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Abstract

The aim of this note is to present an easy proof of Hilbert’s Nullstellensatz using Gröbner basis. I

believe, that the proof has some methodical advantage in a course on Gröbner bases.
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1 Introduction and main results

The aim of this note is to present an easy proof of the Hilbert’s Nullstellensatz using Gröbner bases. The
prove presented here may be not shorter or simpler then one given in [3], however, I believe, it has some
methodical advantage in a course on Gröbner bases. Other proofs using Gröbner bases were published in
[2] and [5]. The proof presented in [3] uses the resultant as the main tool. It leads to some duality between
our proof and the proof of [3] that will be explained at the end of the section.

Our proof is a sequence of propositions each of them is a good exercise on Gröbner bases. As the strong
Hilbert’s Nullstellensatz follows from the weak one by the Rabinowitz trick, we prove only

Theorem 1 (Hilbert’s Nullstellensatz (weak)). Let k be an algebraically closed field. Then any nontrivial
ideal I ( k[x1, . . . , xn] has a solution a ∈ kn (that is f(a) = 0 for any f ∈ I).

It turns out that for our exposition it is more natural to use Gröbner bases not only for polynomials over
a field k but also over a ring k[x] of polynomials in one variable. It allows us to consider k[x1, x2, . . . , xn]
as k[x1][x2, . . . , xn] and write a short proof for Lemma 2. On the other hand, k[x] is an Euclidean domain,
particularly, a principle ideal domain (PID). The theory of Gröbner bases for polynomials over a PID is
almost the same as for polynomials over a field: one can use the same reduction process, Buchberger’s
algorithm, etc., see, [1]. Particularly, it allows us to find the polynomial q of Lemma 2 constructively, that
provides us a constructive proof of the weak Hilbert’s Nullstellensatz. In the present exposition we prove
the existence of a solution for a nontrivial ideal only and not discuss the constructivity. The only facts
about Gröbner bases we use without proof are contained in Proposition 3. Proposition 3 seems to be more
elementary than the Buchberger’s algorithm and can be proved using the Dickson lemma, see [4].

First of all we need some notations. Let k be a field, a ∈ k. Let eva : k[x1, x2, . . . , xn] → k[x2, . . . , xn]
denote the evaluation homomorphism eva : f(x1, x2, . . . , xn) → f(a, x2, ..., xn). The proof is based on the
following lemmas.

Lemma 1. Let k be an algebraically closed field, I ⊆ k[x1, . . . , xn] be an ideal, such that I ∩ k[x1] = 〈p〉
and p ∈ k[x] \ k. Then there exists a ∈ k, p(a) = 0 such that eva(I) 6= k[x2, . . . , xn].

The following lemma is valid for any field.

Lemma 2. Let k be a field, I ⊆ k[x1, . . . , xn] be an ideal, such that I ∩ k[x1] = {0}. Then there exists a
non-zero polynomial q ∈ k[x1] such that eva(I) 6= k[x2, . . . , xn] for any a ∈ k, q(a) 6= 0.

Corollary 1. Let k be an infinite field, I ⊆ k[x1, . . . , xn] be an ideal, such that I ∩ k[x1] = {0}. Then
eva(I) 6= k[x2, . . . , xn] for some a ∈ k.

It is clear that Lemma 1 and Corollary 1 imply the (weak) Hilbert’s Nullstellensatz by induction. The
duality with the proof of [3] is that in [3] the induction goes the other direction. Precisely, in [3] the following
statement is proved. Let I ( k[x1, x2, . . . , xn] be an ideal. After some change of variables, if (a2, a3, . . . , an)
is a solution to I ∩ k[x2, . . . , xn] then {f(x, a2, . . . , an) | f ∈ I} 6= k[x].
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2 Gröbner bases and some construction

This section is a short introduction to Gröbner bases. I include it in order to make the exposition reasonably
closed. For details one may consult [1, 4, 5].

In what follows R denotes a ring with unity. An expression of the form αxk1

1 xk2

2 . . . xkn
n with α ∈ R and

ki ∈ N we call monomial. An expression of the form xk1

1 xk2

2 . . . xkn
n or 1 we call term. So, a polynomial in

R[x1, x2, . . . , xn] is a sum of monomials or an R-linear combination of terms.

Definition 1. A total order � of terms is said to be a term order if 1 � t and t1 � t2 implies tt1 � tt2 for
any terms t, t1, t2.

For example, the lexicographic order is a term order. Another interesting term order: let (α1, α2, . . . αn) ∈
Rn be independent over Q. Then the map xk1

1 xk2

2 . . . xkn
n → α1k1+α2k2+ · · ·+αnkn is injective and induces

a term order.
In what follows we assume that some term order is fixed. Let lt(f) be a leading term of f (with respect

to the fixed term order). Let lm(f) be the leading monomial of f (lt(lm(f)) = lt(f)). Let Lm(I) =
{lm(f) | f ∈ I}.
Definition 2. Let I ⊂ R[x1 . . . xn] be an ideal. Γ ⊂ I \ {0} is called a strong Gröbner basis for I if for any
m ∈ Lm(I) there exists g ∈ Γ such that lm(g) |m.

A Gröbner basis is a generating set of an ideal and has several nice properties.

Proposition 3. Let R be a PID. Then for any ideal I ⊆ R[x1, . . . , xn] there exists a finite strong Gröbner
basis. If Γ is a strong Gröbner basis for I then

• I = 〈Γ〉 (Γ generates I);

• If R = k is a field then I is trivial (I = k[x1, . . . , xn]) if and only if Γ ∩ k 6= ∅.
Let φ : R1 → R2 be a morphism of rings R1 and R2. It has the natural lift to the morphism φ :

R1[x1, . . . , xn] → R2[x1, . . . , xn].

Proposition 4. Let Γ be a strong Gröbner basis for an ideal I ⊆ R1[x1, x2, . . . , xn]. Let φ : R1 → R2 be a
surjective morphism such that φ(a) neither 0 nor a zero divisor for any a ∈ Lm(Γ). Then φ(Γ) is a strong
Gröbner basis for φ(I)

Proof. As φ is surjective, φ(I) is an ideal in R2[x1, . . . , xn]. The proposition easily follows from

Statement. For any h ∈ φ(I) there exists f ∈ I ∩ φ−1(h) such that lt(f) = lt(h).

Indeed, in this case lm(h) is divisible by lm(φ(g)) = φ(lm(g)) for a g ∈ Γ such that lm(g)|lm(f). So, it
suffices to show the statement. We show it by contradiction. Let h ∈ φ(I) contradict the statement, that
is, for any f ∈ I, h = φ(f) one has lt(h) 6= lt(f). Let fm has minimum leading term among all such f . One

has φ(lm(fm)) = 0. On the other hand, we can eliminate lm(fm) by some g ∈ Γ: f ′ = fm − lm(fm)
lm(g) g. But

φ( lm(fm)
lm(g) ) = 0 (φ(lm(g)) is not a zero divisor). So, φ(f ′) = h, contradiction with the minimality.

3 Prove of Lemma 1

Proposition 5. Let k be a field, f1, f2 ∈ k[x1], G = {g1, g2, . . . , gr} ⊂ k[x1, x2. . . . , xn]. Let gcd(f1, f2) = 1.
Then 〈f1f2, G〉 = 〈f1, G〉 ∩ 〈f2, G〉
Proof. Let Q1, Q2 ∈ k[x1] be such that Q1f1 + Q2f2 = 1. We use the method I ∩ J = 〈zI, (1 − z)J〉 ∩
k[x1, . . . , xn] where z is a new variable. Now:

〈zf1, (z − 1)f2, zg1, . . . , zgr, (z − 1)g1, . . . (z − 1)gr〉=
a
〈zf1, (z − 1)f2, g1, . . . , gr〉=

b

〈f1f2, Q2f2 − z, g1, . . . , gr〉
Equality (a) is valid due to gi = zgi − (z − 1)gi y zgi and (z − 1)gi are multiples of gi. For equality (b) it
suffices to show that that 〈zf1, (1− z)f2〉 = 〈f1f2, Q2f2 − z〉.
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• 〈zf1, (1− z)f2〉 ⊆ 〈f1f2, Q2f2− z〉. Indeed, zf1 = [f1f2]Q2− [Q2f2 − z] f1 and (1− z)f2 = [f1f2]Q1+
[Q2f2 − z] f2.

• 〈zf1, (1−z)f2〉 ⊇ 〈f1f2, Q2f2−z〉. Indeed, f1f2 = [zf1] f2+[(1− z)f2] f1 andQ2f2−z = [(1− z)f2]Q2−
[zf1]Q1.

Now, 〈f1f2, Q2f2 − z, g1, . . . , gr〉 ∩ k[x1, x2, . . . , xn] = 〈f1f2, g1, . . . , gr〉. Indeed, let f = pf1f2 + p0(Q2f2 −
z) +

∑

pigi be independent of z. Substituting z = Q2f2 we get f ∈ 〈f1f2, g1, . . . , gr〉.
By induction, Proposition 5 implies that

〈
k

Π
j=1

(x1 − aj)
cj , G〉 =

k
⋂

j=1

〈(x1 − aj)
cj , G〉 (1)

Definition 3. Let I be an ideal. The set
√
I = {f | fn ∈ I for some n ∈ N} is called the radical of I. It is

easy to check that
√
I is an ideal.

Proposition 6. I = k[x1, . . . , xn] if and only if
√
I = k[x1, . . . , xn]

Proof. We prove only the ’⇐=’ implication of the proposition. Let 1 ∈
√
I. So, 1 = 1n ∈ I and, consequently,

I = k[x1, . . . , xn].

Corollary 2. Let k be an algebraically closed field, f ∈ k[x1], G ⊂ k[x1, . . . , xn]. Suppose, that 〈f,G〉 6=
k[x1, . . . , xn]. Then there exists a ∈ k, f(a) = 0, such that 〈(x1 − a), G〉 6= k[x1, . . . , xn].

Proof. Let 〈f,G〉 6= k[x1, . . . , xn]. By formula 1 〈(x1 − a)d, G〉 6= k[x1, . . . , xn] for some a, f(a) = 0 and
d ∈ N. Clearly, 〈(x1 − a), G〉 ⊂

√

〈(x1 − a)d, G〉.
Now Lemma 1 follows due to k[x1, . . . , xn]/〈(x1 − a), G〉 ∼ k[x2, . . . , xn]/ eva(〈G〉) so, 〈(x1 − a), G〉 6=

k[x1, . . . , xn] if and only if eva(〈(x1 − a), G〉) 6= k[x2, . . . , xn].

4 Proof of Lemma 2

Consider k[x1, . . . , xn] as k[x1][x2, . . . , xn]. So, now the polynomials has x2, . . . , xn as the variables and
k[x1] as a ring of coefficients. Let Γ be a finite strong Gröbner basis for an ideal I ⊂ k[x1][x2, . . . , xn]. Let
q ∈ k[x1] be the product of leading coefficients of all g ∈ Γ. If q(a) 6= 0 then eva(Γ) is a Gröbner basis of
eva(I) by Proposition 4. Now, Γ ∩ k[x1] ⊆ I ∩ k[x1] = ∅ and, consequently, eva(Γ) ∩ k = ∅. The Lemma 2
follows by Propositions 3.
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