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Abstract

In this work a new dynamics is developed, which is valid for all observers, and which estab-
lishes, among other things, the existence of a new universal force of interaction, called kinetic
force, which balances the remaining forces acting on a body. In this new dynamics, the motion
of a body is not determined by the forces acting on it; instead, the body itself determines its
own motion, since as a result of such motion it exerts over all other bodies the kinetic force
which is necessary to keep the system of forces acting on each of them always in equilibrium.

Introduction

It is known that in classical mechanics Newton’s dynamics cannot be formulated for all refet
ence frames, since it does not conserve its form when passing from one reference frame to anot
For instance, if we admit that Newton’s dynamics is valid for a chosen reference frame, then v
cannot admit it to be valid for a reference frame which is accelerated relative to the first one, fi
the description of the behavior of a body from the accelerated reference frame differs from tt
description given by Newton’s dynamics.

Classical mechanics solves this difficulty by separating reference frames into two classes: |
ertial reference frames, for which Newton’s dynamics applies, and non-inertial reference frame
where Newton’s dynamics does not apply; but this solution contradicts the principle of gener
relativity, which states: the laws of physics shall be valid for all reference frames.

However, this work puts forward a different solution to the difficulty from classical mechanics
mentioned above, with no need to distinguish among reference frames, and in accordance to
principle of general relativity, starting from Newton’s dynamics and the transformations of kine
matics and developing a new dynamics which can be formulated for all reference frames, since
conserves its form when passing from one reference frame to another.

The development of the new dynamics will be made in two parts: in the first part, which deal
with the classical mechanics of particles, the new dynamics of particles will be developed, startir
from Newton’s dynamics of particles and the transformations of the kinematics of particles; in th
second part, which deals with the classical mechanics of rigid bodies, the new dynamics of rig
bodies will be developed, starting from Newton’s dynamics of rigid bodies and the transformatior
of the kinematics of rigid bodies.

In this work only the first part will be formulated.
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1 MECHANICS OF PARTICLES

The classical mechanics of particles considers that the only kind of bodies found in the Univer
are particles, and assumes that any reference frame is fixed to a particle. Therefore, in the class
mechanics of particles, it can be assumed that reference frames are not rotating.

2 KINEMATICS OF PARTICLES

2.1 Reference Frames

If reference frames are not rotating, then each coordinate axis of a reference frame S will rem:
at a fixed angle to the corresponding coordinate axis of another reference frame S’. Therefore,
simplify calculations it will be assumed that each axis of S is parallel to the corresponding ax
of S’, as shown in Figure 1.



Figure 1

2.2 Transformations of Kinematics

If a reference frame S of ax€Xx, y, z) determines an event by means of three space coordinate:
X, ¥, zand one time coordinate then another reference frame S’ of ax@éx’,y’,Z) determines
the same event by means of three space coordiratgsz and one time coordinaté

A change of coordinates, y, z t from reference frame S to coordinat€s y, Z, t’ from
reference frame S’ whose origl® has coordinategy, Yy, Zy measured from S, can be carried
out by means of the following equations:
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From these equations, the transformation of velocity and acceleration from reference frame
to reference frame S’ may be carried out, and expressed in vector form as follows:

Y4 —Vy
ad =a—ay

wherevy anday are the velocity and acceleration respectively, of reference frame S’ relative to S

3 DYNAMICS OF PARTICLES

3.1 Newton’s Dynamics

Newton'’s first law: Any particle in a state of rest or of uniform linear motion tends to remain
in such a state unless acted upon by an unbalanced external force.

Newton’s second law: The sum of all forces acting on a particle A produces an acceleration
the direction of the force, and directly proportional to that force.

> Fa=aay

wheremy is the inertial mass of particle A.



Newton’s third law: If a particle A exerts a fordeon a particle B, then particle B exerts on
particle A a force—F of the same magnitude but opposite direction.

Fa=—Fp
The transformation of real forces from one reference frame to another is given by
F=F
The transformation of inertial masses from one reference frame to another is given by
m =m
3.2 Dynamical Behavior of Particles

Let us consider a Universe composed of three patrticles A, B, and C which follow Newton’
dynamics from reference frame S (inertial frame). Therefore, the behavior of such particles w
be given (from S) by the equations

> Fa=maaq
> Fo = mpap 1)
> Fe=meac

From the equationd] and by means of the transformations of dynamics and kinematics, it car
be shown that the behavior of particles A, B, and C will be determined from a reference frame !
by the equations

S Fh = mh(ah— %)
S Fp, = (8 — a) (2)
S Fe = mi(a; &)
wherea; is the acceleration of reference frame S relative to S’, which is equal and opposite to tt
acceleration-ay of reference frame S’ relative to S.
As the equations?) are the same as the equatiod¥ ¢nly if the acceleratiora;, of refer-
ence frame S relative to S’ is equal to zero, then the behavior of particles A, B, and C cannot |

determined from any (accelerated) reference frame by the equatjons (
Now, if the equations?) are added together, it yields

> Fat Y Fot+ ) Fo=ma(aa—8) +mh(8 —a) +Me(ac — &) (3)

It follows from Newton’s third law thaty F + 5 Fi, + ¥ F¢ = 0, and from 8), a, may be
expressed as
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As the right-hand side of4] is the acceleratior(,, of the center of mass of the Universe
relative to the reference frame S’, then

(4)

a() = a/cm (5)



Substituting into the equationg)(yields the following equations:

S F, = a; )
S Fh = mh (@ — ay) (6)
> Fe= a’c m)

Therefore, the behavior of particles A, B, and C is now determined from the reference frame !
by the equationsd), which are equivalent to the equatiors.

Now, if the equations®) are transformed from reference frame S’ to S using the transforma-
tions of kinematics and dynamics, the resulting equations become

Z Fa = Mg(@a — acm)
> Fo = my(a —acm) (7)
Z Fc = me(ac — acm)

It follows that the behavior of particles A, B, and C will now be determined from reference
frame S by the equationg)( which are equivalent to the equatiod3 ¢nly if the acceleratiomcm
of the center of mass of the Universe relative to the reference frame S equals zero, a fact that n
be verified by adding together the equatiofs (

> Fat+ ) Fp+ ) Fec=Maga+ Mpap+ Meac (8)

Dividing both sides of§) by ma +m, + m; and using the fact thgt Fa+ 5 Fp+ 5 Fc =0 from

Newton'’s third law, 8) yields
Mada + Mpap + Meac
= =0 9
Acm Mot M+ Mo 9

Considering that the equationg) (have the same form as the equatioB)s then the behavior
of particles A, B, and C will be determined from any reference frame by the equafipresid will
be determined by the equatiorfy pnly if the acceleration of the center of mass of the Universe
relative to that reference frame is zero.

Now, the equations/j can be arranged as follows:

ZFa-f—ma(acm—aa) =0
> Fo+Mp(acm—ap) = 0 (10)
> Fet+me(acm—ac) =0

Substituting 9) into (10) and factoring

SF L MaMb(3 —8a) | MaMe(@ —3a) _
P mgtmytme T matmp+me

ZFb+%%(aa—ab)+rrb%(ac—ab) _
Ma+My+Me Mg+ My +me

SF L MeMa(Ba—ac) | MeMp(ap—ac) _
© Matmp+me | Matmp+me

(11)




If the second and third terms of the left-hand sides of each one of the equdtiprstaken as
a new forcel° acting on the corresponding particle, and exerted by the remaining particles, the
it can be seen thd° conserves its form when passing from one reference frame to another; i
addition, if a particle exerts a ford€ on another particle, the latter exerts on the first particle a
force —F° of equal magnitude and opposite direction. Therefore, as the second and third terr
of the left-hand sides of each one of the equatidrii§ (epresent the sum of the new forcg&®
acting on the particles, then

YFat > Fa=0
SFo+YFp=0 (12)
SFe+>Fe=0

And adding the second term to the first yields

ZFa:O

S Fo=0 (13)
S Fe=0

Consequently, it can be established that the behavior of particles A, B, and C will be determine
from any reference frame by the equatioh3)( which may be stated as follows: if the new force is
added to the sum of real forces, the resulting force will be zero, yielding a system in equilibrium

Consequently, it is possible to conceive a new dynamics, which can be formulated for a
reference frames. The usual explanation for the motion of particles is that particles undergc
certain motion in response to the external forces acting on them, following Newton’s first an
second laws. The new dynamics, instead, considers that particles experience a certain mo
because in that way they balance the sum of real forces with the new force.

From now on, the new force will be called kinetic force, since it is a force which depends or
the motion of particles, and the magnitugidmass) will be called kinetic mass instead of inertial
mass, since in the new dynamics particles do not exhibit the property known as inertia.

3.3 The New Dynamics

First principle: A particle can have any state of motion.
Second principle: The forces acting upon a particle A always remain balanced.

z Fa - 0
Third principle: If a particle A exerts a forde on a particle B, then particle B exerts on parti-
cle A a force—F of the same magnitude but opposite direction.

The transformation of real forces from one reference frame to another, is given by the followin
equation:

F=F



The kinetic forceFk 4, exerted on a particle A by another particle B, caused by the interaction
between particle A and particle B, is given by the following equation:

mam,
My
wherem is the kinetic mass of particle Ay, is the kinetic mass of particle By is the acceleration
of particle B,a, is the acceleration of particle A, amd is the total kinetic mass of the Universe.
The transformation of kinetic masses from one reference frame to another is given by tt
following equation:

FKap = (ap —aq)

m =m

From the previous statements it follows that the sum of kinetic fofdes, acting on a parti-
cle Ais given by

> FKa=mMa(acm— aa) (14)

wheremy is the kinetic mass of particle Aqm is the acceleration of the center of kinetic mass of
the Universe and, is the acceleration of particle A.

3.4 Determination of the Motion of Particles

The equation determining the acceleratanof a particle A relative to a reference frame S
fixed to a particle S may be calculated as follows: the sum of the kinetic fgréesg acting on
particle A and the sum of the kinetic forcg$-ks acting on particle S, are given by the following
equations:

> FKa = Ma(acm— aa)
> FKs = Ms(acm— as)

Combining both equations yields

> FKa > FKs
S ——fa,=%—+a
Ma m

Since the acceleratiom, of particle S relative to the reference frame S equals zero aleays,
may be obtained from the last equation as

Y FKs Y FKa
aa:———
ms My

Since from the second principle of the new dynamics the sum of the kinetic fo§des)
acting on a particle equals the opposite of the sum of the non-kinetic forcg$n) acting on the
particle, we have

o, ZFNa_ IFNs
Ma ms
Therefore, the accelerati@g of a particle A relative to a reference frame S fixed to a particle S
will be determined by the last equation, whéf&N, is the sum of the non-kinetic forces acting
on particle A,my is the mass of particle A (from now on, kinetic mass will be referred to as mass)
Y FNs is the sum of the non-kinetic forces acting on particle S, @i the mass of particle S.

v



3.5 Galilean Circumstance

A reference frame S fixed to a particle S is said to be in the galilean circumstance if the sum
the non-kinetic forces acting on particle S equals zero.

If reference frame S is in the galilean circumstance, then, by the second principle of the ne
dynamics it can be shown that the sum of the kinetic fofCEgs acting on particle S equals zero,
that is

Z Fks =mg(acm—as) =0
And, as the acceleraticm; of particle S relative to the reference frame S equals zero always,
then
acm=0

That is, the acceleration of the center of mass of the Universe relative to a reference frame
the galilean circumstance is zero.

3.6 Isolated System

A system of patrticles is said to be isolated if the sum of the non-kinetic external forces actin
on the system equals zero.

Therefore, if a system of particles is isolated, by the second principle of the new dynamic:
the sum of the internal non-kinetic forcgsn; and the internal and external kinetic force&k
equals zero:

z FNj + Z Fk =0
Substitutingy Fk from expression ¥4) applied to a system of N particles, and taking into
account thaf Fnj = 0 from the third principle of the new dynamics, it follows that

Ma(8cm— 8a) +Mp(8cm—@p) + -+ Mh(8cm—an) =0
from whichacy, can be expressed as

_ Ma8a+Mpp+ -+ Mhan
Mg+ Mp+ -+ My

And as the right-hand side is the acceleratgisof the isolated system, then

m

dcms= dcm

Therefore, the acceleration of the center of mass of an isolated system equals the accelera
of the center of mass of the Universe.

4 CONSERVATION LAWS OF PARTICLES

4.1 Restricted Conservation of Linear Momentum

On one hand, the acceleration of the center of mass of an isolated system equals the accelere
of the center of mass of the Universe and, on the other hand, the acceleration of the center of m
of the Universe relative to a reference frame in the galilean circumstance equals zero.

8



Therefore, the acceleration of the center of mass of an isolated system relative to a referer
frame in the galilean circumstance equals zero; that is
MaBa+ Mpap+---+Mhdn
Mg+ My -+ My

Multiplying both sides of this equation by, +m, + - -- + m, and integrating with respect to
time yields

0

MaVa + MyVp + - - - + My, = constant
As the left-hand side is the total linear momentBraf the isolated system, then
P = constant

Therefore, for a reference frame in the galilean circumstance the total linear momentum of :
isolated system is conserved.

4.2 Work and Live Energy

The total workW done by the forces acting on a particle is given by

r r r
W:/Fa-dr-i—/Fb-dr-l—----l—/Fn-dr

fo fo lo

Grouping yields

;
W:/(Fa-l-Fb-l-"'-l-Fn)'dr
fo
As Fa+Fp+---+Fn =0 by the second principle of the new dynamics, it follows that
W=0

That is, the total work done by the forces acting on a particle equals zero.
But the total workWV done by the interacting kinetic forc€g, andFky acting on particles A
and B respectively, is given by

la b
lag

rbo

or else

resulting in




If we call the energy of the kinetic force live energy, then the expression between bracke
represents the live enerdt 5, of the system particle A - particle B; therefore

W = —AELy,

It follows that the total work done by the interacting kinetic forces acting on a particle A and
a particle B is equal and opposite in sign to the live energy difference of the system particle A
particle B; with the live energy of the system given by

ELab= 2

mp
oMy (V2 Vb)

wheremy is the mass of particle An, is the mass of particle By is the velocity of particle Ayy
is the velocity of particle B, ant¥lt is the total mass of the Universe.
The total workW done by the kinetic forces acting on an isolated system is

la In
W:/ZFKa'dra+"'+/ZFKn'drn
lNag Mo
that is

la I'n
W=/rrla(acm—aa)-dra+-~-+/rm(acm—an)-drn
l'ag

rno

Substitutingacm in the last equation by the acceleratmyg, sof the center of mass of the isolated
system, sincecmsis equal toacy, yields

(zmvi)?

W=-A omve — ~= 17

The expression between brackets represents the total live daegfyhe isolated system, then
W = —AEL

Therefore, the total work done by the kinetic forces acting on an isolated system equals min
the total live energy difference of the isolated system, where the total live eBergfyan isolated
system is given by

P2
EL=EKk— —
L K M

whereEk is the total kinetic energy of the isolated systdis the total linear momentum of the
isolated system, andg is the total mass of the isolated system.

4.3 Conservation of Live Energy

The total work done by the forces acting on a particle equals zero; therefore, the totAMwork
done by the forces acting on an isolated system equals zero.

W=0

10



If the total workW is divided into two parts: the total wolk/;, done by the non-kinetic forces
and the total workVs, done by the kinetic forces, then

Win +Ws =0
As Ws equals minus the total live energy difference of the isolated system, then
Win—AEL=0

If the non-kinetic forces acting on the isolated system do not perform work, it follows that

—AEL=0
that is
EL = constant
or else
2
Exk — s = constant

Therefore, if the non-kinetic forces acting on an isolated system do not perform work, the tot:
live energy of the isolated system is conserved.

On the other hand, if the total live energy of an isolated system is conserved, then from
reference frame in the galilean circumstance the total kinetic energy of the isolated system
conserved too, since for such system the total linear momentum remains constant.

5 GENERAL OBSERVATIONS

It is currently known that in order to describe the behavior (motion) of a body from a non-
inertial reference frame in classical mechanics, it is necessary to introduce apparent forces ca
fictitious forces (also called pseudo-forces, inertial forces or non-inertial forces). Unlike ree
forces, fictitious forces are not caused by the interaction between bodies, that is, if there is
fictitious forceF acting on a body A, then a fictitious foreg~ of the same magnitude but opposite
direction acting on another body B cannot be found; that is, fictitious forces do not obey Newton
third law.

On the other hand, in the theory of general relativity, based on the principle of equivalence,
is established that fictitious forces are caused, in a generalized sense, by a gravitational field wh
all non-inertial reference frames experience, that is, in the theory of general relativity fictitiou
forces are equivalent to gravitational forces.

But, why are fictitious forces not caused by the interaction between bodies, just as real forc
are? Why do not fictitious forces conserve their value when passing from one non-inertial referen
frame to another inertial reference frame, just as real forces do? If fictitious forces are equivale
to gravitational forces, then why are fictitious forces not caused by the interaction between bodi
and do not conserve their value when passing from one non-inertial reference frame to anotl
inertial reference frame, just as gravitational forces are caused and conserve their value?

It can be stated that neither classical mechanics nor the theory of general relativity give sat
factory answers to the above mentioned questions and that, therefore, it should be accepted
apparently experience shows that to describe the behavior (motion) of a body from a non-inert
reference frame it is necessary to introduce fictitious forces that do not behave in the same w
that real forces do.

11



However, this work does give satisfactory answers to the above mentioned questions, since i
deduced from it that, in fact, experience does not show that fictitious forces that do not behave
real forces exist, but experience does show that there exists a new real force which is still ignor
and that the so called fictitious forces are in fact mathematical expressions that partially repres
this new real force.

In this work the new real force, called kinetic force, behaves like the other real forces, that is,
is a force caused by the interaction between bodies and conserves its value when passing from
reference frame to another. But, on the other hand, it is established in this work that the goal
the kinetic force is to balance the remaining real forces acting on a body, that is, the kinetic for
is the real force that makes the sum of all the real forces acting on a body be always equal to ze

Now, how is it possible then to change the natural state of motion of a body, if according t
Newton’s first and second laws, based on the principle of inertia, it is established that the natul
state of motion of a body will only change when there is an unbalanced external force acting on |

In contradiction with the principle of inertia, it is established in this work that in the absence
of external forces the natural state of motion of a body is not only the state of rest or of uniforr
linear motion, but that the natural state of motion of a body in the absence of external forces is a
possible state of motion; that is, any possible state of motion is a natural state of motion. Howev
the previous statement does not mean that there is no relation between the motion of bodies
the forces acting on them, since such a relation exists and is mathematically expressed in the
dynamics developed in this work.

In the new dynamics the motion is the mechanism that bodies have, which makes it possit
for the kinetic force to balance the remaining forces acting on a body, since as a result of its motis
a body exerts over all other bodies the kinetic force which is necessary to keep the system of for
acting on each of them always in equilibrium.

On the other hand, in this work it is not necessary to separate reference frames into two class
inertial reference frames and non-inertial reference frames, since through the new dynamics
behavior (motion) of a body can be described exactly in the same way from any reference fran
That is, the new dynamics is in accord with the principle of general relativity, which states: th
laws of physics shall be valid for all reference frames.

As a final conclusion it can be said that physics has two possible options: to develop classic
mechanics based on the principle of inertia, as a first option, or to develop classical mechanics |
based on the principle of inertia, as a second option.

However, this work, at least in the classical mechanics of particles, demonstrates, on one ha
that the second option is in accord with what experience shows and, on the other hand, that fror
theoretical point of view the second option is widely superior to the first one.
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