{0} and the neighborhood $\tilde{W}_{0}=\bigcup_{p \in \tilde{V}_{0}} \cup \tilde{U}_{p}$. The basis $\left\{X_{k+1_{p}}, \ldots, X_{n_{p}}\right\}$ defines the normal coordinates x_{k+1}, \ldots, x_{n} on \tilde{U}_{p} [8]. For any point $x \in \tilde{W}_{0}$ there exists such unique point $p \in \tilde{V}_{0}$ that $x=\exp _{p}(t \xi), \quad\|\xi\|=1, \quad \xi \in T_{p}\left(M^{\prime}\right)^{\perp}$. A point $x \in \tilde{W}_{0}$ has the coordinates $x_{1}, \ldots, x_{k}, x_{k+1}, \ldots, x_{n}$ where x_{1}, \ldots, x_{k} are coordinates of the point p in \tilde{V}_{0} and x_{k+1}, \ldots, x_{n} are normal coordinates of x in \tilde{U}_{p}. We denote $X_{i}=\frac{\partial}{\partial x_{i}}, i=\overline{1, n}$, on $\quad \tilde{W}_{0}$. Thus, we can consider tubular neighborhoods $\operatorname{Tb}\left(M^{\prime} ; \frac{\varepsilon(p)}{2}\right)=\bigcup_{p \in M^{\prime}} D\left(p ; \frac{\varepsilon(p)}{2}\right) \quad$ and $\quad T b\left(M^{\prime} ; \varepsilon(p)\right)=\bigcup_{p \in M^{\prime}} D(p ; \varepsilon(p)) \quad$ of \quad the submanifold M^{\prime}.
$\mathbf{2}^{\circ}$. Let K be a smooth tensor field of type (r, s) on the manifold M and for $x \in \tilde{W}_{0}$, let

$$
K_{x}=\sum_{i_{1}, \ldots, i_{r}, j_{1}, \ldots, j_{s}} k_{j_{1}, \ldots, j_{s}}^{i_{1}, \ldots, i_{r}}(x) X_{i_{1_{x}}} \otimes \ldots \otimes X_{i_{r_{x}}} \otimes X_{x}^{j_{1}} \otimes \ldots \otimes X_{x}^{j_{s}}
$$

where $\left\{X_{x}^{1}, \ldots, X_{x}^{n}\right\}$ is the dual basis of $T_{x}^{*}(M), x=\exp _{p}(t \xi)$, $\|\xi\|=1, \quad \xi \in T_{p}\left(M^{\prime}\right)^{\perp}$. We define a tensor field \bar{K} on M in the following way.
a) $x \in D\left(p ; \frac{\varepsilon(p)}{2}\right)$, then

$$
\bar{K}_{x}=\sum_{i_{1}, \ldots, i_{r}, j_{1}, \ldots, j_{s}} k_{j_{1}, \ldots, j_{s}}^{i_{1}, \ldots, i_{r}}(p) X_{i_{1_{x}}} \otimes \ldots \otimes X_{i_{r_{x}}} \otimes X_{x}^{j_{1}} \otimes \ldots \otimes X_{x}^{j_{s}}
$$

b) $x \in D(p ; \varepsilon(p)) \backslash D\left(p ; \frac{\varepsilon(p)}{2}\right)$, then

$$
\bar{K}_{x}=\sum_{i_{1}, \ldots, i_{r}, j_{1}, \ldots, j_{s}} k_{j_{1}, \ldots, j_{s}}^{i_{1}, \ldots, i_{r}}\left(\exp _{p}((2 t-\varepsilon(p)) \xi)\right) X_{i_{i_{x}}} \otimes \ldots \otimes X_{i_{r_{x}}} \otimes X_{x}^{j_{1}} \otimes \ldots \otimes X_{x}^{j_{s}}
$$

c) $x \in M \backslash \bigcup_{M^{\prime}} D(p ; \varepsilon(p))$, then

$$
\bar{K}_{x}=K_{x}
$$

It is easy to see the independence of the tensor field \bar{K} on a choice of coordinates in \widetilde{W}_{0} for every point $o \in M^{\prime}$.

Definition 1. The tensor field \bar{K} is called a deformation of the tensor field K on the normal tubular neighborhood of a submanifold M^{\prime}.

Remark. The obtained tensor field \bar{K} is continuous but is not smooth on the boundaries of the normal tubular neighborhoods $\operatorname{Tb}\left(M^{\prime} ; \frac{\varepsilon(p)}{2}\right)$ and $\operatorname{Tb}\left(M^{\prime} ; \varepsilon(p)\right)$, \bar{K} is smooth in other points of the manifold M.
3°. We consider a deformation \bar{g} of the Riemannian metric g on the normal tubular neighborhood $T b\left(M^{\prime} ; \varepsilon(p)\right)$ of a submanifold M^{\prime}. For $x \in \tilde{W}_{0}$, $x=\exp _{p}(t \xi), \quad\|\xi\|=1, \quad \xi \in T_{p}\left(M^{\prime}\right)$, we define the Riemannian metric \bar{g} by the following way.
a) $\quad g_{p}=g_{p}$ for any $p \in M^{\prime}$;
b) $\quad \bar{g}_{x}\left(X_{i}, X_{j}\right)=\bar{g}_{i j}(x)=\bar{g}_{i j}(p), \quad$ where $\quad X_{i}=\frac{\partial}{\partial x_{i}}, \quad i=\overline{1, n}, \quad X_{j}=\frac{\partial}{\partial x_{j}}$, $j=\overline{1, n}$, on $\tilde{W}_{0}, x \in D\left(p ; \frac{\varepsilon(p)}{2}\right) ;$
c) $\quad \bar{g}_{x}\left(X_{i}, X_{j}\right)=\bar{g}_{i j}(x)=\bar{g}_{i j}\left(\exp _{p}((2 t-\varepsilon(p)) \xi)\right)$,
$x \in D(p ; \varepsilon(p)) / D\left(p ; \frac{\varepsilon(p)}{2}\right)$;
d) $\bar{g}_{x}=g_{x}$ for each point $x \in M \backslash \bigcup_{p \in M^{\prime}} D(p ; \varepsilon(p))$.

The independence of \bar{g} on a choice of local coordinates follows and the correctly defined Riemannian metric \bar{g} on M has been obtained.

It is known from [9] that every autoparallel submanifold of M is a totally geodesic submanifold and a submanifold M^{\prime} is autoparallel if and only if $\nabla_{X} Y \in T\left(M^{\prime}\right)$ for any $X, Y \in \chi\left(M^{\prime}\right)$, where ∇ is the Riemannian connection of g.

Theorem 1. Let M^{\prime} be a submanifold of a Riemannian manifold (M, g) and \bar{g} be the deformation of g on the normal tubular neighborhood $\operatorname{Tb}\left(M^{\prime} ; \varepsilon(p)\right)$ of M^{\prime} constructed above. Then M^{\prime} is a totally geodesic submanifold of $\left(T b\left(M^{\prime} ; \frac{\varepsilon(p)}{2}\right), \bar{g}\right)$.

Proof. For any point $x \in D\left(p ; \frac{\varepsilon(p)}{2}\right) \subset \widetilde{W}_{0}$ the functions $\bar{g}_{i j}(x)=g_{i j}(p)$ and $\frac{\partial \bar{g}_{i j}}{\partial x_{l}}=0, \quad l=\overline{k+1, n}$ on $D\left(p ; \frac{\varepsilon(p)}{2}\right)$ because the vector fields $X_{l}=\frac{\partial}{\partial x_{l}}$ are tangent to $D\left(p ; \frac{\varepsilon(p)}{2}\right)$. By the formula of the Riemannian connection $\bar{\nabla}$ of the Riemannian metric \bar{g}, [8], we obtain for $i, j=\overline{1, k}, \quad l=\overline{k+1, n}$
(1.1) $2 \bar{g}_{p}\left(\bar{\nabla}_{X_{i}} X_{j}, X_{l}\right)=X_{i_{p}} \bar{g}\left(X_{j}, X_{l}\right)+X_{j_{p}} \bar{g}\left(X_{i}, X_{l}\right)-X_{l_{p}} \bar{g}\left(X_{i}, X_{j}\right)+$

$$
+\bar{g}_{p}\left(\left[X_{i}, X_{j}\right], X_{l}\right)+\bar{g}_{p}\left(\left[X_{l}, X_{i}\right], X_{j}\right)+\bar{g}_{p}\left(X_{i},\left[X_{l}, X_{j}\right]\right)=-\frac{\partial \bar{g}_{i j}}{\partial x_{l}}=0 .
$$

Here we use the fact that $\left\lfloor X_{i}, X_{j}\right\rfloor=\left[X_{l}, X_{i}\right]=\left\lfloor X_{l}, X_{j}\right\rfloor=0$ and that $\bar{g}\left(X_{j}, X_{l}\right)=\bar{g}\left(X_{i}, X_{l}\right)=0$ because $X_{l} \in T\left(M^{\prime}\right)^{\perp}$.

Thus, $\bar{\nabla}_{X_{i}} X_{j} \in T\left(M^{\prime}\right)$ and from the remarks above the theorem follows.
QED.
Corollary 1.1. Let \bar{R} be the Riemannian curvature tensor field of $\bar{\nabla}$. Then \bar{R} vanishes on every $D\left(p ; \frac{\varepsilon(p)}{2}\right)$ for $p \in M^{\prime}$.

Proof. From the formula (1.1) it is clear that $\bar{\nabla}_{X_{l}} X_{m}=0$ for $l, m=\overline{k+1, n}$. The rest is obvious.

QED.

2. Almost hyperHermitian structures (ahHs) on tangent bundles

0°. Let (M, g) be a n-dimensional Riemannian manifold and $T M$ be its tangent bundle. For a Riemannian connection ∇ we consider the connection map K of ∇ [2], [6], defined by the formula
(2.1) $\nabla_{X} Z=K Z_{*} X$,
where Z is considered as a map from M into $T M$ and the right side means a vector field on M assigning to $p \in M$ the vector $K Z_{*} X_{p} \in M_{p}$.

If $U \in T M$, we denote by H_{U} the kernel of $K_{\mid T M_{U}}$ and this n-dimensional subspace of $T M_{U}$ is called the horizontal subspace of $T M_{U}$.

Let π denote the natural projection of $T M$ onto M, then π_{*} is a $C^{\infty}-$ map of $T T M$ onto $T M$. If $U \in T M$, we denote by V_{U} the kernel of $\pi_{* T M M_{U}}$ and this n-dimension subspace of $T M_{U}$ is called the vertical subspace of $T M_{U}\left(\operatorname{dim} T M_{U}=2 \operatorname{dim} M=2 n\right)$. The following maps are isomorphisms of corresponding vector spaces $(p=\pi(U))$

$$
\pi_{* \mid T M_{U}}: H_{U} \rightarrow M_{p}, K_{\mid T M_{U}}: V_{U} \rightarrow M_{p}
$$

and we have

$$
T M_{U}=H_{U} \oplus V_{U}
$$

If $X \in \chi(M)$, then there exists exactly one vector field on $T M$ called the «horizontal lift» (resp. «vertical lift») of X and denoted by $\bar{X}^{h}\left(\bar{X}^{v}\right)$, such that for all $U \in T M$:
(2.2) $\pi_{*} \bar{X}_{U}^{h}=X_{\pi(U)}, \quad K \bar{X}_{U}^{h}=0_{\pi(U)}$,
(2.3) $\pi_{*} \bar{X}_{U}^{v}=0_{\pi(U)}, \quad K \bar{X}_{U}^{v}=X_{\pi(U)}$,

Let R be the curvature tensor field of ∇, then following [2] we write
(2.4) $\left[\bar{X}^{v}, \bar{Y}^{v}\right]=0$,
(2.5) $\left[\bar{X}^{h}, \bar{Y}^{v}\right]=\left(\overline{\nabla_{X} Y}\right)^{v}$
(2.6) $\pi_{*}\left(\left[\bar{X}^{h}, \bar{Y}^{h}\right]_{U}\right)=[X, Y]$,
(2.7) $K\left(\left[\bar{X}^{h}, \bar{Y}^{h}\right]_{U}\right)=R(X, Y) U$.

For vector fields $\bar{X}=\bar{X}^{h} \oplus \bar{X}^{v}$ and $\bar{Y}=\bar{Y}^{h} \oplus \bar{Y}^{v}$ on $T M$ the natural Riemannian metric $£=<,>$ is defined on $T M$ by the formula
(2.8) $<\bar{X}, \bar{Y}>=g\left(\pi_{*} \bar{X}, \pi_{*} \bar{Y}\right)+g(K \bar{X}, K \bar{Y})$.

It is clear that the subspaces H_{U} and V_{U} are orthogonal with respect to <, >.
It is easy to verify that $\bar{X}_{1}^{h}, \bar{X}_{2}^{h}, \ldots, \bar{X}_{n}^{h}, \bar{X}_{1}^{v}, \bar{X}_{2}^{v}, \ldots, \bar{X}_{n}^{v}$ are orthonormal vector fields on $T M$ if $X_{1}, X_{2}, \ldots, X_{n}$ are those on M i.e. $g\left(X_{i}, X_{j}\right)=\delta_{j}^{i}$.
10. We define a tensor field J_{1} on $T M$ by the equalities
(2.9) $J_{1} \bar{X}^{h}=\bar{X}^{v}, J_{1} \bar{X}^{v}=-\bar{X}^{h}, X \in \chi(M)$.

For $X \in \chi(M)$ we get

$$
J_{1}^{2} \bar{X}=J_{1}\left(J_{1}\left(\bar{X}^{h} \oplus \bar{X}^{v}\right)\right)=J_{1}\left(-\bar{X}^{h} \oplus \bar{X}^{v}\right)=-\left(\bar{X}^{h} \oplus \bar{X}^{v}\right)=-I \bar{X}
$$

and

$$
J_{1}^{2}=-I
$$

For $X, Y \in \chi(M)$ we obtain

$$
\begin{gathered}
<J_{1} \bar{X}, J_{1} \bar{Y}>=<-\bar{X}^{h} \oplus \bar{X}^{v},-\bar{Y}^{h} \oplus \bar{Y}^{v}>=<-\bar{X}^{h},-\bar{Y}^{v}>+<\bar{X}^{v}, \bar{Y}^{v}> \\
<\bar{X}, \bar{Y}>=<\bar{X}^{h} \oplus \bar{X}^{v}, \bar{Y}^{h} \oplus \bar{Y}^{v}>=<\bar{X}^{h}, \bar{Y}^{h}>+<\bar{X}^{v}, \bar{Y}^{v}>
\end{gathered}
$$

and it follows that $\left.<J_{1} \bar{X}, J_{1} \bar{Y}\right\rangle=<\bar{X}, \bar{Y}>,\left(T M, J_{1},<,>\right)$ is an almost Hermitian manifold.

Further, we want to analyze the second fundamental tensor field h^{1} of the pair ($\left.J_{1},<,>\right)$ where h^{1} is defined by (2.11), [3].

The Riemannian connection \vDash of the metric $\xi=<,>$ on $T M$ is defined by the formula (see [6])

$$
\begin{align*}
& <\bigoplus_{\bar{X}} \bar{Y}, \bar{Z}>=\frac{1}{2}(\bar{X}<\bar{Y}, \bar{Z}>+\bar{Y}<\bar{Z}, \bar{X}>-\bar{Z}<\bar{X}, \bar{Y}>+ \tag{2.10}\\
& +<\bar{Z},[\bar{X}, \bar{Y}]>+<\bar{Y},[\bar{Z}, \bar{X}]>+<\bar{X},[\bar{Z}, \bar{Y}]>), X, Y, Z \in \chi(M) .
\end{align*}
$$

For orthonormal vector fields $\bar{X}, \bar{Y}, \bar{Z}$ on $T M$ we obtain

$$
\begin{gather*}
\begin{array}{c}
h_{\overline{X Y Z}}^{1}=<h_{\bar{X}}^{1} \bar{Y}, \bar{Z}>=\frac{1}{2}<\bigoplus_{\bar{X}} \bar{Y}+J_{1} \bigoplus_{\bar{X}} J_{1} \bar{Y}, \bar{Z}>= \\
= \\
=\frac{1}{2}\left(<\oplus_{\bar{X}} \bar{Y}, \bar{Z}>-<\bigoplus_{\bar{X}} J_{1} \bar{Y}, J_{1} \bar{Z}>\right)= \\
= \\
=\frac{1}{4}(<[\bar{X}, \bar{Y}], \bar{Z}>+<[\bar{Z}, \bar{X}], \bar{Y}>+<[\bar{Z}, \bar{Y}], \bar{X}>- \\
\left.-<\left[\bar{X}, J_{1} \bar{Y}\right], J_{1} \bar{Z}>-<\left[J_{1} \bar{Z}, \bar{X}\right], J_{1} \bar{Y}>-<\left[J_{1} \bar{Z}, J_{1} \bar{Y}\right], \bar{X}>\right)
\end{array} \tag{2.11}
\end{gather*}
$$

Using (2.4) - (2.7) and (2.11) we consider the following cases for the tensor field h^{1} assuming all the vector fields to be orthonormal.

$$
h_{\bar{X}^{h} \bar{Y}^{h} \bar{Z}^{h}}^{1}=\frac{1}{4}\left(<\left[\bar{X}^{h}, \bar{Y}^{h}\right], \bar{Z}^{h}>+<\left[\bar{Z}^{h}, \bar{X}^{h}\right], \bar{Y}^{h}>+\right.
$$

$$
\begin{gathered}
+<\left[\bar{Z}^{h}, \bar{Y}^{h}\right], \bar{X}^{h}>-<\left[\bar{X}^{h}, J_{1} \bar{Y}^{h}\right], J_{1} \bar{Z}^{h}>-<\left[J_{1} \bar{Z}^{h}, \bar{X}^{h}\right], J_{1} \bar{Y}^{h}>- \\
\left.-<\left[J_{1} \bar{Z}^{h}, J_{1} \bar{Y}^{h}\right], \bar{X}^{h}>\right)=\frac{1}{4}(g([X, Y], Z)+g([Z, X], Y)+g([Z, Y], X)- \\
\left.-<\left[\bar{X}^{h}, \bar{Y}^{v}\right], \bar{Z}^{v}>-<\left[\bar{Z}^{v}, \bar{X}^{h}\right], \bar{Y}^{v}>-<\left[\bar{Z}^{v}, \bar{Y}^{v}\right], \bar{X}^{h}>\right)= \\
=\frac{1}{2} g\left(\nabla_{X} Y, Z\right)-\frac{1}{4}\left(g\left(\nabla_{X} Y, Z\right)-g\left(\nabla_{X} Z, Y\right)\right)= \\
=\frac{1}{2}\left(g\left(\nabla_{X} Y, Z\right)-g\left(\nabla_{X} Y, Z\right)\right)=0 .
\end{gathered}
$$

$$
\begin{gather*}
h_{\bar{X}^{h} \bar{Y}^{h} \bar{Z}^{v}=\frac{1}{4}\left(<\left[\bar{X}^{h}, \bar{Y}^{h}\right], \bar{Z}^{v}>+<\left[\bar{Z}^{v}, \bar{X}^{h}\right], \bar{Y}^{h}>+\right.}^{+<\left[\bar{Z}^{v}, \bar{Y}^{h}\right], \bar{X}^{h}>-<\left[\bar{X}^{h}, J_{1} \bar{Y}^{h}\right], J_{1} \bar{Z}^{v}>-<\left[J_{1} \bar{Z}^{v}, \bar{X}^{h}\right], J_{1} \bar{Y}^{h}>-} \\
\left.-<\left[J_{1} \bar{Z}^{v}, J_{1} \bar{Y}^{h}\right], \bar{X}^{h}>\right)=\frac{1}{4}\left(g(R(X, Y) U, Z)+<\left[\bar{Z}^{h}, \bar{X}^{h}\right], \bar{Y}^{v}>\right)= \\
=\frac{1}{4}(g(R(X, Y) U, Z)+g(R(Z, X) U, Y))= \\
=-\frac{1}{4}(g(R(X, Y) Z, U)+g(R(Z, X) Y, U)) .
\end{gather*}
$$

By similar arguments we obtain
$\left.3.1^{\circ}\right) h_{\bar{X}^{h} \bar{Y}^{v} \bar{Z}^{h}}^{1}=-\frac{1}{4}(g(R(Z, X) Y, U)+g(R(X, Y) Z, U))$.
$\left.4.1^{\circ}\right) h_{\bar{X}^{v} \bar{Y}^{h} \bar{Z}^{h}}^{1}=-\frac{1}{4}(g(R(Z, Y) X, U))$.
$\left.5.1^{\circ}\right) h_{\bar{X}^{v} \bar{Y}^{v} \bar{Z}^{v}}^{1}=\frac{1}{4}(g(R(Z, Y) X, U))$.
6.1 $\left.{ }^{\circ}\right) h_{\bar{X}^{v} \bar{Y}^{\nu} \bar{Z}^{h}}^{1}=0$.
$\left.7.1^{\circ}\right) h_{\bar{X}^{v} \bar{Y}^{h} \bar{Z}^{v}}^{1}=0$.
8.1 $\left.{ }^{\circ}\right) h_{\bar{X}^{h} \bar{Y}^{\nu} \bar{Z}^{v}}^{1}=0$.

It is obvious that $\left(J_{1}, \S\right)$ is a Kaehlerian structure if and only if $h^{1}=0$.
$\mathbf{2}^{\circ}$. Now assume additionally that we have an almost Hermitian structure J on (M, g). We define a tensor field J_{2} on $T M$ by the equalities
(2.12) $J_{2} \bar{X}^{h}=(\overline{J X})^{h}, \quad J_{2} \bar{X}^{v}=-(\overline{J X})^{v}, \quad X \in \chi(M)$.

For $\quad X \in \chi(M)$ we get

$$
J_{2}^{2} \bar{X}=J_{2}\left(J_{2}\left(\bar{X}^{h} \oplus \bar{X}^{v}\right)\right)=J_{2}\left((\overline{J X})^{h} \oplus-(\overline{J X})^{v}\right)=-\left(\bar{X}^{h} \oplus \bar{X}^{v}\right)-I \bar{X}
$$

and

$$
J_{2}^{2}=-I
$$

For $X, Y \in \chi(M)$ we obtain

$$
\begin{gathered}
<J_{2} \bar{X}, J_{2} \bar{Y}>=<(\overline{J X})^{h} \oplus-(\overline{J X})^{v},(\overline{J Y})^{h} \oplus-(\overline{J Y})^{v}>=<(\overline{J X})^{h},(\overline{J Y})^{h}>+ \\
+\ll(\overline{J X})^{v},(\overline{J Y})^{v}>=g(J X, J Y)+g(J X, J Y)=g(X, Y)+g(X, Y)= \\
=<\bar{X}^{h}, \bar{Y}^{h}>+<\bar{X}^{v}, \bar{Y}^{v}>=<\bar{X}^{h} \oplus \bar{X}^{v}, \bar{Y}^{h} \oplus \bar{Y}^{v}>=<\bar{X}, \bar{Y}>.
\end{gathered}
$$

Further, we obtain
$J_{1}\left(J_{2} \bar{X}\right)=J_{1}\left((\overline{J X})^{h} \oplus-(\overline{J X})^{v}\right)=(\overline{J X})^{h} \oplus(\overline{J X})^{v}$,
$J_{2}\left(J_{1} \bar{X}\right)=J_{2}\left(-\bar{X}^{h} \oplus \bar{X}^{v}\right)=-(\overline{J X})^{h} \oplus-(\overline{J X})^{v}$.
Thus, we get $J_{1} J_{2}=-J_{2} J_{1}=J_{3}$ and ahHs $\left(J_{1}, J_{2}, J_{3},<,>\right)$ on $T M$ has been constructed.

For orthonormal vector fields $\bar{X}, \bar{Y}, \bar{Z}$ on $T M$ we obtain

$$
\begin{gather*}
h_{X X Z}^{2}=<h_{\bar{X}}^{2} \bar{Y}, \bar{Z}>=\frac{1}{2}\left\langle\bigoplus_{\bar{X}} \bar{Y}+J_{2} \bigoplus_{\bar{X}} J_{2} \bar{Y}, \bar{Z}>=\right. \\
=\frac{1}{2}\left(<\operatorname{W}_{\bar{X}} \bar{Y}, \bar{Z}>-<\bigoplus_{\bar{X}} J_{2} \bar{Y}, J_{2} \bar{Z}>\right)=\frac{1}{4}(\langle[\bar{X}, \bar{Y}], \bar{Z}>+ \\
+<[\bar{Z}, \bar{X}], \bar{Y}>+<[\bar{Z}, \bar{Y}], \bar{X}>-<\left[\bar{X}, J_{2} \bar{Y}\right], J_{2} \bar{Z}>- \\
\left.-<\left[J_{2} \bar{Z}, \bar{X}\right], J_{2} \bar{Y}>-<\left[J_{2} \bar{Z}, J_{2} \bar{Y}\right], \bar{X}>\right) .
\end{gather*}
$$

Using (2.4) - (2.7) and (2.13) we consider the following cases for the tensor field h^{2} assuming all the vector fields to be orthonormal.

$$
\begin{gather*}
h_{\bar{X}^{h} \bar{Y}^{h} \bar{Z}^{h}}^{2}=\frac{1}{4}\left(<\left[\bar{X}^{h}, \bar{Y}^{h}\right], \bar{Z}^{h}>+<\left[\bar{Z}^{h}, \bar{X}^{h}\right], \bar{Y}^{h}>+\right. \\
+<\left[\bar{Z}^{h}, \bar{Y}^{h}\right], \bar{X}^{h}>-<\left[\bar{X}^{h}, J_{2} \bar{Y}^{h}\right], J_{2} \bar{Z}^{h}>-<\left[J_{2} \bar{Z}^{h}, \bar{X}^{h}\right], J_{2} \bar{Y}^{h}>- \\
\left.-<\left[J_{2} \bar{Z}^{h}, J_{2} \bar{Y}^{h}\right], \bar{X}^{h}>\right)=\frac{1}{4}(g([X, Y], Z)+g([Z, X], Y)+g([Z, Y], X)- \\
-g([X, J Y], J Z)-g([J Z, X], J Y)-g([J Z, J Y], X))= \\
=\frac{1}{2}\left(g\left(\nabla_{X} Y, Z\right)-g\left(\nabla_{X} J Y, J Z\right)\right)=h_{X Y Z} .
\end{gather*}
$$

$$
\begin{gather*}
h_{\bar{X}^{h} \bar{Y}^{h} \bar{Z}^{v}}^{2}=\frac{1}{4}\left(<\left[\bar{X}^{h}, \bar{Y}^{h}\right], \bar{Z}^{v}>+<\left[\bar{Z}^{v}, \bar{X}^{h}\right], \bar{Y}^{h}>+\right. \\
+<\left[\bar{Z}^{v}, \bar{Y}^{h}\right], \bar{X}^{h}>-<\left[\bar{X}^{h}, J_{2} \bar{Y}^{h}\right], J_{2} \bar{Z}^{v}>-<\left[J_{2} \bar{Z}^{v}, \bar{X}^{h}\right], J_{2} \bar{Y}^{h}>- \\
\left.-<\left[J_{2} \bar{Z}^{v}, J_{2} \bar{Y}^{h}\right], \bar{X}^{h}>\right)=\frac{1}{4}(g(R(X, Y) U, Z)+g(R(X, J Y) U, J Z))= \\
=-\frac{1}{4}(g(R(X, Y) Z, U)+g(R(X, J Y) J Z, U)) .
\end{gather*}
$$

By similar arguments we obtain
$\left.3.2^{\circ}\right) h_{\bar{X}^{h} \bar{Y}^{n} \bar{Z}^{n}}^{2}=-\frac{1}{4}(g(R(X, Z) Y, U)+g(R(X, J Z) J Y, U))$.
$\left.4.2^{\circ}\right) h_{\bar{X}^{\prime} \bar{Y}^{h} \bar{Z}^{h}}^{2}=-\frac{1}{4}(g(R(Z, Y) X, U)-g(R(J Z, J Y) X, U))$.
$\left.5.2^{\circ}\right) h_{\bar{X}^{\prime} \bar{Y}^{\prime} \bar{Z}^{\prime \prime}}^{2}=0$.
$\left.6.2^{\circ}\right) h_{\bar{X}^{\prime} \bar{Y}^{\prime} \bar{Z}^{n}}^{2}=0$.
7.2 $\left.{ }^{\circ}\right) h_{\bar{X}^{\prime} \bar{Y}^{h} \bar{Z}^{\prime \prime}}^{2}=0$.
8.2 $\left.{ }^{\circ}\right) h_{\bar{X}^{n} \bar{Y}^{n} \bar{Z}^{\prime \prime}}^{2}=\frac{1}{2}\left(g\left(\nabla_{X} Y, Z\right)-g\left(\nabla_{X} J Y, J Z\right)\right)=h_{X Y Z}$.

Here h is the second fundamental tensor field of the pair (J, g) on M.

3. Embeddings of almost Hermitian manifolds in almost hyperHermitian those

For an almost Hermitian manifold (M, J, g) we have constructed in $\mathbf{2}$ ahHs $\left(J_{1}, J_{2}, J_{3}, \mathcal{E}^{\S}\right)$ on $T M$. The manifold M can be considered as the null section O_{M} in $T M\left(p \leftrightarrow o_{p} \in O_{M} \subset T M\right)$ and it is clear from (2.8) that $\oint_{\mid M}=g$. All the results of 1 can be applied to a submanifold M in $(T M, \xi)$, see [7]. So, we can consider the normal tubular neighborhoods $T b\left(M, \frac{\varepsilon(p)}{2}\right) \subset T b(M, \varepsilon(p)) \subset T M$ and the deformations $\bar{J}_{1}, \bar{J}_{2}, \bar{J}_{3}, \bar{g}$ of the tensor fields $J_{1}, J_{2}, J_{3}, \notin$ respectively.

Theorem 2. Let (M, J, g) be an almost Hermitian manifold and $\operatorname{Tb}(M, \varepsilon(p))$ be the corresponding normal tubular neighborhood with respect to $£=<,>$ on TM. Then $M\left(O_{M}\right)$ is a totally geodesic submanifold of the almost hyperHermitian manifold $\left(T b\left(M, \frac{\varepsilon(p)}{2}\right), \bar{J}_{1}, \bar{J}_{2}, \bar{J}_{3}, \bar{g}\right)$, where the ahHs $\left(\bar{J}_{1}, \bar{J}_{2}, \bar{J}_{3}, \bar{g}\right)$ is the deformation of the structure $\left(\bar{J}_{1}, \bar{J}_{2}, \bar{J}_{3}, \xi\right)$ obtained in $\mathbf{2}^{\circ}$, $\mathbf{1}$. The structure $\left(\bar{J}_{1}, \bar{g}\right)$ is Kaehlerian one.

Proof. It follows from theorem 1 that M is a totally geodesic submanifold of the Riemannian manifold $\left(T b\left(M, \frac{\varepsilon(p)}{2}\right), \bar{g}\right)$.

Let \tilde{W}_{0} be a coordinate neighborhood in $T M$ considered in $\mathbf{1}^{\circ}, \mathbf{1}$. A point $x \in \tilde{W}_{0}$ has the coordinates $x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{2 n}$ where x_{1}, \ldots, x_{n} are coordinates of the point p in $\tilde{V}_{0} \subset M$ and $x_{n+1}, \ldots, x_{2 n}$ are normal coordinates of x in $D\left(p, \frac{\varepsilon(p)}{2}\right)$.

We
denote
$X_{i}=\frac{\partial}{\partial x_{i}}, \quad i=\overline{1,2 n}, \quad \bigoplus_{X_{i}} X_{j}=\sum_{k} €_{i j}^{k} X_{k}, \quad \bar{\nabla}_{X_{i}} X_{j}=\sum_{k} \bar{\Gamma}_{i j}^{k} X_{k}, \quad J X_{j}=\sum_{k} J_{j}^{k} X_{k}$,
$\bar{J} X_{j}=\sum_{k} \bar{J}_{j}^{k} X_{k}, \oint_{i j}=\xi\left(X_{i}, X_{j}\right), \quad \bar{g}_{i j}=\bar{g}\left(X_{i}, X_{j}\right) \quad$ where $\quad \forall \quad$ and $\quad \bar{\nabla} \quad$ are Riemannian connections of metrics $£$ and \bar{g}, J is any tensor field from J_{1}, J_{2}, J_{3}.

Using the construction in $2^{\circ}, \mathbf{1}$ we have $\bar{g}_{i j}(x)=\oint_{i j}(p), \quad \bar{J}_{j}^{i}(x)=J_{j}^{i}(p)$ on $T b\left(M, \frac{\varepsilon(p)}{2}\right) \cap \tilde{W}_{0}$. According to [8] we can write

$$
\begin{equation*}
\sum_{l} \bar{g}_{l k} \bar{\Gamma}_{i j}^{l}=\frac{1}{2}\left(\frac{\partial \bar{g}_{k j}}{\partial x_{i}}+\frac{\partial \bar{g}_{i k}}{\partial x_{j}}-\frac{\partial \bar{g}_{i j}}{\partial x_{k}}\right) \tag{3.1}
\end{equation*}
$$

It follows from (3.1) that $\bar{\Gamma}_{i j}^{l}(x)=\bar{\Gamma}_{i j}^{l}(p)$ and $\bar{\Gamma}_{i j}^{l}(x)=0$ i.e. $\bar{\nabla}_{X_{i}} X_{j}=0$ for $i=\overline{n+1,2 n}$. Further, we get

$$
\begin{gathered}
\left(\bar{\nabla}_{X_{i}} \bar{J}\right) X_{j}=\bar{\nabla}_{X_{i}} \bar{J}_{X_{j}}-\overline{\bar{J}}_{X_{i}} X_{j}=\sum_{k} \bar{\nabla}_{X_{i}} \bar{J}_{j}^{k} X_{k}- \\
-\bar{J}\left(\sum_{k} \bar{\Gamma}_{i j}^{k} X_{k}\right)=\sum_{k}\left(\bar{J}_{j}^{k} \bar{\nabla}_{X_{i}} X_{k}+\left(X_{i} \bar{J}_{j}^{k}\right) X_{k}\right)- \\
-\sum_{k, l} \bar{\Gamma}_{i j}^{l} \bar{J}_{l}^{k} X_{k}=\sum_{k, l}\left(\bar{J}_{j}^{l} \bar{\Gamma}_{i l}^{k}-\bar{\Gamma}_{i j}^{l}{ }_{l}^{k}+X_{i} \bar{J}_{j}^{k}\right) X_{k}, \\
\left(\left(\bar{\nabla}_{X_{i}} \bar{J}\right) X_{j}\right)(x)=\sum_{k, l}\left(\bar{J}_{j}^{l} \bar{\Gamma}_{i l}^{k}-\bar{\Gamma}_{i j}^{l} \bar{J}_{l}^{k}+X_{i} \bar{J}_{j}^{k}\right)(x) X_{k \mid x}= \\
=\sum_{k, l}\left(\left(\bar{J}_{j}^{l} \bar{\Gamma}_{i l}^{k}-\bar{\Gamma}_{i j}^{l} \bar{J}_{l}^{k}\right)(p)+\left(X_{i} \bar{J}_{j}^{k}\right)(x)\right) X_{k \mid x} .
\end{gathered}
$$

It follows that $\bar{\nabla}_{X_{i}} \bar{J}=0$ for $i=\overline{n+1,2 n}$.
For $i=\overline{1, n} \quad\left(X_{i} \bar{J}_{j}^{k}\right)(x)=\left(X_{i} J_{j}^{k}\right)(p)$ and we obtain

$$
\left(\left(\bar{\nabla}_{X_{i}} \bar{J}\right) X_{j}\right)(x)=\sum_{k, l}\left(J_{j}^{l} \ominus_{i l}^{k}-€_{i j}^{l} J_{l}^{k}+X_{i} J_{j}^{k}\right)(p) X_{k \mid x} .
$$

From the other side we can write

$$
\left(\left(\left(_{X_{i}} \bar{J}\right) X_{j}\right)(p)=\sum_{k, l}\left(J_{j}^{l} \digamma_{i l}^{k}-\mathcal{F}_{i j}^{l} J_{l}^{k}+X_{i} J_{j}^{k}\right)(p) X_{k \mid p} .\right.
$$

According to [3] we have $\left(\bar{\nabla}_{X_{i}} J\right) X_{j}=\left(2 h_{X_{i}} J X_{j}\right)(p)$ where the second fundamental tensor field h is defined by (2.11). From 1.1°) -8.1°) it follows that $h_{p}^{1}=0$ for any $p \in M\left(U=o_{p} \in O_{M}\right)$. Thus, we have obtained $\bar{\nabla} J_{1}=0$ and the structure $\left(\bar{J}_{1}, \bar{g}\right)$ is Kaehlerian one on $T b\left(M, \frac{\varepsilon(p)}{2}\right)$.

QED.
As a corollary we have got the following
Theorem 3 [4]. Let (M, g) be a smooth Riemannian manifold and $T b(M, \varepsilon(p))$ be the corresponding normal tubular neighborhood with respect to
$g=<,>$ on TM. Then $M\left(O_{M}\right)$ is a totally geodesic submanifold of the Kaehlerian manifold $\left(T b\left(M, \frac{\varepsilon(p)}{2}\right), \bar{J}_{1}, \bar{g}\right)$.

The classification given in [5] can be rewritten in terms of the second fundamental tensor field h, [3]. Let $\operatorname{dim} M \geq 6$ and $2 \beta(X)=\delta \Phi(J X)$, where $\Phi(X, Y)=g(J X, Y)$, then we have

Class	Defining condition		
K	$h=0$		
$\mathrm{U}_{1}=\mathrm{NK}$	$h_{X} X=0$		
$\mathrm{U}_{2}=\mathbf{A K}$	$\sigma h_{X Y Z}=0$		
$\mathrm{U}_{3}=\mathrm{SK} \cap \mathrm{H}$	$h_{X Y Z}-h_{J X J Y J Z}=\beta(Z)=0$		
\mathbf{U}_{4}	$\begin{gathered} h_{X Y Z}=\frac{1}{2(n-1)}[<X, Y>\beta(Z)-<X, Z>\beta(Y)-<X, J Y>\beta(J Z)+ \\ \\ +<X, J Z>\beta(J Y)] \end{gathered}$		
$\mathbf{U}_{\mathbf{1}} \oplus \mathrm{U}_{\mathbf{2}}=\mathbf{Q K}$	$h_{X Y J Z}=h_{J X Y Z}$		
$\mathbf{U}_{3} \oplus \mathbf{U}_{4}=\mathbf{H}$	$N(J)=0 \quad$ or $\quad h_{X Y J Z}=-h_{J X Y Z}$		
$\mathbf{U}_{\mathbf{1}} \oplus \mathbf{U}_{3}$	$h_{X X Y}-h_{J X J X Y}=\beta(Z)=0$		
$\mathbf{U}_{\mathbf{2}} \oplus \mathbf{U}_{\mathbf{4}}$	$\sigma\left[h_{X Y J Z}-\frac{1}{(n-1)}<J X, Y>\beta(Z)\right]=0$		
$\mathbf{U}_{1} \oplus \mathbf{U}_{4}$	$h_{X X Y}=-\frac{1}{2(n-1)}\left[<X, Y>\beta(X)-\\|X\\|^{2} \beta(Y)-<X, J Y>\beta(J X)\right]$		
$\mathbf{U}_{\mathbf{2}} \oplus \mathbf{U}_{\mathbf{3}}$	$\sigma\left[h_{X Y J Z}+h_{J X Y Z}\right]=\beta(Z)=0$		
$\begin{gathered} \mathbf{U}_{\mathbf{1}} \oplus \mathbf{U}_{\mathbf{2}} \oplus \mathbf{U}_{\mathbf{3}}= \\ =\mathbf{S K} \end{gathered}$	$\beta=0$		
$\mathbf{U}_{1} \oplus \mathbf{U}_{\mathbf{2}} \oplus \mathbf{U}_{4}$	$\begin{gathered} h_{X Y J Z}-h_{J X Y Z}=\frac{1}{(n-1)}[<X, Y>\beta(J Z)-<X, Z>\beta(J Y)+ \\ +<X, J Y>\beta(Z)-<X, J Z>\beta(Y)] \end{gathered}$		
$\mathbf{U}_{1} \oplus \mathbf{U}_{\mathbf{3}} \oplus \mathbf{U}_{\mathbf{4}}$	$h_{X J X Y}+h_{J X X Y}=0$		
$\mathbf{U}_{\mathbf{2}} \oplus \mathbf{U}_{\mathbf{3}} \oplus \mathbf{U}_{\mathbf{4}}$	$\sigma\left[h_{X Y J Z}+h_{J X Y Z}\right]=0$		
U	No condition		

Proposition 4. Let (J, g) be from some class from the table above. Then the structure $\left(\bar{J}_{2}, \bar{g}\right)$ has the analogous class on $\operatorname{Tb}\left(M, \frac{\varepsilon(p)}{2}\right)$.

Proof. From $\left.1.2^{\circ}\right)-8.2^{\circ}$) it follows that $h_{X Y Z}^{2}=2 h_{X Y Z}$. The rest is obvious from the table.

QED.

4. Complex and hypercomplex numbers in differential geometry

For the manifold M we consider the products $M^{2}=M \times M=$ $=\{(x ; y) \mid x ; y \in M\}, M^{4}=M^{2} \times M^{2}=\{(x ; y ; u ; v) \mid x ; y, u ; v \in M\}$ and the diagonals $\Delta\left(M^{2}\right)=\left\{(x ; x) \in M^{2}\right\}, \Delta\left(M^{4}\right)=\left\{(x ; x ; x ; x) \in M^{4}\right\}$. It is obvious that the manifold $\Delta\left(M^{2}\right)$ and $\Delta\left(M^{4}\right)$ are diffeomorphic to $M\left(\Delta\left(M^{2}\right) \cong \Delta\left(M^{4}\right) \cong M\right)$.

Theorem 5 [6]. Let (M, ∇) be a manifold with a connection ∇ and $\pi: T M \rightarrow M$ be the canonical projection. Then there exists such a neighborhood N_{0} of the null section O_{M} in TM that the mapping

$$
\varphi: \pi \times \exp : X \rightarrow\left(\pi(X), \exp _{\pi(X)} X\right)
$$

is the diffeomorphic of N_{0} on a neighborhood N_{Δ} of the diagonal $\Delta\left(M^{2}\right)$.
Further, ∇ is a Riemannian connection of the Riemannian metric g. Combining the theorems 3,5 we have obtained the following.

Theorem 6. The diffeomorphism φ induces the Kaehlerian structure $\left(\bar{J}_{1}, \bar{g}\right)$ on the neighborhood N_{Δ} of the diagonal $\Delta\left(M^{2}\right)$ and $\Delta\left(M^{2}\right) \cong M$ is a totally geodesic submanifold of the Kaehlerian manifold $\left(N_{\Delta}, \bar{J}_{1}, \bar{g}\right)$.

Remark. Generally speaking, the complex structure of the Kaehlerian manifold $\left(N_{\Delta}, \bar{J}_{1}, \bar{g}\right)$ is not compatible with the product structure of M^{2}. It means that if $z_{l}, l=\overline{1, n}$ are the complex coordinates of a point $(x ; y) \in N_{\Delta}$, then, generally speaking, we can not find such real coordinates $x_{l}, y_{l}, l=\overline{1, n}$ of the points $x, y \in M$ respectively that $z_{l}=x_{l}+i y_{l}$ where $i^{2}=-1$.

Combining the theorems $2,3,4,5,6$ we have obtained the following.
Theorem 7. There exists the hyperKaehlerian structure $\left(\bar{J}_{1}, \bar{J}_{2}, \bar{J}_{3}, \bar{g}\right)$ on a neighborhood \bar{N}_{Δ} of the diagonal $\Delta\left(M^{4}\right)$ and $\Delta\left(M^{4}\right) \cong M$ is a totally geodesic submanifold of the hyperKaehlerian manifold $\left(N_{\Delta}, \bar{J}_{1}, \bar{J}_{2}, \bar{J}_{3}, \bar{g}\right)$.

Remark. Generally speaking, the hypercomplex structure of the hyperKaehlerian manifold $\left(\bar{N}_{\Delta}, \bar{J}_{1}, \bar{J}_{2}, \bar{J}_{3}, \bar{g}\right)$ is not compatible with the product structure of M^{4}. It means that if $q_{l}, l=\overline{1, n}$ are the hypercomplex coordinates of a point $(x ; y ; u ; v) \in \bar{N}_{\Delta}$, then, generally speaking we can not find such real coordinates $x_{l}, y_{l}, u_{l}, v_{l}, \quad l=\overline{1, n}$ of the points $x ; y ; u ; v \in M$ respectively that $q_{l}=x_{l}+i y_{l}+j u_{l}+k v_{l}$ where $i^{2}=j^{2}=k^{2}=-1, i j=-j i=k$.

5. A local construction of Kaehlerian and Riemannian metrics.

$\mathbf{1}^{\mathbf{0}}$. We consider a Riemannian manifold (M, g) as a totally geodesic subanifold of the Kaehlerian manifold $\operatorname{Tb}\left(M, \frac{\varepsilon(p)}{2}, \bar{J}=J_{1}, \bar{g}\right)$ (see theorem 3) then $\bar{g}_{\left.\right|_{M}}=g$.

Let $x_{1}, \ldots, x_{\mathrm{n}}$ be coordinates in some coordinate neighborhood $U \subset M$ and $\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}$ be the corresponding vector fields. We can choose a neighborhood $\bar{U}=U \times D=\bigcup_{p \in U} D(p ; \varepsilon) \subset T b\left(M, \frac{\varepsilon(p)}{2}\right)$ where $\varepsilon \leq \frac{\varepsilon(p)}{2}$ for every point $p \in U$. It is clear from $\mathbf{3}^{\circ}, \mathbf{1}$ that $U \times D$ is a Riemannian product with respect the metric \bar{g}. For every point $x \in \bar{U}$ where $\pi(x)=p$ we denote $Y_{j x}=\bar{J} \frac{\partial}{\partial x_{j x}}, j=\overline{1, n}$ and the vector fieds Y_{j} define the coordinates $y_{1}, \ldots, y_{\mathrm{n}}$ on $D_{(p ; \varepsilon)}$ hence $Y_{j}=\frac{\partial}{\partial y_{j}}$ is tangent to $D_{(p ; \varepsilon)}$ for $j=\overline{1, n}$.

So, \bar{U} is an coordinate neighborhood of the Kaehlerian manifold $\left(T b\left(M, \frac{\varepsilon(p)}{2}\right), \bar{J}, \bar{g}\right)$, with complex coordinates $z_{j}=x_{j}+i y_{j}, j=\overline{1, n}, i^{2}=-1$, and the vector fields $\frac{\partial}{\partial z_{\alpha}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{\alpha}}-i \frac{\partial}{\partial y_{\alpha}}\right), \frac{\partial}{\partial \bar{z}_{\beta}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{\alpha}}+i \frac{\partial}{\partial y_{\alpha}}\right), \alpha, \beta=\overline{1, n}$. It is known [9] that the Kaehlerian metric \bar{g}^{c} has on \bar{U} the following decomposition

$$
d s^{2}=2 \sum_{\alpha, \beta} \bar{g}_{\alpha \bar{\beta}}^{c} d z^{\alpha} d \bar{z}^{\beta}, \bar{g}_{\alpha \bar{\beta}}^{c}=\frac{\partial^{2} u}{d z_{\alpha} d \bar{z}_{\beta}},
$$

where u is a real-valued function on \bar{U}.
We have
$\frac{\partial^{2} u}{\partial z_{\alpha} \partial z_{\beta}}=\frac{1}{4}\left\{\frac{\partial^{2} u}{\partial x_{\alpha} \partial x_{\beta}}-\frac{\partial^{2} u}{\partial y_{\alpha} \partial y_{\beta}}-i\left(\frac{\partial^{2} u}{\partial y_{\alpha} \partial x_{\beta}}+\frac{\partial^{2} u}{\partial x_{\alpha} \partial y_{\beta}}\right)\right\}=0$,

$$
\frac{\partial^{2} u}{\partial \bar{z}_{\alpha} \partial \bar{z}_{\beta}}=\frac{1}{4}\left\{\frac{\partial^{2} u}{\partial x_{\alpha} \partial x_{\beta}}-\frac{\partial^{2} u}{\partial y_{\alpha} \partial y_{\beta}}+i\left(\frac{\partial^{2} u}{\partial y_{\alpha} \partial x_{\beta}}+\frac{\partial^{2} u}{\partial x_{\alpha} \partial y_{\beta}}\right)\right\}=0 .
$$

It follows that

$$
\frac{\partial^{2} u}{\partial x_{\alpha} \partial x_{\beta}}=\frac{\partial^{2} u}{\partial y_{\alpha} \partial y_{\beta}}, \frac{\partial^{2} u}{\partial x_{\alpha} \partial y_{\beta}}=-\frac{\partial^{2} u}{\partial y_{\alpha} \partial x_{\beta}} .
$$

Further, we obtain

$$
\begin{aligned}
& \bar{g}_{\alpha \bar{\beta}}^{c}=\frac{\partial^{2} u}{\partial z_{\alpha} \partial \bar{z}_{\beta}}=\frac{1}{4}\left\{\frac{\partial^{2} u}{\partial x_{\alpha} \partial x_{\beta}}+\frac{\partial^{2} u}{\partial y_{\alpha} \partial y_{\beta}}+i\left(\frac{\partial^{2} u}{\partial x_{\alpha} \partial y_{\beta}}-\frac{\partial^{2} u}{\partial y_{\alpha} \partial x_{\beta}}\right)\right\}=\frac{1}{2}\left(\frac{\partial^{2} u}{\partial x_{\alpha} \partial x_{\beta}}+i \frac{\partial^{2} u}{\partial x_{\alpha} \partial y_{\beta}}\right), \\
& \bar{g}_{\bar{\alpha} \beta}^{c}=\frac{\partial^{2} u}{\partial \bar{z}_{\alpha} \partial z_{\beta}}=\frac{1}{4}\left\{\frac{\partial^{2} u}{\partial x_{\alpha} \partial x_{\beta}}+\frac{\partial^{2} u}{\partial y_{\alpha} \partial y_{\beta}}-i\left(\frac{\partial^{2} u}{\partial x_{\alpha} \partial y_{\beta}}-\frac{\partial^{2} u}{\partial y_{\alpha} \partial x_{\beta}}\right)\right\}=\frac{1}{2}\left(\frac{\partial^{2} u}{\partial x_{\alpha} \partial x_{\beta}}-i \frac{\partial^{2} u}{\partial x_{\alpha} \partial y_{\beta}}\right) .
\end{aligned}
$$

Finally, we get

$$
\begin{aligned}
& \bar{g}\left(\frac{\partial}{\partial x_{\alpha}}, \frac{\partial}{\partial x_{\beta}}\right)=\frac{1}{2} \operatorname{Re} \bar{g}^{c}\left(\frac{\partial}{\partial x_{\alpha}}, \frac{\partial}{\partial x_{\beta}}\right)=\frac{1}{2} \operatorname{Re} \bar{g}^{c}\left(\frac{\partial}{\partial z_{\alpha}}+\frac{\partial}{\partial z_{\beta}}, \frac{\partial}{\partial z_{\beta}}+\frac{\partial}{\partial \bar{z}_{\beta}}\right)=\operatorname{Re}\left(\bar{g}_{\alpha \beta}^{c}+\bar{g}_{\bar{\alpha} \bar{\beta}}^{c}+\right. \\
& \left.+\bar{g}_{\alpha \bar{\beta}}^{c}+\bar{g}_{\bar{\alpha} \beta}^{c}\right)=\operatorname{Re}\left(\bar{g}_{\alpha \bar{\beta}}^{c}+\bar{g}_{\bar{\alpha} \beta}^{c}\right)=\frac{\partial^{2} u}{\partial x_{\alpha} \partial y \beta} .
\end{aligned}
$$

We can consider the restriction of \bar{g} and the function u on the neighborhood U. So, we have obtained

Theorem 8 Let (M, g) be a Riemannian manifold and x_{1}, \ldots, x_{n} be coordinates is some coordinate neighborhood $U \subset M$. There exists a smooth function $u: U \rightarrow \boldsymbol{R}$ that $g_{i j}=g\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right)=\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}$ on U.
$\mathbf{2}^{\mathbf{0}}$. Let (M, J, g) be a Kaehlerian manifold $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$, be coordinates is some coordinate neighborhood $U \subset M$, where $\frac{\partial}{\partial y_{\alpha}}=J \frac{\partial}{\partial x_{\alpha}}, \quad \alpha=\overline{1, n}$. We consider a function $u: U \rightarrow \boldsymbol{R}$ from theorem 5. Then, we have the following conditions on this function.

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x_{\alpha} \partial y_{\beta}}=g\left(\frac{\partial}{\partial x_{\alpha}}, J \frac{\partial}{\partial x_{\beta}}\right)=-g\left(J \frac{\partial}{\partial x_{\alpha}}, \frac{\partial}{\partial x_{\beta}}\right)=-\frac{\partial^{2} u}{\partial y_{\alpha} \partial y_{\beta}} ; \\
& \frac{\partial^{2} u}{\partial y_{\alpha} \partial y_{\beta}}=g\left(J \frac{\partial}{\partial x_{\alpha}}, J \frac{\partial}{\partial x_{\beta}}\right)=g\left(\frac{\partial}{\partial x_{\alpha}}, \frac{\partial}{\partial x_{\beta}}\right)=\frac{\partial^{2} u}{\partial x_{\alpha} \partial x_{\beta}}, \quad \alpha, \beta=\overline{1, n} .
\end{aligned}
$$

References

1. S.A. Bogdanovich, A.A. Ermolitski, On almost hyperHermitian structures on Riemannian manifolds and tangent bundles, Centr.Eur.J.Math, 2(5) (2004) 615-623.
2. P. Dombrowski, On the geometry of the tangent bundle, J. Reine und Angew. Math., 210 (1962) 73-78.
3. A.A. Ermolitski, Riemannian manifolds with geometric structures, BSPU, Minsk, 1998 (in Russian), (English version in arXiv: 0805.3497) .
4. A.A. Ermolitski, Deformations of structures, embedding of a Riemannian manifold in a Kaehlerian one and geometric antigravitation, Banach Center Publicantions, V. 76, Warszawa 2007, 505-514.
5. A. Gray, L. M. Herwella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. pura appl., 123 (1980) 35-58.
6. D. Gromoll, W. Klingenberg, W. Meyer, Riemannsche geometrie im grossen, Springer, Berlin, 1968 (in German).
7. M.W. Hirsch, Differential topology. Graduate texts in mathematics, 33, Springer, N.Y., 1976.
8. S. Kobayashi, K. Nomizu, Foundations of differential geometry, V. 1, Wiley, N.Y., 1963.
9. S. Kobayashi, K. Nomizu, Foundations of differential geometry, V. 2, Wiley, N.Y., 1969.
