
DOI 10.1140/epjp/i2012-12065-3

Regular Article

Eur. Phys. J. Plus (2012) 127: 65 THE EUROPEAN
PHYSICAL JOURNAL PLUS

Gravity and complexity

Y. Gaspar1,a and G. Acquaviva2
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Abstract. We present a heuristic analysis of the dynamics of general solutions to the Einstein Field Equa-
tions which highlights the possibility that such systems could possess a degree of unpredictability stronger
than that which characterises chaotic systems. Questions regarding features of the complex dynamics of
such cosmological models can be undecidable. These systems could be qualitatively compared with Turing
machines in the sense that even if initial conditions for a dynamical system associated to general solu-
tions to the Einstein Field Equations were known exactly, then the subsequent evolution could still be
unpredictable.

1 Introduction

Chaotic behaviour occurs in a wide variety of physical systems. In Newtonian gravity the three-body problem is
known to exhibit chaos. Spin orbit couplings between particles, accelerator beams and other similar systems can also
display chaotic behaviour. In the context of Einstein’s General theory of Gravitation the so-called Bianchi type VIII
and IX models without scalar fields can be chaotic [1–4]. The first pioneering work on these general solutions to
the Einstein Field Equations has been carried out by Belinski, Khalatnikov and Lifshitz (BKL) [5–7]. Despite the
approximate nature of the analysis of the Eintein Field Equations in work of BKL, it seems that several aspects are
strongly supported by various rigorous and numerical approaches. The analysis we present in this paper is heuristic
and we argue that our approach can guide more rigorous investigations. One might suspect that these anisotropic
and homogeneous models are physically irrelevant since our universe is well described on large scales by isotropic and
homogeneous Friedmann-Robertson-Walker (FRW) models. However, a cosmological theory ought to explain why our
universe is close to an FRW model today, because the FRW models correspond to a set of measure zero in the space
of all possible physically admissible solutions to the Einstein Field Equations (EFEs): in this sense the FRW solutions
are extraordinarily special and one ought to understand why our universe is described by the most “improbable” and
symmetrical models. One of the possible scenarios, which tries to explain this, corresponds to the very important
inflationary models. These models claim that, even starting initially with a non-symmetrical and chaotic initial state,
through inflation the universe will at late time approach an FRW solution. However, there is no rigorous proof of this
mechanism and, in the most general chaotic and inhomogeneous case, it is even possible that inflation will not start
(chaotic and eternal inflationary solutions are models which try to tackle this problem). The general Bianchi models
offer a leading-order approximation to the most general inhomogeneous solutions to EFEs and, in order to grasp
fully the dynamics which leads to an FRW model, these solutions ought to be considered. Furthermore, even if our
universe today is described on large scales by an FRW model, in the past very close to the initial singularity space-time
can behave like in a chaotic BKL model, which is typical of Bianchi type VIII and IX, but also typical of general
inhomogeneous models. Moreover, realistic singularities inside black holes are of BKL type, even if from an outside
point of view the solution is highly symmetrical. Furthermore, from a rigorous point of view, it can be shown that a
Bianchi type VIII model can be close to an FRW model for an arbitrarily long interval of cosmic clock time: locally,
the solution could look like an almost flat FRW model. Also, many general Bianchi models, including type VIII, can be
viewed as the result of a superposition of gravitational waves on a simpler more symmetrical background space-time,
and, as such, they can provide very interesting insights into the physics of space-times containing strong gravitational
waves, as might have occurred close to the initial singularity. These are some of the interesting arguments that show
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why solutions more general than FRW models ought to be considered as part of physical models. Furthermore, by
excluding general models, one might miss an important “message” that might be hidden deeply within the gravity
theory and the EFEs and therefore the possibility of Gödel undecidability within the physical equations for gravity
ought to be considered. It is of some importance to note that profound limits to computability can exist in the context
of our modern gravitational theory.

The equations of motion for the chaotic systems that we will consider can not be integrated and no general formula
exists which gives their state at all times. Physicists study various approximations and simulations of these systems
and various statistical or scaling properties, escape rates and other average quantities can be computed, because the
trajectories characterising the evolution of these systems are essentially random. However, as is studied by C. Moore
in [8], dynamical systems exist in which these computations of average quantities are impossible: their dynamics is not
only random, it exhibits an additional degree of complexity. In [8] an example is constructed of a three-dimensional
potential in which the motion of a single particle possesses this “new” degree of complexity which is related to the
undecidability regarding some features of the system. For such complex systems the basins of attraction are not merely
recursive. The undecidability regarding features of the dynamics causes these sets to be more complex than fractal
sets: at every scale of magnification, qualitatively new behaviour shows up. Even if the initial conditions were known
exactly, the evolution of the system would still be unpredictable because of this additional degree of complexity which
superposes itself onto the chaoticity of the system.

In [8] it is argued that such systems can be understood by comparing them with Turing machines. These machines
correspond to idealised computers consisting essentially in a box containing a finite number of states and an infinite
“tape” on which sequences of symbols may be written. The machine can read only one symbol for a given position
on the tape and as a consequence it can alter its internal state, change the tape symbol and move one space left
or right on the tape. Turing machines are capable of universal computation: for any given program, there exists a
Turing machine which will perform it using the tape as its registers and memory, such that it will be capable of
any finite computation. An interesting problem regarding Turing machines is the so-called halting problem: given
some initial state, will the machine ever halt? For instance, one could construct a Turing machine which searches for
counterexamples to Riemann’s hypothesis and such that it would halt only if it finds one. Alan Turing proved this
kind of question to be undecidable: in order to answer this halting problem one would have to prove (or disprove)
Riemann’s hypothesis. Thus one needs more information than is actually available to solve the problem. Consider
the set H of sequences on which the Turing machine will eventually halt: Rice [9] proved that virtually any question
about H is undecidable, such as whether H is finite, dense, non-empty etc. Even a measure of the set H can not be
computed. From a dynamical systems viewpoint, these are questions regarding a basin of attraction whose features
can be undecidable. Furthermore, this implies that Turing machines are unpredictable even if the initial conditions
are known exactly.

In this work we will first overview the particular nature of the chaotic dynamics of the homogeneous Bianchi type
VIII cosmological models. These models have been shown to exhibit an interesting type of time asymmetry [10]: their
behaviour towards the past is chaotic, whereas their behaviour towards the future, away from the initial singularity,
is characterised by non-chaotic oscillations. This behaviour will be reconsidered from a new perspective using the
orthonormal frame approach and the Hamiltonian formulation of the problem and it will be shown how these particular
properties can lead to new features of the dynamical system related to undecidabilty.

2 Hamiltonian evolution in minisuperspace

It turns out to be useful to discuss the problem of the time evolution of type VIII models in the so-called Hamiltonian
formalism [8,11]. The features of the type VIII model presented in this section can also be derived from the results
which were obtained by H. Ringström and J.T. Horwood, J. Wainwright et al. [3,4] using a rigorous analysis of the
system, but we discuss these features differently in order to stress particular characteristics of the dynamics in a clear
and transparent way: in the subsequent section these properties will be used to derive new results, which can not be
found elsewhere in the literature.

In the Hamiltonian picture the evolution of the type VIII model corresponds to the motion of a point particle
in a two-dimensional billiard, where the billiard walls correspond to a triangular shaped potential in minisuperspace
(β+, β−) [11]. The parameters β+ and β− are related to the metric in the following way: considering the metric
components to be the basic variables for the gravitational field, the general form for a line element for Bianchi class
A models can be written as

ds2 = −N(t
′
)dt

′2
+ gabW

aW a,

where W a are time-independent one-forms dual to suitable frame vectors ea. Three time-dependent scale factors can
be introduced such that

gab = diag(a2, b2, c2),
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which can be rewritten as
gab = diag(e2β1 , e2β2 , e2β3),

with

β1 = β0 − 2β+,

β2 = β0 + β+ +
√

3β−,

β3 = β0 + β+ −
√

3β−.

The triangular-shaped potential in minisuperspace in which the universe point will evolve has also an infinite open
channel along the β+ axis. The triangular shape of the potential allows the evolution to be chaotic: the universe
point can bounce off the walls in a chaotic sequence, in principle ad infinitum, such that the so-called mixmaster
behaviour takes place. Now if the type VIII system is studied towards the past, close to the initial singularity, then
the triangular potential expands and it has been shown that an infinity of bounces are possible which lead to a chaotic
evolution. If one studies the evolution towards the future, far from the initial singularity, then the triangular potential
contracts and one would expect that the universe point could bounce off the walls in an infinite chaotic sequence as
well. However, our previous analysis [1] based on a combination of the Hamiltonian formalism and the orthonormal
frame approach shows that this can not happen: unlike in a “classical Newtonian” billiard, the universe point is forced
to leave the triangular region of the potential and to escape along the infinite open channel along the β+ axis, such
that β− → 0 and β+ → +∞. This late-time evolution is characterised by non-chaotic oscillations along the two walls
of the infinite channel. Note that the channel becomes increasingly narrow as β+ → +∞ and the universe point will
exhibit increasingly rapid non-chaotic oscillations about the β+ axis. As a consequence the so-called shear parameter
Σ2, given by

Σ2 =
σ2

3H2
,

with σ2 being the shear scalar and H being the Hubble parameter, exhibits increasingly rapid non-chaotic oscillations.
In fact, if one defines

Σ± =
σ±
H

,

with

σ+ =
1
2
(σ22 + σ33),

σ− =
1

2
√

3
(σ22 − σ33) ,

then one can show that, as τ → +∞ (note that the expression is slightly different from the one used in [1–4]),

Σ−(τ)∼e−f(τ) osc(beaτ + φ), (1)

where osc(τ) represents some bounded non-chaotic oscillatory function, a and b are suitable constants and φ represents
a phase term (as we will explain below, the present analysis will focus on this phase term) and where e−f(τ) can not
decrease more quickly than any exponential function. The exact asymptotic form for Σ−(τ) can be found in the work
of J.T. Horwood, J. Wainwright et al. [3] but for our purpose only the qualitative expression given by eq. (1) will be
sufficient because we will examine the motion of the universe point only as it enters the open infinite channel.

Let us note that unbounded scalars can be derived from the dimensionless electric and magnetic parts of the Weyl
curvature [11],

Ẽab = Eab
1

H2
,

H̃ab = Hab
1

H2
.

For all Class A models one can define

H̃+ =
1
2
(H̃22 + H̃33),

H̃− =
1

2
√

3
(H̃22 − H̃33),

and likewise for Ẽ±.
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Fig. 1. The evolution of different sets of initial conditions in minisuperspace.

The magnetic part of the Weyl curvature tensor describes intrinsic general relativistic effects which have no
Newtonian counterpart : the study of its properties is thus important in order understand profound differences between
Newton’s and Einstein’s theory of gravity.

Using the relations between the expansion normalised variables and the Hamiltonian variables, one can show that
there exists an n-th order derivative of H̃± which will diverge as τ → +∞. As a consequence, one can show that small
phase differences lead to

|H±
(n)(φ1) − H±

(n)(φ2)| → +∞,

if |φ1 − φ2| < ε for any ε > 0. It has also been shown by J. Wainwright [12] that the expansion normalised Weyl
parameter W = H̃2

+ + H̃2
− + Ẽ2

+ + Ẽ2
− diverges as τ → +∞, and one can show that slightly different initial conditions

can lead to important differences in the evolution of the Weyl curvature parameter.
In what follows, we will use the general properties presented in this section to show how undecidability emerges in

the dynamics of the type VIII system.

3 The boundary between chaos and order

The analysis of the dynamics of the type VIII cosmological model can lead to undecidability. Recall that a formal
system is decidable if, for every statement S, one can prove whether it is true or false.

Consider a set of initial conditions which in the Hamiltonian picture would correspond to points lying in a region
at the beginning of the open infinite channel of the type VIII potential in minisuperspace.

Consider a point pi in such a region R1 close to the channel: this point will lead to non-chaotic oscillations between
the two walls of the channel with an associated phase φi, see the discussion in the previous section. Around the point
pi, there exists a neighbourhood (of non-zero measure) of points qi with phase factors φ′

i such that |φi − φ′
i| < ε,

for any given ε: this means that points belonging to this neighbourhood in R1 will not display sensitivity to initial
conditions and the oscillations will display only small phase differences (see points in blue of fig. 1).

However if one considers the region outside the channel in the triangular part of the potential, then there exist
points pi in a region R2 such that initial conditions belonging to a neighbourhood (of non-zero measure) of pi will lead
to chaotic trajectories characterised by a strong sensitivity to initial conditions and the resulting phase differences
between oscillations when the universe point enters the open channel would be essentially random and unpredictable
(see the points in red in fig. 1). One could construct a basin of attraction by choosing some suitable value of the phase
term φ0 and consider initial conditions which lead to a phase term φi < φ0 or φi > φ0. For initial conditions belonging
to the non-chaotic region R1 one would not obtain a fractal structure, while for points belonging to the chaotic R2
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Fig. 2. The mixing of different sets of initial conditions.

region and which would be sufficiently close to the initial singularity, the basin of attraction would approach a fractal
set. Thus within the same dynamical system, part of the set of initial conditions leads to non-chaotic behaviour
with respect to the phase differences, while the other part is characterised by chaotic behaviour with respect to the
phase factor φ. In fact, as is represented in fig. 2, the evolution backwards in time towards the initial singularity of
two neighbouring points belonging to a region R1 will lead to two points which are no longer close to each other
in minisuperspace: the blue points will merge with red points. The closer one approaches the initial singularity, the
stronger the mixing will be between points originating within R1 and R2 regions.

This implies that it would be hard to determine whether given initial conditions close to the initial singularity lead
to chaotic behaviour with respect to the phase or not. Chaoticity itself would depend on the initial conditions in a
highly complex way. Therefore, if one studies the type VIII system, using some approximation or map (the type VIII
equations are non-integrable in the general case of interest), even if initial conditions would be known exactly, then the
subsequent evolution could still be unpredictable. For initial conditions close to the initial singularity, the chaoticity
itself would be undecidable: for any map, approximation or numerical simulation to be meaningfull when trying to tell
something about the late-time behaviour, even knowing initial conditions exactly, one would have to know whether or
not the late-time behaviour is chaotic. But this is what one tries to find out using this approximation of the system.
Thus one needs more information then is actually available to solve the problem: in order to determine the future
behaviour, one would have to know not only the initial conditions as accurately as possible, but also the dependence
of the escape rates on all the initial conditions should be known and this would require knowledge of the exact full
solution to the Einstein Field Equations for the type VIII model, which is impossible.

For initial conditions close to the initial singularity, the future behaviour of the unbounded scalars such as the
Weyl parameter presented in the previous section would be unpredictable in the same sense as explained above, even
if these initial conditions were known exactly, because these scalars at late times are function of a phase factor φ
which depends in an undecidable way on the considered initial conditions. Questions regarding the future behaviour
of the dynamics are analoguous to questions about the future behaviour of Turing machines: in a sense the space-time
in a neighbourhood of the singularity can be compared with a universal Turing machine, as far as phase differences
between late-time oscillations are concerned.

Also, it would have no meaning to try compute any average statistical quantity over all initial conditions, since
the full dynamics would not just be random: the basins of attraction would not be purely recursive fractal sets, an
additional degree of complexity would superpose itself on the chaoticity of the dynamics. The nature of these fractal
basins might correspond to the recently studied notion of superfractals [15]. Within such sets the properties of the
fractals possess an additional random variability.

In the next section we shall try to compare the degree of complexity or unpredictability in Newton’s and in
Einstein’s theory of gravitation.
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4 Comparing the complexity of Newton’s and Einstein’s theory of gravity

Surprisingly, an infinity of oscillations in a finite time interval can also occur in the Newtonian many body problem,
see the work of J. Xia [16]. One might then suspect that complexity or undecidabilty could occur as well in Newtonian
gravity, because this type of oscillations play a crucial role in the dynamics of general homogeneous solutions to the
Einstein Field Equations. However, the configuration which would lead to an infinity of oscillations in a finite interval
of time is special: one has to consider four particles of equal mass forming two binary pairs with opposite angular
momentum and orbiting on two different parallel planes. Next a fifth lighter particle has to be considered oscillating
between the centres of the two binary pairs along a line perpendicular to the two planes: for this configuration it has
been shown that the lighter particle will undergo an infinity of oscillations in a finite time. This means that, since
the initial configurations leading to an infinity of oscillations are special, knowing the initial conditions exactly one
could predict the future evolution completely: the Newtonian gravitational system can not thus be compared with the
type VIII dynamical system or with Turing machines. Furthermore, the complexity that emerges in the dynamics of
solutions to the Einstein Field Equations which we discussed in the previous sections is related to the time asymmetry
exhibited by those solutions: the Bianchi type VIII model is chaotic towards the past and it can be shown to be non-
chaotic towards the future. This duality regarding chaotic behaviour is linked with the complexity of the dynamics of
those models. One would not expect such a level of complexity to emerge in Newtonian many body problems because
the solutions exhibit time symmetry between past and future.

Another reason which might imply that Newtonian gravity does not lead to undecidabilty regarding features of the
dynamics is the following: as explained in sect. 2, although the Weyl curvature parameter and other scalars derived
from it are known to be unbounded towards the future, the dependence of the phase term associated to their late-time
oscillations on the initial conditions can be undecidable. The magnetic part of the Weyl curvature describes intrinsically
general relativistic effects which have no Newtonian counterpart : one might thus suspect that the dynamical features
exhibited by those scalars possess no Newtonian analogue.

5 Conclusion

Since the work of K. Gödel [17] on incompleteness and undecidability, several important examples of undecidable
propositions in pure mathematics have been found. But also in the context of systems which might be relevant for
physics [14] interesting results have been obtained: an example is provided by the work of F. Doria and N. da Costa [18,
19]. In the latter it was shown that it is impossible in general to demonstrate the stability or instability of equilibrium
points of differential equations: the stability is in general undecidable. In order for these results to be of physical
relevance, the equilibria have to involve the interplay of a very large number of different forces: however, this situation
has not arisen yet in real physical problems. In the present work, our heuristic analysis has shown that undecidability
can arise in a physically important problem (although it regards only some details of the dynamics): the study of
general initial conditions in cosmology. For a Bianchi type VIII model, the question whether given sets of initial
conditions close to the initial singularity lead to chaotic behaviour with respect to phase differences or not can be
undecidable: unbounded scalars such as the Weyl parameter at late times are function of a phase term which depends
in an undecidable way on the initial conditions. Even knowing the initial conditions exactly, one would not be able to
predict the future dynamics fully because uncertainties in the phase differences can lead to a different evolution of the
unbounded scalars associated to the type VIII solution. The fact that one can not solve the equations for the type VIII
model exactly implies not only (usually inevitable) quantitative errors in the study of the future evolution, but even
important qualitative errors will emerge: the error can correspond to exchanging chaotic and non-chaotic behaviour.

It would be interesting to try to apply the techniques used in [18,19] to show rigorously that stability with respect
to phase factors is undecidable for the type VIII differential equations, and hence that chaos is undecidable as well.
Also, numerical simulations might be able to show the presence of non-recursive fractal sets in the type VIII dynamics.

The type VIII solution might provide a leading-order approximation to part of the general inhomogeneous solution
to the Einstein Field Equations and one might suspect that a similar level of complexity could occur as well for
inhomogeneous solutions. Note that the presence of the singularity is crucial in determining the undecidability with
regard to the features of the type VIII dynamics discussed in sect. 3. One might then argue at a heuristic level, that
by eliminating the singularity by an appropriate high-energy physics theory, one could also erase these fundamental
problems and obtain a consistent and decidable cosmological model at all levels. However, theories such as quantum
gravity or some other high-energy physics theory make use of quantum physics (quantum field theory), which introduces
a fundamental unpredictability and could even be itself undecidable, see [20] where undecidability in quantum field
theory was discussed, see also [21] where it is shown that calculations of a wave function for a cosmological quantity
can turn out to be uncomputable.

We thank Prof. J.D. Barrow for pointing out useful arguments and references and we are grateful to the Trinity Hall Computing
Service (Cambridge University, UK) which allowed us to use the computing facilities.
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