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1 Introduction

Conformal blocks, which are defined on the (punctured) Rrensaurfaces, holomorphic in eaghco-
ordinate except when they meet each other, play an esseiiah building correlation functions in two
dimensional (Euclidean) conformal field theories[1]. Tlveyn be best understood as sewing together
chiral vertex operators[2+-4], which by definition, are notdl objects, but the correlation functions
are. The later combine both holomorphic and anti-holomiarpbnformal blocks in a consistent way
to make modular covariant objects. On the spherentpeint conformal block is represented graphi-
cally as in fid.1, wherdy; is the conformal dimension of the primary field inserted airdinatez;, and
h labels the contribution arising from the conformal familysgending from a primary field with the
conformal dimensiof;. The global conformal invariance 8L(2) x S L(2), which may be used to fix
three coordinate®, = 0, z,_1 = 1 andz, = . So the independent variables &gl = 2,...,n — 2,
with the degrees of freedom— 3 for the n-point conformal blocks on the sphere.

The calculation of conformal blocks is based on the confoMverd-identities,

[Ln, Va(2)] = (220, + (n + LhZ)Vr(2).

and carried out perturbatively level by level [1,l5, 6]. Im®® special cases, the decoupling of the
Virasoro null vectors can be implemented as differentialagippns for the conformal blocks. For the
general case, recursion relations have been proposed bgl@achikov[5, 6] on the meromorphic
structures of the conformal blocks either in compteglane orh-plane. However, in general, the
global perspective of the sewing procedure for the confbhiagks was still not fully understood until
recently when the AGT duality [13] had been proposed.

AGT conjecture relates 2d Liouville conformal field thesri®e 4dN = 2 supersymmetric gauge
theories of theA; type. The main idea is coupling to the Liouville fieldul) fieldd, then this system
is dual to aU(2) = S U(2) x U(1) superconformal 4d theory. In this case, the partition fiomcby
Nekrasov instanton counting(NIC)[15,/ 16] of the Yd2) theory is to be identified with the conformal
blocks of theu(1) coupled Liouville type. The Liouville CFT is characterizégt a 2d one boson
theory with center charge > 25. Finally, one can decouple thé(1) factor and obtain the instanton
partition function of theS U(2) theory which duals to Liouville conformal blocks. Lioulinteraction
breaks down the charge conservation explicitly and leadseantroduction of the screening charges.
Because of the existence of the screening charges, theromadfblocks of the Liouville type is much
more complicated than its counterpart of th{d) free boson theory. However, the AGT conjecture, if
proven true, means that there exists an orthogonal basis whizh theLiouville x u(1) conformal
blocks are built. From the above reasoning, there existsalike structure which describes the duality
in coupling space of th& = 2 4d superconformal linear quiver gauge theory. The primdnjgcis
for this tree-like structure is the “bifundmental” matterupling, which, if translated correctly, should
be represented by the inner products of the bra and ket démcefields in 2d conformal families
sandwiched by a “primary” vertex operator at position, gaysuch kind of pants-like diagram can be
sewed together to form a linear quiver diagram, which, orRth€FT side, is just tha-point functions
on the sphere for our consideration. Of course, in the pteseniext, we mean their & u(1) 2d CFT.

At first sight, it seems that such duality does not bring in @emyveniences. However, the Nekrasov
instanton counting on the 4d field theory shows a rather ceatrfpam for the summands which are
completely factorized in “momentunf’. And the summation is well organized into the combinatorial
enumeration of the Young tableuax. This simple structunglies Liouville theory, in particular, the

4In fact, the zero mode of th&(1) field is a gauge symmetry and can be fixed to any desire@valu
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Figure 1:n-point conformal block o152

evaluation of the Liouville conformal blocks, could be resa by embedding it into a bigger system.
So one may expect a new construction for the Liouville camfrblocks from the corresponding NIC.

As pointed out by Nakajima[23—25], the instanton countimgN = 2 gauge theory is equivalent to
the Hilbert scheme of points on the corresponding SeibeitteWcurve (blow-up Riemann surface)[11,
12,121]. This can be translated into a topological stringcdpson from physicists’ point of view. By
invoking the D4-DO0 brane setup[19,/20] for ADHM construcd8] of the instanton moduli space
and the resolving process for ALE singularities[22], thewticate that the instanton counting is a
counting for DO branes in a toric Calabi-Yau 3-fold. Actyalihere are two kinds of DO branes in
the Calabi-Yau 3-fold, one is the regular DO brane, whichiseigular representation of the center
of the corresponding ADE group. It carries no flux and can miogely on the Riemann surface.
The other is the fractional DO brane, which is a D2 brane wirappn a zero-sized two sphere. It is
always attached to the ALE singularity since it has a noid@wmonodromy while moving around the
singularity. It is these fractional DO branes that resohe ALE singularity, and leave fluxes on the
blow-up Riemann surface. This property ensures that onedsanify these fractional instantons as
“anyons” on the Riemann surface. On the other hand, theaeguks are “electric charged” particles
on the Riemann surface. So the total counting is equvalesplong the problem of “electron gas”
system with insertions of anyons at the blow-up singulastythe Riemann surface. This point of view
is partialy included in Dijkgraaf and Vafa’'s article[17]oFeach pants of the pants decomposition for
the (punctured) Riemann surface, one can guess that tlamiostpartition function can be rewritten
as summation over all the intermediate states passingghrthe sewn holes[4]. For the interests of
the present paper, we concern ourselves only with the dpesomds diagram that one of the tubes is
replaced by the blow-up singularity. Then the summand inrk&nton partition function represents
itself as an inner product of the bra and ket states, san@dibly the anyonic vertex operator. These
bra and ket states should come from the interacting “eleitiio particles. A candidate description
of the “electronic gas” system is the integrable system oftipla Calogero-Sutherland model, each
living on a cycle. The whole (punctured) Riemann surface, lwa obtained by sewing together these
pants on nonintersecting cycles.

There are many efforts on relating the conformal blocks ¢oNKC[14, 26+-35] from various points
of views, and these works confirm the validity of the AGT dtyalHowever, the explicit construction
for the Liouville conformal blocks has remained largely l@ac until the recent work [7] by Alba,
Fateev, Litvinov and Tarnopolsky. In![7], they have put fardl the AGT duality in a more explicit

SFor each simple root of an ADE group, one should introducend &f “electronic” field.



form
v (P’ IV|P)y

= Zwit(@P,Y;PY), 1
CIVAL) oi (1P, ) (1)

here specifically for a free field realization,
V,(2) = A (Q-0)8-g-2ap-(Agn . iav(?) -

with P+ P +a +nb =0, andS = ¢ e*/@dzis the screening charge in the Virasoro sector. The
l.h.s. of ed(l) is the pants-like (with one of the tubes leddya shrinks to a line) conformal block.
The r.h.s. of[(Il) reproduce,; for the instanton counting, which is given by

2
Zoit(@lP Y PY) = [ [ [(Q-Evx(P = Pil9 —a) [ [ (Bvx(P;-PID-0), (2

i,j=1 sev; teY!

whereP = (P, -P), P’ = (P", —P) and
EY’Y/(P|S) =P+ b_l(ay(S) + 1) - b|yf(S) . (3)

Hereay(s) andly(s) resp. are the arm length and the leg length resp. of theslimihe Young tableau
Y, defined as

ay(9ls=qij) == Ai = ), W(siy i= A} 1,
A and/ltj resp. are thé-th part of the partitiom = (11, 12,--+), 4 > Aj;1 and thej-th part of the
transpose partition! respectively .

(@) means that the matrix elements of a special “chiral xeofgerator’V, in a suitably chosen
basis, can be translated into a 4d theory as an instantoritmgidn for a special bifundamental con-
tribution of the NIC. By sewing together pants-like diagsaone gets any desired duality diagrams
in the coupling space of the linear quiver gauge theory. B®checking of the AGT duality reduces
to the construction of the staté3)y, which we shall call the AFLT states[7], with = (Y1, Y>) the
Young tableaux. Here th¥'s, the partitions of natural numbers, or equivalently esgnted by Young
tableaux, are labels for the orthogonal basis for the dekosrfields (Verma modules) in\air & u(1)
conformal family from the 2d CFT point of view. By definitiotihe AFLT states form a complete set of
states for the family members in a givéir @ u(1) conformal family and the inner products between
them, sandwiched by a vertex operator of the particular f&p(z), at position,sayz = 1, is factorized
exactly as the NIy,;s presented on the r.h.s. &f (1). The explicit formula, (1Xsmirong constraints
on the possible forms of the AFLT states and make a system@atistruction of them unaccessible at
first glance. Ini[7], only the explicit form of the state)y, has been found,

IP)vo = Iy IP)Qy(P),

with J*,, the creato(—ib)~*a’’s valued Jack symmetric function, afi2i(P) the normalization con-
stant.

In our opinion, the AGT conjecture, written in the form of (§)rongly suggests that thar & u(1)
conformal family is a Hamiltonian system witR)y the Hamiltonian eigenstates. So the construction
of the AFLT states becomes a quantum mechanical problemhdahgdhe Schrodinger equation. Put
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things in this way, we propose a possible form of the Hami#torH and construct its eigenstates
explicitly. We shall identify those eigenstates as the ABtdtes desired. For in all the cases we have
checked,[(l1) is verified to be true, using the AFLT states we lsanstructed. We shall present now as
the main results of our present paper the explicit form ofHlaeniltonianH along with the complete
construction of the AFLT statef?)y. More elaborated exposition will come in the subsequentmes

H = Ho+H, (4)
1
Py = T J_yIPYQ2y(P).
-

Here, J;, are the Jack states constructed in terms of the oscillafgssor a*,’s (n > 0) solely, H*
the corresponding Hamiltonian for the Jack symmetric fiomst, Hy = H* + H™. Thus the eigenstate
of Hp is justJ_y|P) = JleJjYzlp) with the eigenvaludy(P). H* in our formalism is defined to
include zero modesg also, —ia(i)|P) = +P|P). It is important thatH, is strictly triangular with
respect to the basis vectors of tHg eigenstates. By “strictly triangular” we mean the (upp€elowrer)
triangular matrix with zero diagonal entries. It is easy e shat if the interaction terrHl, is strictly
triangular, then the eigenvalue spectrumbhf remains unperturbed an@)y in (4) well defined for
non-degeneratklg spectrum descending from a mother statg|P) for generic values oP’s. Putting
things all together, we have

H=Ho+H, Ho=H"+H", H, = Z 2Qna,a;, (5)
n=1

(0]

£ _ ;I +\3 E +
=g @ 5+ ) o
Ey(P) = Ey, + Ev, + 2P(Y1l - IYal), Ey = > (b + (2i — 1)yib),
i

Qy(P) = (—)MilpakI¥a ﬂ (2P + (ay, + 1)b™ — 1y,b) ﬂ (2P —ay,b™ + (Iv, + 1)b),
Y1

Y2

IP)y = J_yIPYQy(P),

1
1- Ey(P)-Ho !

HoJ yIP) = E¢(P)J_¢IP), HIP)y = E¢(P)IP)y, —iaj|P) = +P|P)

Notice that
1) |P)yo constructed in_[7] are included in our construction as ssésa
2) The HamiltoniarH constructed by us, albeit in a disguised form, turns out foagde up to some
trivial factor with |3, one of the integrals of motion found in a different contexappendix C ofi[7]l3
in [7], written in the form ofVir & u(1), makes the Virasoro symmetry manifest, but is not suitaire f
solving a perturbation theory with perturbation param&et b + b~. The HamiltoniarH written in
terms of the interacting bi-Jack polynomial system a§lingbpws Virasoro symmetry only implicitly,
but makes the perturbation theory exactly solvable as wiésdmsoon after.

The procedure is outlined as follows. On the 2d CFT sideed u(1) theory can be represented
as a theory of two independent scalé@(g) andy(2). ¢(2) part is essentially a free theory of timelike
oscillators, while the scalar fieldig(2) is spacelike but engaged in a Liouville type interactioneTh
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two scalars can be linearly combined to form the “light-cosmalars.¢™ (2) ande~(2). The labeling

Y of the basis vectors strongly suggests that there existladk-polynomial structure, plus possibly
some interactions between these two sectors. That is, the™* spectrums should be described by
J\+(1 andJ;(2 respectively, herdy denotes Jack states related to Young tabMakirst we construct the
“unperturbed” energy operatdto which just sums up the “energies” i sectorsHp = H™ + H™.
The next thing is to specify the interaction between these sectors. Strictly speakindio does
not describe a free theory, since it also contains the idtiermterms proportional t€). But the new
interaction termH, further mixes theJ{’s and the coupling is also a first order @. It is good to
see thatH, is strictly triangular with respect to the basis vectordyf eigenstates. Our method can
be easily generalized to wider classes of integrable moihalghich the interacting Hamiltonian splits
into two partsH// andH*, representing respectively the shift of energies and ttaioms (mixings)
of states. The later keeps the eigenvalue spectrum untdj&#je

Besides being triangular, the form of the interaction tesrhawever much restricted, also by the
Virasoro symmetry. Since the total Hamiltonian is of thenfovir @ u(1), an “interaction energy
operator’H, is needed to make the “full Energy operatdi’ = Hg + H, the combination of,’s
andL,’s only. Once the Hamiltonian structure is determined, tthenconstruction of the Hamiltonian
eigenstat¢P) is just a quantum mechanical problehlg andH share the same eigenvalue spectrum,
but only the eigenstates d¢f, represented byP)y’s, form a complete set of basis vectors for the
Vir & u(1) conformal family.

We have checked by examples the corresponding AGT dualityuta, [1) up to level 4, and have
found that indeed Nekrasov instanton counting can be rejestiwith this construction (5). In fact,
we have also checked more general cases and all get positweses. But those more general results
will appear elsewhere due to lacking of space to include timetims paper.

The insertions of the screening charges play an importé@imahecking the AGT duality. How-
ever, in the present work we concern ourselves only with #se€ in which the screening charges can
be detached away from the vertex operafgrand moved on to act on the AFLT states (similar to the
Felder's BRST operators)[8l, 9]. The more general cases iohndtreening charges can not be moved
away fromV,, will be under our future studies.

It is well known that it is possible to map the Liouville thgdo the analytic continuation of the
Calogero-Sutherland(CS) model, which was originally anehost cases considered to be a theory with
the paramete8 > 0, while in the Liouville cas¢8 < O is required. Some explanation is givenlin/[36].
The physical space of the CS model are created by Jack polgtgmwhich are symmetric functions
studied in great detail in mathematics and physics litees{@8, 39]. The integrability of the CS model
may be derived in different ways, e.g., from the knowledgenetiddenN, .., symmetry of the model.

A recursion relation related to the Virasoro singular vestand an integral representation based on it
has appeared recently in [36], in which more references ednlnd on the subjects of the CS model
and the Jack symmetric functions. It should be stressea &lgai for3 > O, there is no null vectors in
the CS model. So the “null” vectors are not the true null vesctif the CS model, since the Virasoro
algebra based on which the null vectors are constructedtithedrue conformal algebra of the CS
model in that case. But fg@@ < 0, yes, there are null vectors in the CS model. It is possibtietzribe
the Liouville x u(1) theory in terms of the Jack polynomials considered as analghtinuation from

B >0top <O0.

There is another hint that tHaouville x u(1) theory has something to do with< 0 CS model. It
can be found from the Nekrasov partition function, in whielklketerm in the summation can be written
in the form of the Carlsson-Okounkov formula[10], for thespl cases when no screening charges are



inserted. Carlsson-Okounkov formula is a formula for theeinproducts between the bra Jack states
and the ket Jack states sandwiched with a modified vertexatgperThis extraordinary formula is of
great help in checking the AGT duality with our constructfon the orthogonal basis vectolf3)y’s
defined in[(1).

We notice that the construction we found shares many siitnéamwith the construction of the Jack
functions themselves. Namely, we take the sﬁiﬁngYzl P) as the mother state and its descendants are
constructed in such a manner that two partitions are “saqgfanto other pairs. The squeezing does
not change the total level of the two partitions, but doeserthlk inner products of the descendants a
triangular form.

Although the 4d to 2d duality has just begun to be understidths been known for sometime
that 2d conformal blocks can be equivalently described sexriions of Wilson lines in 3d pure Chern-
Simons topological gauge theory. In fact, we can intergrettpoint conformal block represented by
fig.1 as a Wilson line insertion inside a three-ball. The patagral in Chern-Simons-Witten gauge
theory thus creates a state living on the boundary of the thadl, which is puncture®?. So it should
not be a too big surprise that 2d conformal field theory hasetbimg to do with higher dimensional
quantum field theories. Taking into account that Jack symmpblynomials can be taken as some
special limit of the two parameter Macdonald symmetric polyials, one natural guess is that our
construction can be generalized to the case of Macdonaldngyrit polynomials. In that case there
should be a 5d to 3d duality.

This paper is organized in the following way. Our generahfalism on the construction of the
AFLT states is presented in the introduction. In section 2,explore the general structure of the
Vir @ u(1) conformal family. We found in some cases it is more convertiemwork with the bi-Jack
function basis. Section 3 contains the major derivationusfamnstruction. Section 4 is the conclusion.
And in appendix A the explicit construction of the AFLT staig to level 3 is presented.

2 Exploring the Vir @ u(1) Structure

We are dealing with a 4d N=2 (2) linear quiver gauge theory coupled to special bi-fundmentsdter

in a superconformal way. According to the standard AGT dyalictionary, the corresponding 2d
conformal block is of th&/ir @u(1) type, which reproduces the instanton part of the Nekrastitipa
function for theU(2) theory. There are two sets of Young diagrams which measeredttitions of
the instantons. If one wants to extract the Virasoro basth@iconformal blocks, one need to factor
out theu(1) factor.

In this section we shall mainly explore the Hilbert spacetfaVir @ u(1) theory and find the
requirements that the energy operdtbshould meet. Our procedure depends heavily on the Nekrasov
instanton counting formula written more suitably for thenstiuction of the conformal blockd,](1).
First, the 2du(1) conformal block, realized in terms of the oscillators of siealer fieldp, is essentially
of free theory with center charge= 1. The zero modes can be integrated out trivially and does not
play any significant role here. The vertex operatorsfaiake a peculiar form

2 (Q-0)¢)(2) g-2iap(+)(2)
Here,p+) means the positive (negative) mode part of the scalar eldAlthough the above vertex
operator is not the standard one in 2d CFT, its contributiothé conformal block can be easily read

off and factored out. Second, thar part is a Liouville conformal field theory of the(z) scalar field
and is more complicated because of the existence of thersogeeharges.
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We have the following mode expansion for the scalar figl@ and@(2),

¢@ = q+colog@+ )| =g, (6)
neZ,n#0 n
32 = Gralog@+ ». I,
neZ,n+0 n
n s 1
[Cn,Cm] = §5n+m,0’ (C—n) =Cn, [CO’q]ZE
n s 1
[Bnan] = Zonemo. (an) =2 [a0.d=5.

Virasoro generators in théir part,L,, thus reads

Ln = D GCk—iNQG= ) GGk +i(2P-nQcy, 7)
keZ k#0,n
@ L,
Lo = 5 -P +2§c_kck, (8)

A

here,co = iP, R A
—icolP) = PIP) = P|P), (PI(-ico) = (P|P = —P(P|.

By this constructionl, defined in[(J-B) is obviously unitary,

Lon=L.
In 2d CFT, one frequently meets another (more conventiatedliition of the Virasoro generators,
Lﬂ = Z CkChk — 1IQ(N+ 1)cy . 9)
kez

If (7) and [8) are combined in this way,
21
_ a2, iyla. _ —n-2
T(2) = dpdy +1Q0“¢ +1QZ ~dyp 17 En Laz", (10)

thenT (2) differs from the more conventional ofé(2) = dpdp+iQad%¢ by a similarity transformation

T@ = €' 0pdp +iQd%p)e M = Z L,z "2 (11)
n
kez
Comparing[(ID) and(11), we have
~ _JCn n£O
C”_{co+12Q, N=0 - (12)
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Viewing theVir & u(1) model as a 2d sigma model, since under conjugatjoanda,, transform
differently we recognize thatiy is spacelike ang timelike when they are considered as coordinates
in target space. So the target space of the sigma model uadsideration is curved in space and flat
in time direction. The two scalars can also be linearly camabito form the “light-cone” scalats*(2),

0 (2 =92 +¢(2), (13)
¢*(29¢*(Z) = logz- 2),

¢*(2¢™(Z) = 0,

o' =¢"(2.

The descendant states in the conformal family split intcspdices of different levels, which are mea-
sured bylo = Lo + 3,7 ; @ nan. Within the sub-space of given levll = 3. o(8_nan + C_nCn), States
can be labeled either by linear conbinationsaokL_v’s or JjXJjY’s, with X, Y the Young tableau,
IX| +1Y] = N, J;, the annihilator(—ib)‘lai’s (or creator(—ib)‘lafY’s) valued Jack symmetric func-
tions. In either case, one can infer from AGT duality thatréhexist a Hermitian operatdd, which
commutes with, and diagonizes this subspace. Hence the eigenstakdégar an orthogonal basis.
We knowl; acts on this subspace trivially like an identity operatar.irsorder to eliminate the degen-
eracy, the next candidaté we are looking for should be at least cubic in the oscillagys andc,’s.
OnceH is introduced, the descendant states will organize theres@hto an orthogonal basis labeled
by two sets of Young tableauY1, Y>}. In our opinion, it is better to start with th&; system, since
there is already a Hamiltonian structuf acting separately on them. Bby = H* + H™ does not
commute with the screening chard®$ pertaining tolL,

5 = f ez,

hereb* = b, b~ = b™!. We then add a new ter, to Hg, H = Ho+H, and require thdiS*, H] = 0.

If H, are chosen correctly, the eigenstated-oWill coincide with the unique orthogonal bagk).,

. , . . : 2 (P IVolP)y .
which we call AFLT states and are defined to satily (1), inoklthe matrix elementéM is

factorized in a consistent way. I

On the 4d theory side, one can decouple a single masslessiaihental mattr(é =(P,P),m=
0). We shall show that under this condition the contributioms loe written as the orthogonality condi-
tion for the|P)y's, provided[(1) is satisfied.

Proposition 1 [M1f AGT conjecture is true, then the AFLT statf)y's defined in[(1L), form an orthog-
onal basis.

vy (PP, = Zgioi@ Y, & Y, 0) o 6y (14)

6The massless condition implieg | + Y| = [Y1] +[Ya).
"This is actually Proposition 2.4 inl[7], but here we give mdetails.




Proof: We proceed, froni (1),

Vi {PIPYLY, = v v;(PIVe=0lP)v,.v, (15)
= ;:{Q —[(ay, + Db~ Iy;b]} U{(a\q + o™ - Iy, b}
X A—l:{Q 2P+ (ay, + b - Iy;b]} | [t-2P+ (av, + b7 ~ 1v,b}
Y1 Y,
x | IQ-[-2P+ (av, + Db = Iyb]} | [(2P + (av, + Db = Iv,b}
Y2 Y;
X :}Q—KWﬁimﬁ—MMQme+1m4—mm.

We shall prove now that under this situation, if the resuitas-zero, one can conclude

Y=Y.

vi.v;(PIP)v,y, # 0,
one gets
Y11 < )/1,1-

[ Since otherwise there must exist a box in the tabMasatisfying
ady, = 0, IYi =-1.
This will lead to
Q-[(ay, + Db —Iyb] = 0, (16)

This argument cycles and one finally conclude:

yLi <Yy .i=12....

ForY>, similarly, the argument follows, and gives:

Y2i VYo, i=12,....

However, the original condition
Y1l + Y3l = [Ya] + [Y2|

then forcesy; = Y1, Y2 = Y. Q.E.D.

The orthogonality condition|(14), strongly suggests thistence of mutually commuting Hermi-
tian operators, whose common eigenstates form a compliteganal basis of the Hilbert space. One
of the operators, called the energy operator, probablycdala,,’s andc,’s (since this is most likely the
case beyondh), is the first object we are going to construct. However, ligcity alone is not enough
to constrain the possible forms of the construction. Fongle,Hy = H* + H™ is Hermitian, but does

8Here we use the notatioa, to label ther-th part of the partitiorY; .
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not belong tdVir & u(1). In fact, we shall show that altogether there should be at @aonditionH
are to meet in order the orthogonality of thig eigenstates play an important role here.

1) Hermiticity
i) Triangularity
i) Reflection- invariance.

Now we explain what the other two conditions means. Condlitijp triangularity, means thdtl,
in its matrix form,HV,’V(P) = (\7’|H(P)|\7), where|Y)'s are the eigenstates bfp = H* + H™(the
“unperturbed” energy operatr)is lower(or upper)-triangular witkl, = H — Hg strictly triangular
(with zero diagonal entries). Under such circumstancessgiectrum oH coincides with that oHo,
and the eigenstates bf can be expressed &)y, y, = le,YZQP)R(E)l\?), P), here the normalization
constantQy, v,(P) will be specified later on.R(E) = 1 + R(E), a unitriangular matrix, is again
triangular with identity diagonal entries following theamgularity ofH. H* is the collective mode
Hamiltonian for the Calogero-Sutherland model in termshefascillatorsa;’s. Thus the eigenstate of
Hois justJleJ:Y2|P>. H* in our formalism (including the zero modeg) is defined as

+ 1 + S 4+ At
H* = -i3 yg(zazgo (2)%dz/z+ ; Qnat, a:

Sinceg™f = ¢¥, we haveJﬁ = J7,. There is a natural question on how to define the inner preduct
betweenl]'s. The answer is that we need the condition iii) Reflectiovariance. Notice thatP’|P)

not zero mean® + P’ = 0. In order to get a non-vanishing result, we need to gliftto (—P|. We
thus expect that there exists an operation which chapggeséP]| to v, y,(—P|. We call this operation
reflection following the terminology in a similar situatiam [29]. Actually, by looking closer to the
NIC formulai.e. the r.h.s of (1), one can find that there eaisipparent symmetry

Yl,Y2<P| (_)Yz,Yl <_P| (17)

If we change either bra sta{€|v, v, to v, v,{—P|, or ket statdP)y, v, to |-P)y,.v,, on the L.h.s. of[(1),
the factors on the r.h.s. of &q(1) get reshuffling but the fieallt keep invariant. We may name this
symmetry “reflection” or “flipping” symmetry. On the 2d CFTdsi, from general reasoning that such
an operation should be conformally invariant, it is natucaldentify the insertions of the screening
charges as this “reflection” operation. For Liouville the¢or Coulomb gas model), we can attach to
V,-0 Some screening char@ssuch that

v.v;{PIVoS"IP)v,y, # 0 (18)
S= ygezib*"(z)dz. (19)

Now the neutrality condition force2P + nb = 0 . If this is satisfied, then Felder’s contour for the
integration of the screening charges actually closesSihdecomes a floating charge[8, 9]. N&¥

9Here we have fixe® eigenvalue equalB .
10we suppose originally there is no screening charge attatchégd.o for simplicity.
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can move away fronV,, and communing throughy’s and finally acts on the vacuum stdte|. Since
S" acts by not changing the conformal weight, we deduce

(PIS" = (~P|

for a suitable normalization d&". Similar arguments apply to the case\yf, @ # 0, and one can
always move a subset of screening char@e%: away fromV,,(2). Since AGT duality formula is valid
for any P, we may assume thatcan take arbitrary real value, as analytical continuatiwayafrom
integern. This flipping is due to the fact th&" can be detached fro,, and act on the vacuum
directly. Similar operation exists in Felder's BRST cohdoyy [8].

We are going to identify the reflection symmetry in NIC as thenHltonian symmetry in 2d CFT
for the insertions of the screening charg#swith 2P = —nb. Since HamiltoniarH € Vir & u(1),
satisfiedH, S"] = 0it has the property of double degeneracy. Sowith 2P = —nb should map one
AFLT state to its partner state. If we require

v.Y.{PIH = v, v,{PIEv,v, (20)
v.Y,(PIS"H v.v,{PIS"Ey, v, » (21)

then we can identify
Yl,Y2<P|Sn =Ys,Y1 <_P| )

since reflection symmetry meais, v,(P) = Ey,v,(—P). Notice that nothing has changed for the
u(1) part. DefineP* = —iag F icg, then we ha

P*P) = £PIP), (~PIP* = (-P|(xP),

which obviously shows that-P|P) # 0. So reflection invariance means that we can identify therinne
productyi,yé<P| P)vy,.y, with eitheryé,yi<—P| P)v.v, oryi’yé(P| — P)v,.y, by the incertions of screening
charges satisfying = —2Pb 2.

Having determined thaP)y form a normalizable orthogonal basis, the next step is therde
mination of their normalization. Before doing this, leteview the so-called Carlsson-Okounkov
formula[10] which is useful for our formulation. First, de#

E=1+el+ez+---:e‘2n%Pn:e—%so(—)(—l) 22)

Fawhich is a vertex operator, and also a generating functiod fg.
1 J_gn
~t0@)0) = =1
e 0fj0) = 3 (-)"—=210).
n
hereg are elementary symmetric functions, is the power sum symmetric function. Then

e D0y = Z —|0> = Z P_10/0). (23)

\We have seho|P) = 0 throughout this paper.
2For infinitely many argumentg’s, i = 1,2,---, 00, one may identifyp, = ;2" with 32, k¥ = g and I ((pn))
with Jl/ﬁ( 21}). Here our convention is thaﬁ;—”|0) creates a statfp,). As a consequence, is to be identified with
l/,B ':'Ln
P_n = % = J_;n/nl . Such kind of identification is justified because they shthresame values of their inner
products. For more details seel[36].
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The conjugation o reads
E* — e%‘ﬁ(Jr)(_l) , (24)

and we have

(OE* = (0| Z Py .
n
Now the Carlsson-Okounkov formula reads

(EMEY ™1y, v, (25)
(Mg [ [ (m+ (ay, + 1)+ BIy,) | |(m=ay, - Ay, + 1))
Y1 Y2

= <\]Y1 Eﬁ_m_l(E*)m\]—Y2>
= ¢ JYle(—k+k"1+%‘)w—)(—l)e%‘cpm(—l) Jy,) .

For Liouville theoryk = —ib. If we set-t = —2ie, then the Carlsson-Okounkov formula reads
( JYlé(Q—Za)sﬂ(—)(—1)e—2i090(+)(—1) Jv,) (26)

= (-)MelpMai-el ﬂ(—za +(ay, + )b — 1_y,b) ﬂ(—za —ay,b™ + (ly, + 1)b).
Y]_ Y2

The normalization of the AFLT states is inherited from AF&Version of the AGT duality formula,
(@) and the orthogonality condition, (15),

Yl,Y2<P| P>Y1,Y2 =Ys,Y1 <_P| P>Y1,Y2 (27)

= [ Jt-avb™ + (v, + D)bli(ay, + b~ - Iy,b)
Y1
x | {—ay,b™ + (Iy, + )b}(ay, + )b = Iy, b}
Y2
x | Jt=2P—anb™ + Iy, + Do)} | [(-2P + (av, + Db™ = Iy,b)
Y1 Y2
X :—:{ZP —ay,b ™+ (ly, + 1)b)} ﬂ{zp + (ay, + Dbt = Iy,b}
Y, Y1

— (_)|Y1|+|Y2| V1Y,

x| [t-2Pb-ay, + (v, + Db | [(-2Pb+ (ay, + 1) - Iy,b?
Y]_ Y2

x | [12Pb-ay, + Iy, + D)o | [12Pb+ (ay, + 1) - Iy,b?)
Y2 Yl

j Y1 J ngYz,Yl (_ P)QYLYZ ( P)
Jv, iv,(Jy,€ Qe heriZPew =1y,
(b4)|Y1|+IYz|< ‘JY1 el (Q+2P)<p(-)(—1)ei 2Pp1)(-1) J—Y2> )

X
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In reaching the last line in the above eqation, Carlssong@kov formula has been applied, and we
have defined

Qv v,(P) = (MM [ ] (2P + (ay, + 1)o7t~ Iy,b) [ [ (2P - ay,b™ + (Iv, + 1)b)
Yl Y2
= (—pR)MFIYE) (g, Q2P (Dg2Pen(-D g

pR0YVakIY2D ., & (Q+2P)e(Mgi2Pec() g (28)
Qy(P).

Notice thatQy(P) is just a generalization &y (P) defined in[7].

3 The Construction of the AFLT States

Now we come to our main problem of the construction of the Himmian H with the requirement
that its eigenstates be identified with ALFT states satigf\{l). We prefer to work first on the basis
of Jack symmetric functiondy, which already form an orthogonal basis. We found théd ifmatrix
elements are strictly triangular on this basis, then thieagronality of theH = Hg + H, eigenstates
follows immediately from the orthogonality of tHdg eigenstates. This is just the simplest way to go
from one orthogonal basis to another one. To see this, leteduce an operatd®(E) which mapHg
eigenstates tél eigenstates, witfy, v,(P) the normalization constant

IPv.y, = R(E)J'y, I\, IP)Qy, v,(P) (29)
v vi(—Pl = <_P|J\_(2J¢iR(E/)TQYéY1(_P)
RE) = 1+---=1+R(E),
where the reflection symmetry has been applied to the AFLiEsta

v, (PIS" = (PIS"J;, 33, R(E') Qv (P) = v,.x;(~Pl = (~PIJ}, 33, R(E) Qv (=P),

and F~2(E) is strictly lower(or upper)-triangulas F~2\7,V(E) = 0. The wayR(E) is expanded in[{29)
follows from the normalization conditior, (27428) as weltkae in [33).
The Hermitian operatad should satisfy:

HIP)viv, = Eviv,(P)IP)v.y, (30)
v v (—PIH = v, v,(=P|Ey; v;(-P),

where the energy eigenvalue has the double degeneracy:

EY27Y1(_ P) = EYl,Yz(P) > (31)

due to the orthogonality condition,

v (PIP) vy, =vyv; (=PIP)v,y, « 6¢ v . (32)
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Then the next step is to determine if we get the right norratitin for|P)y, v,

vuoyi{—PIP).y, = (=PI}, RE)'RE)I, I, 1Py, v,(P)Qy,y,(-P) (33)
(=P135, 35, (1 + RE))(1 + R(E)) Iy, I2y, IPYQy, v, (P)Qy,.v,(—P)

Qy, v,(P)Qv,y,(-P)

X |ivijv, + (~PI3, 3, (RE)" + R(E) + RE)R(E))I*y, Iy, IP)|

= Qv yv,(P)v,v.(=P)jv. v, -

It is in agreement with[{27). In deriving this we have used fdet that if R(E) is a unitriangular
matrixtd,

+ + e \AA v
RE)N P = 35,05 Py+ > REG(E)IN, I, IP), (34)
Y7 >1Y4|
IY5I<IYzl
Y1+ I=[Ya [+ Y2l

then it is easy to check that
(=PI, 3, RE) 3y, Iy, IP)
= (=P|J, 7, R(E) Iy, I, IP)
= (-P1J;, 5, R(E)'R(E) I, 37, IP)
=0.

Now we summarize the requirements R(E)

) R(E) is unitriangular

i) R(E) creates the eigenstate fiar
HR(E)J?y,J7y,IP) = Ev,.v,(P)R(E)J*y, I, IP)

iii) Reflection invariant
SnR(E)Jle J:Y2| P>QY1,Y2(P) = R(E)J:LYZJ:YJ—P)QYZ,Yl(_ P)
[S".H] =0, Ev,v,(P) = Ev,v,(-P)

This means that the Hamiltonidth should also be triangular, ard} strictly triangular,
H = H"+H +H, (35)
+ —i +\3 + o+
He = 3 @+ Y, Qnatas. (36)

13A unitriangular matrix is a triangular matrix with the diawal entries equal to 1 .
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hereH, is to be determined later on.
_ —i . w21 dz
H T = 3 [@e+ 9+ @te -9 5 +

> Qnata; + > Qnaa,

n>0 n>0
- 3 Ple@ + @@ S

+ Z 2Qn(a_nan + C_nCn)

n>0

= 75 (2048)° d— + Z 2Qna nan — 2i yf (20,¢) (Zﬁzso) = 22 QNC.rCh.

n>0 n>0

Now the requirement thal commute withS" is equivalent to say thdtl can be written in terms
of Ly's anda,’s. To makeH triangular, we may try

H ZQnatna;
n

= Z Qn(&nan - C_nCn - &nCn + C—nan)
n

~ dz
Z Qn(a_nan — c_nCn) + Q yg 28290(282)2907
n
If we now make use of (10) and choose

Hi = )" 2Qna’ap,
n

then we get
2
H = 515 (Z@Zgo)s Z 4Q Z napa, — 2i 515 (zazgo)zzT(z)— + 2|a07 (37)
neN+
3 30z 92
= 5]5(26290) +4Q %; na_na, — 2i é a L, + 2iag 7
= _i{ Z (@ n-m@nan + & n_m@nay)
n,meN+

Y (ainaima;+m+a:na:na;+m)}

n,meN+
+ Z Qn(@‘,a; + a_,a, + 2a’,a,) (38)

neN+

3 3

+ > —Ziaja’ial - Ziagal,a, - —«ao> +(ag)%). (39)

neN+
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Clearly,H indeed satisfies the three requirements proposed in thespsesection.

) Hermitian
i) Triangular
iii) Reflection- invarint.

Besides, we found thdtl o« |3, wherels is defined in Appendix C of [7] as one of the infinitely
many commuting operators which may makes the system irikgrahe authors of [7] have checked
for the first a few levels that the AFLT statdB)y, v,, which satisfies AGT duality formulal](1), are
also the eigenstates bf. But a general formula for thig eigenstates is missing in [7].

Now the next question is : how to find all the eigenstatekl 8fFirst, let's consideH*

HY = -i Z {atn—marj;arj;\"'atnatmarhm} (40)
n,meN+
oot F(_i\at ot I( +)3
+ Z {nQa_nan + Zao(_|)a—nan} - %
neN+

Its eigenvalue
H* I IPT) = EG(P)JLIPT)

_ 1 (o _ (P
EL(PY) = Z {y?ot + (2i - 1)yib} + 2P*|Y| - R
Here we have assumed the zero modes take the following eilyesy
a =iP%, ¢ =P, a5 = iP* = i(P* = P°) (42)

For the bi-Jack system, we have the following eigenequation
HR(E)J%y, J7y,IP™, P7) = Ev, v,(P", P))R(E)JZy, 5y, IPT, P7) .
Triangularity means
Ev.v.(P".P7) = Ey(P")+E(P)
= Z {2 b+ (2 - 1)y2 b} + Z (3ot + (2 - 1)y3;b}
i i

P*)3 + (P)3
L 2P Yyl + 2P |Ys| — %
SinceH can be constructed in terms bf’'s anda,’s, soS"|P*, P~)y, .y, dose not change the eigen-
value. ButS" changes® — —P°andP* < P~ and fromEy, v,(P*,P™) = Ey,v,(P~,P*). We
conclude

S"IP*, P vy, o< [P7, P v, v,. (42)
Next, sinceP? does not play any important role, we may consider it as a gaygenetry and can be
fixed to any desired value. For convenience, weHix= 0, henceP* = P° = P,P~ = -P® = -P

and

Ev.v,(P.—P) = Ey,v,(P)
= Ey, + Ey, + 2P(|Y1] = Y2])
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Here

Ey = Z {y?b~t + (2i - 1)yb)

If we define

|P)
IP)y.Y,

Then we infer from from[(42)

| P’ - P>
R( E) Ji_Yl J:YZ | P>QY1,Y2 ( P)

Sn|P>Y1,Y2 = | - P>Y2,Y1
with the proper normalization fd8". Now we are going to determirf&E) which satisfies

H R( E) Ji_Yl J:YZ | P> = EYl,Yz ( P) R( E) ‘]i_Yl J:Yz | P> .

Proposition 2

R(E)JleJ:Y2|P> = —1ny1~3:\(2“3>,
1-gxH
hereHp = H* + H™, E = Ev,v,(P). R(E) defined in such a way should be understood as
1
A )
=l
S 1
= > ( H)"
£ Ev,v,(P) - Ho
Proof: First, we rewriteH as
H = Hy+H,
= E+ H() + H| -E
= E+(Ho-E)(1 H)).
+ (Ho — E)( "M E 1)
Then from
HRE) = (E+(Ho-E)(1+ ! H)) !
B 0 HO -E ! 1- ﬁH|
0
1
= E——F—+Ho—-E,
1- g
= ERE)+Hy-E,
one gets

HR(E)Jy,J-y,IP) = ER(E)JYy, Iy, IP) + (Ho — E)J*y, Iy IP).
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SincerYlJ:Y2|P> is an eigenstate dflp with eigenvalueE = Ey, v,(P), we have
(HO - E)JleJ:Y2|P> =0.
Hence, we conclude thﬁi(E)JleJjY2|P> is an eigenstate dfl with eigenvalueE,

i=2l=y

E=EvvP) = [ Z (Vi)? + (2 - 1)Yi,l] + 2P([Y4] = Y2]),

i=11=1

Q.E.D.
Now we shall address the question raised. in [7] on the passibdyjeneracy dfi. The authors of [7],
argued thal3 has some degeneracy at level 4 and higher. We have analyzdcatises such kind

of degeneracy. After analyzing the spectrumkbf we believe that such degeneracy happens when
Y1l = |Y2l, and we hav@P(Y1] - [Y2]) = 0,

EYl,Yg(P) = Eyl + EY2 = EY2 + Eyl = EYg,Yl(P)

This can happen, fo¥Y1 # Yo, first at level 4,|Yy| + |Ys| = |\7| = 4,andY; = 2, Yo = 12. Such
degeneracy can happen at any even level higher or equal tor &x&mple at levek 6:

Y1=3,Y>=20rY; =3, Y, = {2, 1},0orY; = 13 Y, = {2, 1},
or simply, we havd Y3, Y,) pair
(3.1%),(3,12,1}), (1°,{2,1})

Such degeneracy does not cause any problem in construbgéngigenstate oH for the following
reasons.
i) The mother statéleJ:Y2|P> is uniquely determined by the Young diagram, even for theedeg
erateE.
i) Consider power expansion
RE) = > (=—
n=0

H)"
Ev..yv,(P) — Ho )

For an intermediate state.

Ev.v,(P)—Ho  ~ Ev,v,(P) - Ey v/(P)
= Ev, + Ev, = Ey; = By, + 2P(IY1] = [Y2l = [Y}] +Y,])

SincelY,| > [Y1l, Y| < Y2l and[Y1| — [Y;] + |Y,] = |Y2| < O because of strictly triangularity dfl;, so
for a general value dP, ﬁ is not singular, an®R(E)J*,, J~, |P) is well defined.
Y1.Yo 0 1 2
iif) The construction given above leads to the orthogowalftthe statgP)v, v, for distinctY1, Y>
even for the degenerate valueskfcf. eqs[(2I1.28,33).
iv) It can be proven that the eigenstatdbfconstructed as in proposition 2, is actually the common
eigenstate for all the conseved charges which commutejtvith the mild assumption that all the
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conserved charges are triangular in a similar wayas. Due to lack of space for the present paper,
we shall give a proof on this statement elsewhere.

Finally, we shall make a comment on the possible poleR(&) in the complexp—plane. The
R(E) matrix elements is calculated based on the following foemul

|P>Y1,Y2 = R(E) \]i_Yl \]:Y2| P>QY1,Y2(P)

- 1
=) ( H)"_ v,IP)Qv, v, (P) .

which always ends up with finite order perturbation becddgses strictly triangular. We found, by the
explicit calculations carried out so far, that there is ntepo the finiteP complex plane. The poles in
R(E) either cancels the zeros {2y, v,(P) or simply cancels by summing over all the relevant terms.
Of course, this property is also the necessary condititi®)if, v,'s satisfy [1). Now the general AFLT
state can be written as

- Y1.Y} -
Priv, = {Quv(P) Iy, + ). CEyIN I, (43)
Y I=1Ya+1
[Y51=[Y2|-1
Y7.Yy -
LD DR oVVCN kN )
Y7 1=[Y11+2
Y7 1=1Y2|-2

Yo 1+
o Y ORI P,
[YI=IY1l+Y2|

hereCY3 }(“ is the transition coefficient which measures the changiomfthe Young tableau vector
(Y, Yz) to (Y3, Ya).

We have calculated those coefficients up to level 4, the expdisults(up to level 3) are included in
Appdix A. With the coefficients we calculated, one can chdt:t

Zoit (P, X; P Y) = (44)
<Pl|‘]>_<'1‘];2' X xiV C J—YiJ—Yé|P>,
(X1X5):(Y1.Y3)

holds true, thug (1) is verified. Here for simplicity, we hawdy verified the cases without the incertions
of the screening charges, i+ P +a = 0.

4 Conclusion and Perspective

The present work can be generalized in different ways. ,/Sinste the one parameter Jack symmetric
function is a special limit of the two parameter Macdonaltheyetric function, we expect that much
of our work can be generalized to the cases where Macdonaichsyric function plays a role. In that
case, we expect a similar relation to the NIC for 5d theorycoBd, the Calogero-Sutherland model
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is an integrable system. And consequently, Jack symmeiniction is the common eigenstate of the
infinitely many commuting charges which are defornW@ charges. And for the construction of the
AFLT states, the conserved charges are further deformedtose for the Jack symmetric functions.
The final construction should give the same resultk,ggoposed inl[7], which are constructed from
integrable KdV equations. We find in this case, the AFLT staianain to be the eigenstates for all
the conserved charges. However, it is desirable to havetelfirmany conserved charges constructed
explicitly. Third, the reflection symmetry studied in thiager is actually powerful enough to give a
closed form for the construction of the AFLT states. We shadisent this result in our future work.
Another interesting idea related to our work is to consilerdack function as a perturbation away from
the Schur function, we have found that similar formalismleggp[37]. Finally, it is very interesting
to see how we present the full pants diagram for the confobteaks, comparing to the one we have
considered with one external leg.
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A Coefficients for AFLT States(up to level 3)

Now we give the explicit construction of the AFLT states upl@wel 3. The transition coefficients
Y,.Y, .
Cvi Yj are defined as,

AN
Criv; = REIV(E) v (P),  Cyly2 = Qux(P).

Yi.Y2 =

Level 2 coefficients:

Cil, =Coy=-4b(1+0?)P

0,12
C12’0 _ (140?)(1+20P)

11— -1+k? >
c20 _ b?(1+b?)(1+2bP)

11~ —1+b? ’

2(1+b?)P

Ci20 = 14123+ 20(p - L42)).
c20 _ 4p°(1+0%)P

012 =  -1+b2 >
c20 _ (1+0?)P?(—2+b?+b*+4bP)

02— -1+b? ’
C12’0 _ 4b(1+b%)P

0,2 —1+b?

Level 3 coefficients:
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Cg’o _ [ b¥(1+b?)(b+2P)(1+b?+2bP)
21~ —2+b? ’
cl21.0 4(1+b2)(1+bP)(1+b2+2bP)
21~ —2+b2
cLo { (1+0?)(1+20P) (1+b?+2bP)
121 —1+2b2
cl21.0 _ b3(l+b2)(b+P)(l+b2+2bP)
121~ —1+2b2 ’
c2l_ 2b2(1+b2)(1+2bP)(—1+b2+2bP)}
12— —1+b2 s
C12 4b(1+b%) P(1+2bP)
—1+b? ’
C3’O _ {b3(l+b2)(b+b3+4P)(—1+b2+2bP)}
12 ~ 2-302+b” ’
cl210 _ 4(1+b2)2(l+2bP)(—l+2b(b+P))}
12~ 2-5b2+2b7 ’
Cls’o {4b(l+b2)P(1+2bP)
1-3b2+207 ’
c2l { 4b4(1+b2)P(b+2P)}
112 — —1+bh? ’
C12’1 _ { 2b(1+0?)(b+2P)(-1+b?-2bP)
112 — —1+b2 >
c30 _ {4b6(1+b2)P(b+2P)}
1,12 — 2-3b2+b” ’
cl21.0 _ {4b3(1+b2) (b+2P)(—2+b?-2bP)
1,12 2-5b2+2b° ’
C13’° { (1+b2)(—1+b2—2bP)(1+b2+4b3P)}
112 7 1-3b2+2b* ’
Co5 = {-6b(1+ b?)P(-1+ 2bP)},
C2’l _ 6b(1+b2)P( 4+b2+b4+4bP)
03~ —1+b2 ’
Clz’l 120(1+b?) P(~1+2bP)
03 ~ “1+0? ’
c30 _ (1+b2)(12+b(b(1+b2)( 8+b?+b*)+12(- 3+b2+b4)P+24bP2))}
03~ 2-3b%+b? ’
C13’° _ { 120(1+b?)P(-1+2bP)
03 ~ 1-3b2+207 ’
cl21.0 _ {12)(1+b2)P(—5+3b2+2b4+6bP)
03 2-5b2+2b7 ’
2
Cpyo = {607 (1+b?) (b— 2P)P},
c2l _ { 120*(1+b%)(b—2P)P
013 — “1+b2 ’
C12’1 {6b(l+b2)( 1+b?(—1+4b(b- P)))P}
0,13 —1+b2 ’
c30 _ {1236(1+b2)(b—2P)P}
0,13 2-3b2+b? >
c*0 - (-1 (1+62) (1+ 0?2+ b(12P + b(~7 + 4b(b(-2 + 3(0 — 2P)(b - P)) + 3P)))) )}
0,13 3b2+2b4

cl21.0 _ _ 120%(14+b%) P(-2+b?(-3+507- 6bP))
B 2-5b7+2b°
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cL _ {2b2(—2+b2)(1+b2)(b—2P)P}
0421} ~ —1+07 ’
cl2  _ { 2b(—1+b2+2b4)P(—1+2bP)}
0421} ~ —1+b? ’
2l {4b(l+b2)2P(—l+b2+2bP)}
0421} ~ —1+0? ’
ol _ {4b(1+b2)2P(—1+b2—2bP)
0421} ~ —1+0? ’
c30  _ { 2b%(1+b?) P(-3+2b(b+b*+3P))
021 2-3p%+b? ’
cl21.0 _ {_ (1+b?) (4-17b*+4b°—2b(4+30%+3b*+4b°) P-36b*P?)
021 2-5p7+2b7 ’
clo _ {2b(l+b2)(—2+b2(—2+3b(b—2P)))P}
0421} ~ 1-3p2+ 207

In the above expressions, 0 labgks.
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