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Abstract

It has been shown recently that Bose Gase with weak pair (enough
well) interaction is non ergodic system. But Bose Gase with weak pair
interaction is so general system that it is evident that the majority
of statistical mechanics systems are non ergodic too. It is also has
been shown that it is possible to generalize the scheme of standard
statistical mechanics and thermodynamics to take into account non
ergodicity. This generalization is called a generalized thermodynam-
ics. In some points this generalized thermodynamics coincide with
standard equilibrium thermodynamics but some new specific results
take place. It has been shown that this new generalized thermody-
namics can be used to explain some physiological phenomena which
take place in the living cell when the cell is exciting and dying.

In the present paper we try to illustrate some basic points of this
generalized thermodynamics on some physical examples.
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1 Introduction

The purpose of this paper to give some examples on so called generalized
thermodynamics recently developed in [1,2].

In [1] it has been shown that even most realistic systems of statistical
mechanics (for example usual Bose Gase with weak (enough well) pair inter-
action) are non ergodic systems. These means that there exist non trivial
first integrals of the system commuting with momenta and number particle
operatots. It has been recently shown [2] that it is possible to generalize the
scheme of standard statistical mechanics and thermodynamics to take into
account the existence of such non trivial first integrals. These generalization
we call the generalized thermodynamics. It has been also shown that this
generalized thermodynamics is very useful to explanation of some physiolog-
ical phenomena which take place in the living cell when the cell is excited
dying.

Let us describe the basic elements of the scheme of this generalized ther-
modynamics. The non ergodic theorem states that for a wide class of re-
alistic systems of statistical mechanics there exists non trivial commuting
(in involution) first integrals K1, ..., KN , N = 1, 2, ... commuting with mo-
menta and number particle operators. In purpose of simplicity we will talk
about Hamiltonian instead of Hamiltonian, momenta and number particle
operators. The starting point of generalized thermodynamics is a following
expression for distribution function (density matrix in quantum case):

ρ(x) = const δ(H(x)− E)

N∏

i=

δ(Ki(x)−K ′
i), (1)

where x is a point of phase space of the system and E, K ′
1, ..., K

′
N are the

observable values of energy and integrals K1, ..., KN . The entropy corre-
sponding to this distribution is defined as a logarithm of statistical weight.
The statistical weigh, by definition, is a number of microscopic configuration
of the system, corresponding to a given macroscopic state i.e.:

W (E,K ′
1, ..., K

′
N) =

∫
dΓxδ(H(x)−E)

N∏

i=1

δ(Ki(x)−K ′
i) (2)

and

S(E,K ′
1, ..., K

′
N) = lnW (E,K ′

1, ..., K
′
N), (3)
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where dΓx is an element of phase volume. The expression (1), (2) and (3)
are the generalization of standard microcanonical Gibbs distribution and its
entropy to the case when there exists non trivial commuting first integrals
K1, ..., KN of the system.

Let us explain why we require pairwise commutativity of integrals
K1, ..., KN or why we require that ∀i, j = 1, ..., N (Ki, Kj) = 0 where (·, ·)
denotes the commutator in quantum case or the Poison bracket in classical
case. We want to describe the state with definite values K ′

1, ..., K
′
N of first

integrals K1, ..., KN . So the integrals Ki, i = 1, ..., N must be contemporane-
ously measurable. But in quantum mechanics this means that the integrals
K1, ..., KN must be pairwise commutative. The requirement that the inte-
grals K1, ..., KN must be in involution (in classical case) is clear now from
the remark that the Poison bracket is a classical analog of commutator.

Now let answer the question when generalized thermodynamics gives re-
sults which differs from results following from standard thermodynamics.
I.e. let us answer the question when using of distribution (1) leads to results
which differ from result obtained by using standard microcanonical Gibbs
distribution.

For simplicity consider the case N = 1. The case of an arbitrary N can
be considered by analogy to this case. For a fixed E S(E,K ′) is a function
of K ′. There exist two typical cases of behavior of this function.

1) S(E,K ′) (for fixed E) has a maximum in isolated point K ′ = K ′′.
2) S(E,K ′) achieve a maximum at whole interval K ′ ∈ [a, b] of nonzero

length.
There arise a question, which observable values K ′ of integral K could be

realized in nature. It is essentially to suppose that it could be realized such
and only such values K ′ of K which corresponds to the maximum of entropy
(for fixed energy). This is one of main point of generalized thermodynamics.
It has been shown [2] that in case 2) generalized thermodynamics gives no
more than standard equilibrium thermodynamics (K ′) is uniquely defined).
But new interesting physics arise in case 2). Note that the situation when
thermodynamical functions have a plateau as functions of their arguments is
a typical situation in the theory of phase transitions.

Some general results of standard equilibrium thermodynamics take place
in generalized thermodynamics [2]. For example a well-known relation

dE = TdS − PdV (4)

takes place in new situation. Here E is an energy of the system, T is a
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temperature of the system, V is a volume of the system, P is a pressure.
But some new specific results take place for generalized thermodynamics.
These new results have been used [2,3] for explanation of several physiological
phenomena which takes place in biological cell when the cell is dying or
moving from resting state into activated state.

In the present paper we give some new physical examples to illustrate
some basic points of this generalized thermodynamics. The paper is com-
posed as follows. In section 3 we describe some new derivation of the Gibbs
distribution from the property of asymptotical factorization of correlations
based on ideas of nonequilibrium renormalization theory. In section 3 we
reformulate the Bardeen — Cooper — Schrieffer model on the language of
the generalized thermodynamics.In section 5 we describe some derivation of
the Boltzmann kinetic equation based on some ideas of N.N. Bogoliubov
concerned with thermalization in oscillator interacting with thermostat. In
section 6 we describe how to obtain non-trivial first integrals for the equa-
tions on order parameter of the system in many-phase domain in the theory
of second order phase transitions. Section 6 is a conclusion.

2 Derivation of Gibbs distribution from the

property of asymptotic space factorization

of correlations.

In the present section we prove that all stationary translation-invariant states
of Bose Gase with weak (enough good) pair interaction satisfying to the
property of (enough fast) asymptotic space factorization of correlations are
the Gibbs states (described by the Gibbs distribution).

But at first let us recall the main result of the paper [1] and demonstrate,
how the non ergodic property follows from this result.

The main result of [1] can be formulated as follows:
Theorem 1. For Bose Gase with weak pair interaction with kernels

from Schwartz space in the sense of formal power series on coupling constant
there exists non-Gibbs functional 〈·〉, commuting with the number of particle
operator such that the correlators

〈Ψ±(t, x1)...Ψ
±(t, xn)〉

are translation invariant, do not depend on t and satisfy the weak cluster
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property. Here Ψ± are the secondary quantized wave function and its complex
conjugated Ψ−(x) := Ψ(x) and the weak cluster property means the following

lim
|a|→∞

∫

R3n

〈Ψ±(t, x1 + δ1e1a)...Ψ
±(t, xn + δne1a)〉f(x1, ..., xn)d

3x1...d
3xn

=

∫

R3n

〈Ψ±(t, xi1)...Ψ
±(t, xik)〉〈Ψ±(t, xik)...Ψ

±(t, xin)〉 × f(x1, ..., xn)d
3x1...d

3xn,

there δi ∈ {1, 0}, i = 1, 2...n and

i1 < i2 < ... < ik,

ik+1 < ik+2 < ... < in,

{i1, i2, ..., ik} = {i = 1, 2...n|δi = 0} 6= ∅,
{ik+1, ik+2, ..., in} = {i = 1, 2...n|δi = 1} 6= ∅.

f(x1, ..., xn) is a test function (i.e. the function from the Schwartz space), e1
is a unit vector parallel to the x-axis. About secondary quantization see for
example [4, 5].

Let us prove that the existence of such functionals implies non-ergodic
property of the system. The more accurate proof of this fact see in section
10 of [1]. Suppose that our system is ergodic, i.e. there are no first integrals
of the system except energy. Then, the density matrix ρ of the system
corresponding to the functional 〈·〉 is a function of energy. We can represent
this density matrix ρ as follows:

ρ =
∑

cαδ(H − Eα),

where H is a Hamiltonian of the system and the sum can be continuous
(integral). Let 1 be some enough large but finite subsystem of our system. Let

2 be a subsystem obtained from 1 by translation on the vector ~l of sufficiently
large length parallel to the x-axis. Let 12 be a union of the subsystems 1
and 2. Let ρ1, ρ2 and ρ12 be the density matrix of the subsystems 1, 2 and
12 respectively. By the same method as the method used for the derivation
of the Gibbs distribution we find:

ρ12 =
∑

cαdα
e−

H1
Tα

Zα
⊗ e−

H2
Tα

Zα
, dα > 0 ∀α
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in the obvious notation. Here H1 and H2 be the Hamiltonians of subsystems
1 and 2 respectively. But the weak cluster property implies that

ρ12 = ρ1 ⊗ ρ2.

Therefore all the coefficients cα are equal to zero except one. We find that

ρ = cδ(H −E0)

for some constants c and E0. So each finite subsystem of our system can be
described by Gibbs formula and we obtain a contradiction.

But the state (not necessary positive defined) mentioned in theorem 1
satisfies only to the weak cluster property i.e. to the property of asymptotic
space factorization of correlations only ”in one direction”.

It follows from the proof of theorem 1 from [1] that we can achieve, that
〈·〉 will satisfies to the property of asymptotic factorization of correlations
”in two directions”. But there arise principled difficulties if one try to prove
that the state 〈·〉 satisfy to cluster property in ”all (three) directions”.

It has been mentioned above that all stationary translation-invariant
states satisfying to (enough fast) cluster property are the Gibbs states. Let
us now recall the standard derivation of this fact. Then we will point out
some problems connected with this derivation and present our new proof of
this fact based on results of our renormalization theory of nonequilibrium
(Keldysh) diagram technique.

Let us at last describe the standard derivation of Gibbs distribution (from
cluster property) at classical level [6]. This derivation is based on the fact
that there no exist additive first integrals of the system (linear) independent

of Hamiltonian H , momenta ~P and angular momenta ~M . Let ρ be a station-
ary translaion-invariant distribution function of the system satisfying to the
cluster property of the system. If the system is divided into two subsystems
1 and 2 cluster property implies that

ρ = ρ1ρ2, (5)

where ρ1 and ρ2 are distribution functions for subsystems 1 and 2 respectively.
In other word the distributions for subsystems 1 and 2 are independent.
Therefore ln ρ is an additive integral of motion and can be represented as
linear function of H , ~P , ~M . In other words

ln ρ = αH + ~β ~P + ~γ ~M (6)
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for some real number α and real vectors ~β and ~γ. Therefore

ρ = eαH+~β ~P+~γ ~M . (7)

But we assumed that ρ is translation-invariant. Therefore ~γ = 0 and

ρ = eαH+~β ~P (8)

The distribution (8) is a standard Gibbs distribution. But there are two
problems with this derivation. The first one, this derivation is performed
only at classical level. The second one, we could not find anywhere the proof
of the fact that Hamiltonian H momenta ~P and angular momenta ~M are the
complete linear independent set of additive first integrals.

Let us present now our derivation of Gibbs distribution (from the cluster
property). This derivation is not rigorous too but we hope it is of some
interest. Note that this derivation uses some basic ideas of Haag-Ruelle
scattering theory [7].

But at first let us give some previous definitions.
Definition 1 .Let S(R3) be a Schwatrz space of test functions (infinitely-

differentiable functions decaying at infinity faster than any inverse polyno-
mial with all its derivatives). The algebra of canonical commutative relations
C is an unital algebra generated by symbols a+(f) and a(f) f ∈ S(R3) sat-
isfying the following canonical commutative relations:

a) a+(f) is a linear functional of f ,
b) a(f) is an antilinear functional of f ,

[a(f), a(g)] = [a+(f), a+(f)] = 0,

[a(f), a+(g)] = 〈f, g〉,
where 〈f, g〉 is a standard scalar product in L2(R3),

〈f, g〉 :=
∫

f ∗(x)g(x)d3x

Remark. We will widely use generalized ”elements” of the algebra of canon-
ical commutative relations a(k), a+(k) defined according to the following
relations

a(f) =

∫
a(k)f(k)d3k,

a+(f) =

∫
a+(k)f+(k)d3k. (9)
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a(k), a+(k′) are called the annihilation-creation operators and satisfy to
the following canonical commutative relations:

[a+(k), a+(k′)] = [a(k), a(k′)] = 0,

[a(k), a(k′)] = δ(k − k′). (10)

Definition 2. The field operators Ψ(x), Ψ+(x) are defined as follows

Ψ(x) =
1

(2π)
3
2

∫
a(k)eikxd3k,

Ψ+(x) =
1

(2π)
3
2

∫
a+(k)eikxd3k (11)

The rigorous definition of Ψ(x) and Ψ+(x) could be obtained from this defi-
nition by using the notion of the Fourier transform of distributions.

Definition 3. Let ρ be a state on the algebra of canonical commuta-
tive relations (the algebra generated by smoothed secondary quantized wave
functions) (CCR-algebra). We say that ρ is a Gauss state if we can calcu-
late its values at elements of CCR-algebra by using the Wick (Bloch — De
Dominicis) theorem through pair correlations.

Now let us recall some notions connected with nonequilibrium (Keldysh)
diagram technique. Let ρ be an arbitrary state on the algebra of canonical
commutative relations. Let us introduce the Green functions for the system
(corresponding to this state).

ρ(T (Ψ±
H(t1, x1), ...,Ψ

±
H(tn, xn))).

Here t1, ..., tn are times, symbol H near Ψ± means here that Ψ±
H are

operators in Heizenberg representation and the symbol T is a symbol of
chronological ordering.

We will consider the system describing by the following Hamiltonian

H = H0 + λV, (12)

where H0 is a free Hamiltonian

H0 =

∫
ω(k)a+(k)a(k)d3k, (13)
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ω(k) =
k2

2
. (14)

λ ∈ R is a coupling constant and

V =
1

2

∫
d3xd3x′Ψ+(x)Ψ+(x′)V(x− x′)Ψ(x′)Ψ(x), (15)

where V(x) is an arbitrary test function from S(R3). In nonequilibrium di-
agram technique we require the following representation for the Green func-
tions:

ρ(T (Ψ±
H(t1, x1), ...,Ψ

±
H(tn, xn))) =

ρ0(S
−1T (Ψ±

0 (t1, x1), ...,Ψ
±
0 (tn, xn)S)). (16)

The symbol 0 near Ψ± means here that Ψ±
0 are operators in the Dirac rep-

resentation (representation of interaction). The S-matrix has the form

S = T exp(−i

+∞∫

−∞

V(t)dt),

and

S−1 = T̃ exp(i

+∞∫

−∞

V(t)dt).

Here T and T̃ are symbols of the chronological and the antichronological
ordering respectively. ρ0 is some Gauss state defined by density function
n(k) as follows

ρ0(a
+(k′)a+(k)) = ρ0(a(k)a(k

′)) = 0,

ρ0(a
+(k)a(k′)) = n(k)δ(k − k′). (17)

The state ρ0 is called the asymptotical state.
Let us recall the basic elements of nonequilibrium diagram technique.

The vertices coming from T -exponent are marked by symbol −. The vertices
coming from T̃ -exponent are marked by symbol +. There exist four types of
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propagators

G+−
0 (t1 − t2, x1 − x2) := ρ0(Ψ(t1, x1)Ψ

+(t2, x2)),

G−+
0 (t1 − t2, x1 − x2) := ρ0(Ψ

+(t2, x2)Ψ(t1, x1)),

G−−
0 (t1 − t2, x1 − x2) := ρ0(T (Ψ(t1, x1)Ψ

+(t2, x2))),

G++
0 (t1 − t2, x1 − x2) := ρ0(T̃ (Ψ(t1, x1)Ψ

+(t2, x2))).

Let us write the table of propagators

G+−
0 (t, x) =

∫
d4k

(2π)4
(2π)δ(ω − ω(k))(1 + n(k))e−i(ωt−kx),

G−+
0 (t, x) =

∫
d4k

(2π)4
(2π)δ(ω − ω(k))n(k)e−i(ωt−kx),

G−−
0 (t, x) = i

∫
d4k

(2π)4
{ 1 + n(k)

ω − ω(k) + i0
− n(k)

ω − ω(k)− i0
}e−i(ωt−kx),

G++
0 (t, x) = i

∫
d4k

(2π)4
{ n(k)

ω − ω(k) + i0
− 1 + n(k)

ω − ω(k)− i0
}e−i(ωt−kx).

It has been shown in [1] that (usually) there exists divergences in Keldysh
diagram technique. A typical example of divergent diagrams is pictured at
fig.1

fig. 1

✛

✓
✒

✏
✑

✛✛✛

✓
✒

✏
✑

sss
++++

The ovals represent the sum of one-particle irreducible diagrams. These
diagrams are called chain diagrams. Let us suppose that all divergences of
self-energy parts (ovals) are subtracted. The divergences arise from the fact
that singular supports of propagators coincide.

For all t1, t2 ∈ R let us define the evolution operator S(t1, t2) as follows:

S(t1, t2) = eit1H0e−i(t1−t2)He−itH0 . (18)

Note that, for example, that

S(0,−∞) = T exp(−i

∫

−∞

V(t)dt),
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S(+∞, 0) = T exp(−i

+∞∫



V(t)dt) (19)

One can prove that the following lemma holds.
Lemma 1. ∀t ∈ R the following equalities holds:

e−itHS(0,−∞) = S(0,−∞)e−itH0

(20)

and

S(+∞, 0)e−itH = e−itH0S(+∞, 0). (21)

Now let us consider the equilibrium Green functions defined as follows

1

Z
tr(T (Ψ±

H(t, x)...Ψ
±
H (tn, xn))e

−H−µN
T ), (22)

where

Z = tr(e−
H−µN

T ), (23)

T > 0 is a temperature, µ ∈ R is a chemical potential and N is a number
particle operator

N =

∫
a+(k)a(k)d3k (24)

In other words we put in (16)

ρ(·) = 1

Z
tr((·)e−−H−µT

T ). (25)

It follows from the lemma 1 that the following lemma holds.
Lemma 2.

1

Z
tr(T (Ψ±

H(t, x)...Ψ
±
H(tn, xn))e

−H−µN
T )

= ρ0(S
−1T (Ψ±

0 (t1, x1), ...,Ψ
±
0 (tn, xn)S)), (26)

where ρ0 is a Gauss state on the CCR-algebra defined as usual by its density
function n(k) of the form:

n(k) =
1

e
ω(k)−µ

T − 1
(27)
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It follows from physical reasonings that the equilibrium Green functions does
not contain divergences. So we have the following lemma:

Lemma 3. If the asymptotical state ρ0 in Keldysh diagram technique
corresponds to the density function n(k) of Bose-Einstein form

n(k) =
1

e
ω(k)−µ

T − 1
(28)

then the Keldysh diagram technique does not contain divergences and cor-
responding green function are equilibrium

ρ(T (Ψ±
H(t1, x1), ...,Ψ

±
H(tn, xn)))

=
1

Z
tr(T (Ψ±

H(t, x)...Ψ
±
H(tn, xn))e

−H−µN
T ), (29)

Now let us prove the fact that if the Keldysh diagram technique does not
contain divergences then the corresponding Green functions are equilibrium,
i.e. the asymptotical state ρ0 has Bose-Einstein form. In order to do this let
us analyze the divergences of Keldysh diagram technique in lowest possible
order in λ. Such divergences may come only from the diagrams pictured at
fig. 2.

fig. 2

✛

✓
✒

✏
✑

✛

++

where ovals means here the sum
of all self-energy diagrams of lowest possible order in λ. It has been shown
in [1] that these diagrams contain divergences for density function n(k) of
general form. It has been also shown in [1] that these diagrams could be
subtracted by the following renormalization of the asymptotical state

ρ0(·) →
1

Z
ρ0(e

−
+∞∫

−∞

h0(t)dt

(·)),

where

h =

∫
h(k)a+(k)a(k)d3k,
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h(k) is a real-valued function,

h0(t) := eitH0he−itH0 (30)

and

Z = ρ0(e
−

+∞∫

−∞

h(t)dt

)

for suitable h =
∫
h(k)a+(k)a(k)d3k.

It also could be extracted from [1] that the divergences in considered
diagrams exists if and only if h 6= 0. But it has been also shown in [1] that

h(p) =
1 + 2n(p)

2n(p)(1 + n(p))
St(p), (31)

where St(p) is a collision integral (in lowest possible order of perturbation
theory) and St(p) ≡ 0 if and only if n(p) has a Bose-Einstein form (see for
example [8]). So we have proved the following

Lemma 4. If Keldysh diagram technique does not contain divergences
the the asimptotical state has a Bose-Einstein form

ρ0(a
+(k′)a+(k)) = ρ0(a(k)a(k

′)) = 0,

ρ0(a
+(k)a(k′)) = n(k)δ(k − k′),

n(k) =
1

e
ω(k)−µ

T − 1
(32)

and the corresponding Green function are equilibrium.
Now let 〈·〉 be some stationary translation invariant state on the CCR-

algebra, commuting with the number particle operator. Suppose that 〈·〉
satisfy to the asymptotic property of (enough fast) space factorization of
correlations. Put by definition

W = S(0,−∞). (33)

Let 〈·〉0 be a state on the CCR-algebra such that

〈·〉 = 〈W−1(·)W 〉0. (34)

One has

〈·〉0 = 〈W (·)W−1〉. (35)
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Let us formulate now our main lemma.
Lemma 5. If the state 〈·〉 satisfies to the property of asymptotic (enough

fast) factorization of correlations then 〈·〉0 is finite (does not contain diver-
gences) and Gauss.

Proof. We have

W = lim
t→−∞

e+itHe−itH0 (36)

and

W−1 = lim
t→−∞

e+itH0e−itH . (37)

These two equations could be simply established in the sense of formal series
of perturbation theory and this enough for our aims.

Therefore we have

〈·〉0 = 〈W (·)W−1〉
= lim

t1→−∞, t2→−∞
〈e+it1He−it1H0(·)e+it2H0e−it2H〉

= lim
t→−∞

〈e+itHe−itH0(·)e+itH0e−itH〉

= lim
t→−∞

〈e−itH0(·)e+itH0〉. (38)

Last equality takes place because the state 〈·〉 is a stationary state. In result

〈·〉0 = lim
t→−∞

〈e−itH0(·)e+itH0〉. (39)

Let us now introduce so-called Wightman functions (distributions)
Wn,t(x1, σ1, ..., xn, σn), t ∈ R x1, ..., xn ∈ R

3, σ1, ..., σn ∈ {+,−} as follows:

Wn,t(x1, σ1, ..., xn, σn) := 〈eitH0(Ψσ1(x1)...Ψ
σn(xn))e

−itH0〉. (40)

Let us also introduce so-called truncated Wightman functions according W T
t

to following relations:

Wn,t(x1, σ1, ..., xn, σn) =
∑

π∈P

∏

P∈π

W T
|P |,t(xiP1

, σiP1
, ..., xiP

|P |
, σiP

|P |
). (41)

Here |A| is a number of elements of finite set A, P is a set of all decompositions
π = {P1, ..., P|π|} of the set {1, ..., n} into disjoint union of sets P1, ..., P|π|.
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For each k = 1, ..., |π| we put by definition Pk = {iPk

1 , ..., iPk

|Pk|
}, iPk

1 < iPk

2 <

... < iPk

|Pk|
.

Note that the property of enough fast asymptotic space factorization
of correlations by definition means that truncated Wightman functions
W T

n,t(x1, σ1, ..., xn, σn) tends to zero enough fast if their relative arguments
ξ1 = x2 − x1, ...ξn−1 = xn − x1 tends to infinity.

Now let us introduce the Fourier transformations of Wightman functions
as follows:

W̃n,t(p1, σ1, ..., pn, σn) :

=

∫
d3x1, ..., d

3xne
i(σ1p1x1+...+σnpnxn)Wn,t(x1, σ1, ..., xn, σn) (42)

and

W̃ T
n,t(p1, σ1, ..., pn, σn) :

=

∫
d3x1, ..., d

3xne
i(σ1p1x1+...+σnpnxn)W T

n,t(x1, σ1, ..., xn, σn). (43)

one can prove that

W̃n,t(p1, σ1, ..., pn, σn) =
∑

π∈P

∏

P∈π

W̃ T
|P |,t(piP1 , σiP1

, ..., piP
|P |
, σiP

|P |
), (44)

where notations are such that as in (41).
The truncated Wightman functionsW T

n,t(x1, σ1, ..., xn, σn) are translation-
invariant and the function of (enough) fast decay on relative arguments.
Therefore their Fourier transforms W̃ T

n,t could be represented as follows:

W̃n,t(p1, σ1, ..., pn, σn) = δ(p1σ1 + ...+ pnσn)W̃T
n,t(p1, σ1, ..., pn, σn), (45)

where W̃T
n,t is an enough smooth function of at most polynomial increment

at infinity (with enough large number of derivatives).
It is obvious that ∀n = 1, 2, ... and ∀t ∈ R

W̃ T
n,t(p1, σ1, ..., pn, σn) = ei(σ1ω(p1)+...+σnω(pn))tW̃ T

n,0(p1, σ1, ..., pn, σn). (46)

Now, let us prove that for each n = 3, 4, ... W̃n,t(p1, σ1, ..., pn, σn) tends to
zero as t → −∞ in the sense of distributions. This means that for each test
function f(p1, ..., pn) ∈ S(R3n)

∫
d3p1...d

3pnW̃
T
n,t(p1, σ1, ..., pn, σn)f(p1, ..., pn) → 0 (47)
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as t → −∞. It is obvious from remarks above that to prove this fact it is
enough to prove that for each enough smooth function g(x1, ..., xn) of enough
fast decaying at infinity
∫

d3p1...d
3pne

i(σ1ω(p1)+...+σnω(pn))tδ(p1σ1 + ... + pnσn)g(p1, ..., pn) → 0 (48)

as t → −∞.
Put by definition L = {(p1, ..., pn)|σ1p1+ ...σnpn = 0}. Note that for each

n = 3, 4, ... σ1ω1(p) + ...+ σnωn(p) is not identically equal to zero on L. This
fact could pe proved very simply but we omit this proof. So the limit equality
(48) could be directly obtained by using the stationary phase method.

So, for each n = 3, 4, ... W̃n,t(p1, σ1, ..., pn, σn) → 0 as t → −∞ in the
sense of distributions. From other hand, it is obvious that W T

2,t = W T
2,0. In

result ∀t ∈ R

Wn,t(x1, σ1, ..., xn, σn) = 0 (49)

if n is odd and

lim
t→−∞

Wn,t(x1, σ1, ..., xn, σn) =
∑

τ∈T

∏

T∈τ

W2,0(xiT , σiT , xjT , σjT ), (50)

if n is even (in the sense of distributions). Here T is a set of all decomposition
τ = {T1, ..., Tn

2
} of the set {1, 2, ..., m} into disjoint union of pairs τk =

{iτk , jτk}, iτk < jτk , k = 1, 2, ..., n
2
.

But let us recall that

lim
t→−∞

Wn,t(x1, σ1, ..., xn, σn) = 〈Ψσ1(x1)...P siσn(xn)〉0. (51)

in the sense of distributions. Therefore 〈·〉0 is finite and Gauss. Now let us
formulate main theorem of present section

Theorem 2. let 〈·〉 be some stationary translation invariant state on the
CCR-algebra, commuting with the number particle operator. Suppose that
〈·〉 satisfy to the asymptotic property of (enough fast) space factorization of
correlations. Then

ρ(·) = 1

Z
tr((·)e−−H−µN

T ) (52)

for some T > 0 and µ ∈ R. Z is a statistical sum defined by equation (23).
In other words the state 〈·〉 is a Gibbsian state.
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Proof. It follows from lemma 5 that

〈·〉
= 〈S−1(0,−∞)(·)S(0,−∞)〉0. (53)

This implies that

〈TΨ±
H(t1, x1)...Ψ

±
H(tn, xn)〉

= 〈S−1TΨ±
0 (t1, x1), ...,Ψ

±
0 (tn, xn)S〉0. (54)

But one can prove (in the sense of formal series of perturbation theory)
that the fact that 〈·〉 finite implies that 〈TΨ±

H(t1, x1)...Ψ
±
H(tn, xn)〉 is finite.

Therefore the Keldysh diagram technique for 〈TΨ±
H(t1, x1)...Ψ

±
H(tn, xn)〉 does

not contain divergences. Therefore lemma 4 implies that

〈a+(k)a+(k′)〉0 = 〈a(k)a(k′)〉0 = 0,

〈a(k)a+(k′)〉0 = δ(k − k′)
1

e
ω(k)−µ

T − 1
(55)

for some T > 0 and µ ∈ R. And it follows from lemma 2 that

〈·〉 = 1

Z
tr((·)e−−H−µT

T ). (56)

Therefore theorem is proved.
Remark. Note that we have supposed the following when we have proved

the theorem 2 above. If the state 〈·〉 is a finite state (does not contain the
divergences) then the divergences does not exist in each order in coupling
constant λ of the power decomposition of the state 〈·〉 according to pertur-
bation theory. We have not been prove this statement but it is essential to
suppose that this statement holds for all states of the physical interest.

3 The Bardeen — Cooper — Schrieffer

model on the language of generalized ther-

modynamics.

In this section we show how to formulate the Bardeen — Cooper — Schrieffer
model of suoercondactivity on the language of the generalized thermodynam-
ics. But at first let us recall several results on some model Hamiltonian in su-
perconductive theory which belong to Bogoliubov — Zubarev — Tserkovikov
[5,9].
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Let us consider a model dynamical system described by the following
Hamiltonian:

H =
∑

f

T (f)a+f a−
1

2V

∑

f ′,f

λ(f)λ(f ′)a+f a
+
−fa−f ′af ′ . (57)

Here we use the following notations:

f = (p, s), −f = (−p,−s). (58)

p is a particle’s momentum, s = ±1,

T (f) =
p2

2m
− µ, µ > 0. (59)

λ(f) = Jε(f) if |p



− µ| < ∆,

λ(f) = 0 if |p



− µ| > ∆,

ε((p, s)) = s, (60)

af , a
+
f are usual fermion annihilation-creation operators.

We will also consider the Hamiltonian H with some additional terms
which are the sources of creation and annihilation of pairs.

Hν = H − ν

2

∑

f

λ(f){a−faf + a+f a
+
−f},

ν > 0. (61)

Let C be an arbitrary complex number. Let us represent H as follows:

H = H0(C) +H1(C), (62)

where

H0(C) =
∑

f

T (f)a+f af −
1

2

∑

f

λ(f){C∗a−faf + Ca+f a
+
−f}+

|C|2
2

V (63)

and

H1(C) =
V

2
(
1

V

∑

f

λ(f)a+f a
+
−f − C∗)(

1

V

∑

f

λ(f)a−faf − C) (64)
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Note that H0(C) is a quadratic form on fermion annihilation-creation oper-
ators. So it may be diagonalized by mens of canonical fermion Bogoliubov
transformation. More precisely:

H0(C) =
∑

f

√
λ+(f)|C|2 + T 2(f)(a+f uf + a−fv

∗
f)(afuf + a+−fvf ) +

+
V

2
(|C|2 − 1

V

∑

f

[
√

λ2(f)|C|2 + T 2(f)− T (f)]), (65)

where

uf =
1√
2
(1 +

T (f)√
λ2(f)|C|2 + T 2(f)

)1/2, (66)

vf = −ε(f)√
2
(1− T (f)√

λ2(f)|C|2 + T 2(f)
)1/2

C

|C| (67)

Note that u(−f) = u(f) and v(−f) = −v(f). Function u is a real-valued
function and function v is a complex-valued function, and u2 + |v|2 = 1.
These implies that the operators

αf := afuf + a+−fvf ,

α+
f = a+f uf + a−fv

∗
f (68)

are the operators of the fermion type.
Put by definition:

J(C) :=
1

2V

∑

f

λ(f)a+f a−f − C∗. (69)

Now the expression for H1(C) could be rewritten as follows:

H1(C) = −V

2
J∗(C)J(C). (70)

Let Γ be an arbitrary (low bounded) Hamiltonian. Denote by 〈·〉Γ,T the av-
eraging with respect to the Gibbs distribution corresponding to the Hamil-
tonian Γ and the temperature T :

〈·〉Γ,T :=
tr((·)e−Γ

T )

tr(e−
Γ
T )

. (71)
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Let us consider the following equation:

〈J(C)〉H0(C),T = 0 (72)

on the variable C. This equation is called the equation of compensation. Note
that H0(C) is a quadratic form on creation-annihilation operators. Therefore
the equation of compensation could be rewritten explicitly as follows [5]:

1 =
1

2V

∑

f

λ2(f)√
λ2(f)|C|2 + T 2(f)

th{
√

λ(f)|C| + T (f)

T
}. (73)

In the limit V → ∞ this equation will take the form:

1 =
1

(2π)2

∫
λ(p)d3p√

λ2(p)|C|2 + T 2(p)
th{

√
λ(f)|C| + T (p)

T
}. (74)

It is well-known fact that last equation has a non-zero solution for all temper-
ature T < Tcr for some critical temperatures T < Tcr for some temperature
Tcr. We will consider only the case when T < Tcr. Let C0 be an arbitrary
solution of the equation (72) or equation (73). Note that if C0 is a solution
of equation (73) then C0e

iφ is a solution of equation (73) too for an arbi-
trary real number ϕ. Let C ′

0 is a positive solution of the equation (1) or
equation (73). Now let us formulate main results of Bogoliubov, Zubarev,
Tserkovnikov [9] concerned with the system under consideration.

Let Γ be a Hamiltonian of some system contained in some volume V).
Denote by FΓ(V, T ) the free (Gibbsian) energy of this system corresponding
to the temperature T . Then the following equalities hold

lim
V→∞

FH(V, T )

V
= lim

ν→∞, ν>0
lim
V→∞

FHν
(V, T )

V
= lim

V→∞

FH(C0)(V, T )

V
. (75)

Now, let us consider quasi-averages

≺ ...a+fj ...afs ... ≻H,T :=

= lim
ν→0, ν>0

lim
V→∞

〈...a+fj ...afs ...〉Hν ,T (76)

Here 〈...a+fj ...afs ...〉Hν ,T are fermion creation-annihilation operators in Heisen-

berg representation. The following equation holds [9,5]:

≺ ...a+fj ...afs ... ≻H,T

= lim
V→∞

〈...a+fj ...afs ...〉H(C′
0),T

. (77)
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Now let us consider the following Hamiltonian Hϕ
ν instead of Hν :

Hϕ
ν = −ν

2

∑

f

λ(f){a−fafe
iϕ + a+f a

+
−fe

−iϕ}, (78)

where ϕ is an arbitrary. We will have again the equality (75), or more
precisely:

lim
V→∞

FH(V, T )

V
= lim

ν→∞, ν>0
lim
V→∞

FHϕ
ν
(V, T )

V
= lim

V→∞

FH(C0)(V, T )

V
. (79)

where we put now

≺ ...a+fj ...afs... ≻H,T

= lim
ν→0, ν>0

lim
V→∞

〈...a+fj ...afs ...〉Hϕ
ν ,T (80)

and

C
ϕ
0 := C0e

iϕ. (81)

It is necessary to note that the equation of compensation (73) is equal to a
condition of the minimum of free energy FH(C0)(V, T ) on C at fixed energy T )
(see [5]). Recall that FH0(C) is a free energy of the dynamical system which
is described by the Hamiltonian H0(C) and contained in volume V at the
temperature T . But the condition that C0 corresponds to the minimum of
free energy FH0(C0) is equivalent to the following condition: the entropy of our
system SH0(C) achieve the maximum at the point C = C0 (as a function of C)
at fixed energy E. Last remark admit us to suppose that thermodynamics of
our model could be described in terms of our generalized thermodynamics and
the parameter C here plays the role of the observable values of commuting
integrals of the system.

Let us recall that one of the basics principles of Generalized thermody-
namics states the following. The observable values of of the commuting first
integrals (from microcanonical distribution) which may be realized in nature
must corresponds to the maximum of the entropy (under fixed energy).

Let us start to reformulate thermodynamics of our model in terms of
the generalized thermodynamics. It follows from the basics principles of
statistical mechanics that one can use the microcanonical distribution:

ρE(C) := constδ(H(C)−E) (82)
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instead of the canonical distribution

ρT =
e−

H0(C)
T

tr(e−
H(C)

T )
. (83)

the entropy corresponding to the distribution has the form:

S(E,C) = trδ(H(C)− E). (84)

Note that in equation (82) and (84) by symbol δ(x) we mean some regular-
ization of δ-function δ-function ∆(x) defined as follow:

∆(x) = 0, if |x| > ∆



∆(x) =
1

∆
, if |x| < ∆


(85)

where ∆ is some small positive real number (asymptotical constant as V →
∞).

Let us consider the following symplectic manifoldS2 with the canonically-
conjugated variables SR, SI , ΦR, ΦI on it defined as follows.

Variables SR, SI run the whole real line, but variables ΦR, ΦI are defined
modulo the substitutions:

ΦR 7→ ΦI + 2πn,

ΦI 7→ ΦI + 2πn,

(86)

where n ∈ Z. The Poisson brackets of variables SR, SI , ΦR, ΦI by definition
has the form:

(SR, SI) = (ΦR,ΦI) = 0,

(SR,ΦI) = (SI ,ΦR) = 0,

(SR,ΦR) = (SI ,ΦI) = 1.

(87)

Let S1 be a (non-commutative) phase space of the dynamical system, de-
scribed by the Hamiltonian (57). Let S be a direct product of the (non-
commutative)spaces S1 and S2, S = S1 ×S2. Now let us consider the dy-
namical system on the space S which described by Hamiltonian H0(SR+SI).
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It is evident that the dynamical variables SR and SI are the commuting first
integrals with respect to the Hamiltonian H0(SR + iSI). The generalized
micro-canonical distribution corresponding to the integral H0(SR + iSI) and
the integrals SR and SI could be written as follows:

SS(E,C) := trS

∫
dΦR...dSIδ(H(SR + iSI)−E)

×δ(SR −RC)δ(SI − IC) = S(E,C) + c. (88)

Here S(E,C) is defined by equation (84), c is some real constant which
does not depend on E and C and symbol trS means trace over the Hilbert
space of our model dynamical system described by the Hamiltonian (57).
Recall that one of the basics principles of our generalized thermodynamics
state that the observable value of C (which may be realized in nature) must
corresponds to the maximum of SS(E,C) (at fixed energy E). We have
proved that this condition is equivalent to the equation of compensation
(72). Therefore, we have formulated the thermodynamics of our model in
terms of generalized thermodynamics. Note also that all nonzero solutions
of equation of compensation form some one-dimensional manifold. So the
entropy SS(E,C) (at fixed energy) has one- dimensional plateau.

4 On some new method of derivation of

Boltzmann kinetic equation.

In the present section we consider Bose gas with weak pair enough good
interaction. For this system we derive usual kinetic Boltzmann equation in
the limit of weak interaction by some new method. We consider a single mode
of Bose gas (corresponding to some momentum k as an oscillator interacting
with other modes as an oscillator interacting with thermostat. To study
the evolution of this fixed mode interacting with other modes (considered as
thermostat) we will use the so called statistical perturbation theory [10].

One of the interesting consequence from non-ergoding theorem states the
following. To obtain an irreversible macroscopic evolution from the reversible
microscopic evolution one need to take into account the behavior of the sys-
tem at its boundary. In other words it is impossible to prove that the ther-
malization takes place in the system if we neglect by the role which plays the
environment of the system in this process. The derivation of kinetic equa-
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tions presented in this section gives us a new point of view at the role which
plays the environment of the system in the process of its thermalization.

So let us consider a model dynamical system, described by the following
Hamiltonian,

H = H0 + λV, (89)

where H0 is a free Hamiltonian

H0 =

∫
(
k2

2
− µ)a+(k)a(k)d3k (90)

and

H1 =
λ

2

∫
d3p1d

3p2d
3q1d

3q2v(p1, p2|q1, q2)

×δ(p1 + p2 − q1 − q2)a
+(p1)a

+(p2)a(q2)a(q1) (91)

Here a+(k), a(k) are usual Bose creation-annihilation operators (described
in section 2), µ ∈ R is a chemical potential λ ∈ R is a coupling constant.
v(p1, p2|q1, q2) is a test function from the Schwartz space such that

v(p1, p2|q1, q2) = v∗(q1, q2|p1, p2). (92)

Note that the Hamiltonian which describes Bose gas with weak (enough
good) is a Hamiltonian of such form.

Now let us briefly describe the representation of quasi-particles in sta-
tistical mechanics. We will use this representation below when we try to
establish the form of the density operator for non-equilibrium state.

Let us consider Bose Gas contained in macroscopic volume V . Let us
formulate the main physical assumption which lays in the fundament of
quasi-particles representation. The classification of the energetic levels of
interacting particle could be described in the same manner as a classification
of energetic levels of the system of non interacting particles. Therefore the
energetic levels of the system could be described by means of real valued
pointwise positive function n(p) of momentum p ∈ R

3. One can interpret
the density function n(p) as a density of quasi-particles with momentum p.
In other words n(p)d3p is a number of particles with momenta from infinites-
imally small volume (in momenta space) d3p with the center at p. Let E[n]
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be an energy of an energetic level corresponding to the function n(p). Let
ε(p) be a functional derivation of E[n] with respect n(p), i.e.

ε(p, [n]) =
δE[n]

δn(p)
. (93)

One can interpret ε(p) as a dispersion low of quasi-particles. We have sup-
posed that the classification of energetic levels of interacting system is the
same as a classification of energetic levels of non-interacting system. There-
fore the entropy of the system corresponding to the density function n(p) has
the form:

S[n] =

∫
d3p[(1 + n(p)) ln(1 + n(p))− n(p) lnn(p)]. (94)

Note that the dynamics of (isolated) interacting system differs from the dy-
namics of non-interacting systems only in the following/ The dispersion low
for ε(p, [n]) for interacting system depends of the density function n.

Therefore for all piece-wise continuous functions f(p) the quantities

K[f ] =

∫
n̂(p)f(p)d3p (95)

are commuting integrals of motion. Here, by definition

n̂(p) := α+(p)α(p) (96)

and α+(p) and α(p) are formally defined operators of quasi-particles, satis-
fying to the Bose-Einstein statistics.

Note that last observation is the main idea of the proof of non-ergodic
theorem. More precisely for the systems which contains of finite number
of particles (quantum fields) wave operator W (defined in section 2) maps
dynamics of free particles into dynamics of interacting particles. Therefore
it is essential try to find the construction analogues to the construction of
wave operators to build the quasi-particles representation. But the series of
perturbation theory obtained by such a way contain (secular) divergences.
One of the authors comes to non-ergodic theorem when tried to renormalize
such divergences.

Let {Oi|i = 1, 2, 3...} is a decomposition of R3 into a set of domains such
that ∀i 6= j Oi ∩Oj ⊂ ∂Oi ∪ ∂Oj , where ∂U means the boundary of the set
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U . Suppose that ∀i = 1, 2, 3...N and ∀p, p′ ∈ Oi the difference p− p′ is very
small. ∀i = 1, 2, 3... put by definition

Ki =

∫

Oi

n̂(p)d3p (97)

Now let us find the form of distribution function n(p) corresponding to some
(generally) equilibrium state (in the sense of generalized microcanonical dis-
tribution) which corresponds to fixed values K ′

i of integrals Ki, i = 1, 2, 3, ....
It is evident that (generally) equilibrium distribution function n(p) cor-

responds to (relative) maximum of the entropy S(n) under the following
constrains:

Ki[n] :=

∫
d3pn(p) = K ′

i,

i = 1, 2, 3.... (98)

and

E[n] = E. (99)

According to the method of undefined lagrange multipliers we reduce this
problem to the solution of the following system of equations

δ

δn(p)
{−

∞∑

i=1

Gi[(1 +
Ni

Gi
) ln(1 +

Ni

Gi
)− Ni

Gi
ln

Ni

Gi
]

−
N∑

i=1

µiNi + E[n]} = 0, (100)

where

Gi :=

∫

Oi

d3p (101)

and

Ni =

∫

Oi

n(p)d3p,

i = 1, 2, 3... (102)
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This system of equation could be immediately solved and one finds

n(p) =
1

e
ε(p,[n])−µ(p)

T − 1
, (103)

where

µ(p) = µi ∈ R, ifp ∈ Oi (104)

and T some positive number
In other words if one moves from generalized microcanonical distribu-

tion to the generalized microcanonical distribution this is equivalent to the
following. The chemical potential µ becomes to the function of momenta p.

Note that in spite of volume V is macroscopic it is finite. Therefore the
set of all possible momenta is discrete {pi|i = 1, 2, 3...}. Let by definition ni

be a number of particles with momentum pi.
∀i = 1, 2, 3, ... the cells Oi corresponds to the approximately equal fre-

quencies. Therefore each two states corresponding to the same numbers
Ni, i = 1, 2, 3, .... corresponds to approximately the same energy. There-
fore all the states corresponding to the same numbers Ni i = 1, 2, 3, ... have
approximately the same probabilities.

One can easily find the form of the distribution function ρi(ni) by using
the method of the most probable distribution. Omitting the well-known
reasoning one finds

ρi(ni) =
e−

ε(pi,[n])ni−µini
T

Zi
, (105)

where Zi is a real positive number such that

∞∑

n=0

ρi(n) = 1. (106)

Therefore the (generalized) equilibrium state of quasiparticles could be
described by means the Gauss state on the algebra of canonical commutative
relations generated by α(p), α+(p) of the form

〈α(p)α(p′)〉 = 〈α+(p)α+(p′)〉 = 0,

〈α+(p)α(p′)〉 = δ(p− p′)(1 + n(p)),

n(p) = δ(p− p′)
1

e−
ε(p,[n])−µ(p)

T − 1
, (107)
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µ(p) = µi, ifp ∈ Oi. (108)

So, let us consider a single mode of momenta ki interacting with other
modes of Bose gas as with a thermostat. To analyze this system we will use
so-called statistical perturbation theory [10]. Bogoliubov [10] has considered
the following system. He has considered the Hamiltonian system of n degrees
of freedom described by the Hamiltonian H(p, q) in the field of external force
εf(t), ε ∈ R. So, total Hamiltonian of the system has the form

Γ = H + εf(t)P, (109)

where P (p, q) is some function of canonically-conjugated of momenta and
coordinates. We also suppose that external force f(t) is the function of time
t of the form:

f(t) =
∑

ν

aν cos(νt + ϕν). (110)

Here the phases ϕν are independent random quantities uniformly distributed
on circle. We also suppose that the spectrum of frequencies is almost con-
tinuous so we can the sums of the form

∑

ν

F (ν)a2ν (111)

for continuous functions F (ν) replace by the integral

+∞∫

0

F (ν)I(ν)dν. (112)

Let Dt denote the probability density of momenta and coordinates at
fixed time moment t under the condition that phases ϕν take some defined
values. The probability density of momenta and coordinates in usual sense
(for arbitrary values of phases ϕν) could be obtained from Dt by means of
averaging over the phases ϕν . In other words

D0 = ρ0. (113)

The evolution of Dt in times could be described by means well known Liou-
ville equation

∂Dt

∂t
= (H,Dt) + εf(t)(P,Dt), (114)
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where (A,B) denotes usual Poisson Brackets defined by the formula

(A,B) =
n∑

i=1

(
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi
). (115)

Let us introduce the following one-parameter group of operators Tt acting on
dynamical variables according to the formula

TtF (p, q) = F (pt, qt), (116)

where (pt, qt) are the solution of canonical Hamiltonian equations

dpt

dt
= −∂H(pt, qt)

∂qt
,

dqt

dt
=

∂H(pt, qt)

∂pt
, (117)

corresponding to the following initial conditions

p0 = p,

p0 = p. (118)

In these assumptions and denotations in the limit of small coupling constant
ε it is derived [Bogoliubov, 1945] the following equation on ρt

∂ρt

∂t
= (H, ρt) + ε2

t∫

0

∆(t− τ)(P, (Tt−τ (P, ρτ)))dτ, (119)

where

∆(τ) =
1

2

+∞∫

0

I(ν) cos(ντ)dτ. (120)

The equation (119) could be essentially generalized to the case of quantum
mechanics. It is enough to replace the Poisson brackets by the commutator.

Note that the random force f(t) here is an example of random processes.
Recall that the random process is the set (T, ft), where T = (S,Σ, P ) is a
Kolmogorov triple (S is some set, Σ is a σ-algebra, P is a probability measure
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on S defined on sets from Σ). ft is a map which to an arbitrary t ∈ R assigns
a random quantity i.e. a measurable (with respect to Σ) function on S. Note
that the equation (119) could be rewritten as follows

∂ρt

∂t
= (H, ρt) + ε2

t∫

0

f(t)t(τ)(P, (Tt−τ (P, ρt)))dτ, (121)

where ξ means the mathematical expectation of ξ i.e.

ξ̄ :=

∫

S

ξ(x)dP (x). (122)

Note that how it follows from the derivation of equation (119) [Bogoliubov,
194] it is not necessary that f(t) has the form described previously. It is
enough that f(t) has the form

f(t) =
∑

ν

1

2
(fνe

iνt + f ∗
ν e

−iνt), (123)

where fν are random quantities such that ∀µ, ν,

fµ = f ∗
µ = 0, (124)

fµfν = f ∗
µf

∗
ν = 0, (125)

and

fνfµ = δµνIν . (126)

The spectrum of frequencies {ν} is supposed almost continuous such that
one can replace the sums

∑

ν

IνF (ν) (127)

for continuous functions F (ν) by the integral

+∞∫

0

I(ν)F (ν)dν. (128)
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Now note that the generalization of a Kolmogorov triple to noncommutative
(quantum) case is a pair consisting of an unital ⋆-algebra A and a state 〈·〉
on it. By definition state is a normalized positively defined linear functional
on the algebra. Normalization condition means that 〈1〉 = 1, where 1 is a
unite of A. Positively definiteness means that ∀a ∈ A 〈aa⋆〉 ≥ 0.

The algebra A plays the role of the space of measurable functions on
(nonexisting) noncommutative space. The state 〈·〉 plays the role of inte-
gration on this state. The involution ⋆ plays the role of pointwise complex
conjugation.

By definition the noncommutative random process is a map which to an
arbitrary t ∈ R assigns an element at of A. We say that noncommutative
random process {at|t ∈ R} is a real-valued process if ∀t ∈ R at = a⋆t .

The equation (119) could be generalized to the case of noncommutative
(quantum) systems. More precisely let total Hamiltonian of the system has
the form

H = H0 + ε(f(t)P + f+(t)P+), (129)

where f(t) is a noncommutative random process of the form

f(t) =
∑

ν

fνe
iνt, (130)

∀µ,

〈fµ〉 = 〈f ⋆
µ〉 = 0, (131)

and ∀µ, ν

〈fµfν〉 = 〈f ⋆
µf

⋆
ν 〉 = 0, (132)

〈f ⋆
µfν〉 = Iνδµν ,

〈fµf ⋆
ν 〉 = Jνδµν . (133)

The spectrum of external force f(t) is assumed almost continuous such that
we can replace the sums

∑

ν

F (ν)Iv,

∑

ν

F (ν)Jν (134)
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by the integrals

+∞∫

0

F (ν)I(ν)dν,

+∞∫

0

F (ν)J(ν)dν (135)

respectively. In this case, instead of (119) we will have

∂ρt

∂t
= [H, ρt]

+ε2
t∫

0

〈[f ⋆(t)P ⋆, f(τ)Tτ−t([P, ρt])]〉

+ε2
t∫

0

〈[f(t)P, f ⋆(τ)Tτ−t([P
⋆, ρt])]〉. (136)

We suppose that our system is contained in some cube of volume V with
edges parallel to the coordinate axis. We suppose that the length od the
edges of this cube is equal to L. Therefore V = L3. Put by definition

K = {k = (kx, ky, kz)|
kx

2πL
,
ky

2πL
,
kz

2πL
∈ Z}. (137)

We need to use the discrete momentum representation for finite volume in-
stead of continuous momentum representation for infinite volume. Instead
of the Hamiltonian (89,90, 91) we need to use the following Hamiltonian in
finite volume:

HV = HV
0 +HV

1 , (138)

where

HV
0 =

∑

k∈K

ω(k)a+(k)a(k), (139)

and

ω(k) =
k2

2
. (140)
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HV
1 =

λ(2π)3

2V

∑

p1,p2;q1,q2∈K

∆(p1 + p2 − q1 − q2)v(p1, p2|q1, q2)

×a+p1a
+
p2
aq2aq1, (141)

where

∆(p) = 1, if p = 

∆(p) = 0, if p 6= , (142)

and a+p and ap are creation and annihilation operators in discrete momentum
representation.

Now let us consider a single mode corresponding to some fixed momentum
k ∈ K. Let us study how the state of this mode changes while time changes
from t to t + dt for infinitely small dt. To study how the density matrix
ρt of this mode changes at time interval [t, t + dt] one can suppose that
the thermostat evolves at this interval according to free dynamics. So one
can suppose that the mode corresponding to the momentum k affected by
external (noncommutative) force defined by this thermostat. In other words
we must take

Γ = H + λ(f(t)P + f ⋆(t)P+), (143)

where, by definition

H = ω(k)a+(k)a(k),

P = ak. (144)

External forces f(t) are the elements of the algebra A generated by operators
a+p , ap, p 6= k. External force f(t) has the form

f(t) =
(2π)3

V

∑

p1,p2,q1∈K\{k}

∆(p1 + p2 − q1 − k)v(p1, p2|q1, q2)

×a+p1a
+
p2
aq1e

i(ω(p1)+ω(p2)−ω(q1))t (145)

To obtain the differential equation for the density matrix for our fixed mode
we will average over the state 〈·〉 on the algebra A which is a Gauss state
and is defined by the following its pair correlator

〈apap′〉 = 〈a+p a+p′〉 = 0,

〈a+p ap′〉 = ∆(p− p′)n(p). (146)
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Note that external force f(t) has the form

f(t) =
∑

ν

fνe
iνt, (147)

where

fν =
(2π)3

V

∑

p1,p2,q1∈K\{k}

∆(p1 + p2 − q1 − k)

×∆(ω(p1) + ω(p2)− ω(q1)− ν)v(p1, p2|q1, q2)a+p1a+p2aq2 . (148)

Note that the averaged pair products of fν , f ⋆
ν satisfy to the equations

(132,133). Let ρt be a density matrix corresponding to our fixed single mode
with momentum k. Put by definition 〈·〉 = tr(·ρt).

Suppose that 〈·〉 be a Gauss state on the algebra A. Equation (136)
implies that ∀t > 0 the state 〈·〉t+dt is a Gauss state if the state 〈·〉t is a
Gauss state for infinitely small positive dt. Therefore if 〈·〉t is a gauss state
for all positive t if 〈·〉0 is a Gauss state (in the limit of weak pair interaction).
Let n̂p = a+p ap be an operator of the particle number corresponding to the
momentum p. Put by definition nt(p) = 〈n̂p〉t. Equation (136) implies that
(in the limit of weak pair interaction)

d

dt
nt(k) = −λ2

t∫

0

〈〈[a+k f ⋆(t), akf(τ)]〉t〉eiω(k)(t−τ)dτ

+λ2

t∫

0

〈〈[akf(t), a+k f ⋆(τ)]〉t〉e−iω(k)(t−τ)dτ

= −λ2

∫ t

0

{nt(k)〈f ⋆(t)f(τ)〉 − (1 + nt(k))〈f(τ)f ⋆(t)〉}eiω(k)(t−τ)dτ

+λ2

∫ t

0

{(1 + nt(k))〈f(t)f ⋆(τ)〉 − nt(k)〈f ⋆(τ)f(t)〉}e−iω(k)(t−τ)dτ

= −λ2nk(t)

t∫

−t

〈f ⋆(0)f(τ)〉e−iω(k)τdτ

+λ2(1 + nk(t))

t∫

−t

〈f(0)f ⋆(τ)〉eiω(k)τdτ. (149)
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Therefore

d

dt
nt(k)

= −λ2(2π)6

V 2

∑

p1,p2,q1∈K\{k}

|v(p1, p2|q1, k)|nt(q1)nt(k)(1 + nt(p1))(1 + nt(p2))

×∆(p1 + p2 − q1 − k)

t∫

−t

ei(ω(p1)+ω(p2)−ω(q1)−ω(q2))τdτ

+
λ2(2π)6

V 2

∑

p1,p2,q1∈K\{k}

|v(p1, p2|q1, k)|(1 + nt(q1))(1 + nt(k))nt(p1)nt(p2)

×∆(p1 + p2 − q1 − k)

t∫

−t

e−i(ω(p1)+ω(p2)−ω(q1)−ω(q2))τdτ(150)

But volume V is macroscopic. So we can replace the sums over K by integrals.
In result

d

dt
nt(k) = (2π)λ2

∫
d2p1d

3p2d
3q1δ(p1 + p2 − q1 − q2)

δ(ω(p1) + ω(p2)− ω(q1)− ω(k))× {(1 + nt(q1))(1 + nt(k))nt(p1)nt(p2)

−nt(q1)nt(k)(1 + nt(p1))(1 + nt(p2))}.(151)
So we have obtain the usual kinetic equation for Bose gas in the limit of weak
interaction.

5 Integrals for non-linear partial differential

equations.

Solitary perturbations from generalized thermodynamics. Let us
consider some system of statistical mechanics such that there second-order
phase transition takes place at some temperature Tcr. Suppose that this
transition concerning with some symmetry breaking. As an example of such
system one can take some superfluid or superconductive system. Let 〈·〉 be
(generally) equilibrium translation-invariant stationary state corresponding

to the temperature T < Tcr. Suppose that 〈~P 〉 = 0, where 〈~P 〉 is a mo-
mentum operator. Let K be some inertial reference system which moves
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with velocity v. Let U ⊂ R
3 be some domains of microscopical sizes tightly

connected with reference system K. Domain U by definition is macroscopic.
Therefore, according yo the non-ergodic theorem [1] there exist integrals
K1, ..., KN in involution for the part of our system contained in U . Accord-
ing to our generalized thermodynamics, the distribution function for the part
of our system, contained in U has the form:

ρ(x) = constδ(H(x)− E)
N∏

i=

δ(K ′
i(x)−K ′

i). (152)

Now let us show, that the entropy of the system contained in U :

S(E,K ′
1, ..., K

′
n) = ln

∫
dΓxδ(H(x)− E)

N∏

i=1

δ(H(x)− E)

N∏

i=1

δ(Ki(x)−K ′
i)(153)

achieve a maximum at some D > 0 dimensional manifold M as a function
of integrals K1, ..., KN at fixed energy E. Indeed suppose that the entropy
achieve a maximum (at fixed energy) at isolated point. In this case the (gen-
eralized) microcanonical distribution gives us the same results as standard
microcanonical distribution

ρ(x) = constδ(H(x)−E). (154)

But for this distribution all the symmetries of the Hamiltonian H(x) are
preserved. Therefore the entropy S(E,K ′

1, ..., K
′
N) achieve a maximum at

some M > 0 dimensional manifold as function of K ′
1, ..., K

′
N .

Therefore we can chose the observable values K ′
1, ..., K

′
N of the integrals

K1, ..., KN such that (the intensive) properties of the system will be quali-
tatively different from the analogues properties of other part of the system
(outside of U) and values K ′

1, ..., K
′
N corresponds to the maximum of the

entropy. According to our generalized thermodynamics this state is stable.
For example, for superfluid gases, the the phase of condensate wave function
inside U may differ from the phase of condensate wave function outside of
U . If we return into initial (static) reference system we obtain a non-trivial
perturbation of the state 〈·〉 which moves with constant velocity without
dissipation. Such perturbation we will call thermodynamical solitons.

An example of thermodynamical soliton. The Abrikosov Vor-
tices. As an example of thermodynamical soliton we consider the situation
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which arise in the superfluidity theory if one studies the condensate wave
function [11].

Let Ψ̂(x) and Ψ(x) be secondary quantized wave function and its
hermitian-conjugated. Let Ξ̂ and Ξ̂+(x) be the parts of the function Ψ̂(x)
and Ψ̂+(x) which change by one number of condensate particles and preserve
others quantum numbers. In other words, by definition:

Ξ̂(x)|N + 1, m〉 = Σ(x)|N,m〉,
Ξ̂+(x)|N,m〉 = Σ∗(x)|N + 1, m〉 (155)

Here

Ξ(x) := 〈N,m|Ξ(x)|N + 1, m〉, (156)

and Ξ∗(x) is a complex-conjugated to Ξ(x) function. N is a number of
condensate particle m is a number of other quantum numbers of the system.
Let us represent Ψ̂(x) and Ψ(x) as follows:

Ψ̂(x) = Ξ(x) + Ψ̂′(x),

Ψ̂+(x) = Ξ+(x) + Ψ̂′+(x). (157)

In thermodynamical limit N → ∞ the difference between the states |N,m〉
and |N + 1, m〉 disappears at all. Therefore the operators Ξ̂(x) and Ξ̂+(x)
becomes the operators which commutes to each other and commutes with
Ψ̂′(x) and Ψ̂′+(x). In other words Ξ̂(x) and Ξ̂+(x) becomes the classical
variables. Now let us write the (partial) differential equation on condensate
wave function Ξ(x). Let us consider a weakly non-ideal Bose gas at absolute
zero of temperature. Almost all particles in such a gas are in condensate state.
In terms of secondary-quantized wave function this means that the over-
condensate part Ψ̂′(x) is small with respect to the condensate wave function
Ξ̂(x). If we neglect by small over-condensate part Ψ̂′(x) the condensate wave
function will satisfy to the same Schrodinger equation as the equation which
take place for the operator Ψ̂(x). I.e.

i
∂

∂t
Ξ(x, t) = (− 1

2m
∇2 + µ)Ξ(x, t)

+Ξ(x, t)

∫
|Ξ(x′, t′|2U(x− x′)d3x′. (158)

Here U(x) is an interaction potential µ = nU0, n is a density of particles in
gas and U0 :=

∫
U(x)d3x. This equation is called the Pitaevskii equation.

37



We will show now that the Pitaevskii equation will precise in the limit when
the interaction constant tends to zero. Let us suppose that the interaction
potential U(x) depends on small positive parameter λ as follows

U(x|λ) := λλ3/2U(x
√
λ). (159)

For example if U(x) = δ(x) then U(x, λ) = λδ(x). Let us introduce new
condensate wave function:

Σ′(x, t) = Σ(x
√
λ, tλ). (160)

In the limit λ → 0, Σ′(x, t) will satisfy precisely to the Pitaevskii equation
(158). The fact that the Pitaevskii equation will be satisfied precisely will
follows from the fact that all particles will be in condensate in limit λ → 0
and the over-condensate wave function will be equal to zero in the limit
λ → 0.

The (partial) differential equation for the order parameter of
the system has a lot of non trivial first integrals. In this subsection
we consider only super fluid systems. These systems are described by the
condensate wave function Ξ(x) defined on R

3. The condensate wave function
play the role of order parameter for the system. In the limit λ → 0 the
condensate wave function Ξ(x) and its complex conjugated Ξ∗(x) are the
canonically-conjugated coordinates on some (infinitely-dimensional) phase
space. The Poisson brackets of Ξ(x) and Ξ∗(x) has the form:

(Ξ(x),Ξ∗(x′)) = δ(x− x′). (161)

The evolution of the condensate wave function Ξ(x) is a Hamiltonian evo-
lution with respect to the Poisson brackets (161). The corresponding
Hamiltonian (for an arbitrary temperature) is F (Ξ(x),Ξ+(x))|T ), where
F (Ξ(x),Ξ+(x))|T ) is a free (Gibbsian) energy of the system under the con-
dition of fixed condensate wave function Ξ(x). Now we will introduce the
assumption of so called asymptotically completeness and prove that the equa-
tion for order parameter has a lot of first integrals in involution under this
assumption.

Asymptotical completeness. Let Ξ(x, t) be a solution of the Pitaevskii
equation (158) which is localized (in some essential non rigorous sense) in
some finite domain of the space at t = 0. We ssaume that this solution splits
as t → ∞ into the set of separated thermodynamical solitons described in
the beginning of this section.
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So let us suppose that the asymptotical completeness takes place.
In this case first integrals for the system, defined by the Hamiltonian
F (Ξ(x),Ξ+(x))|T ) (for the temperature T = 0) could be described as fol-
lows.

Let L be a cubic lattice in R
3. Let {Ci| i = 1, 2, 3, ...} be the set of all

elementary cubes of L. We suppose that the sizes of cubes Ci are macroscopic.
We will also denote by Ci (∀i = 1, 2, 3, ...) the part of our system contained in
the cube Ci. ∀i = 1, 2, ... system Ci is macroscopic. So Let {Kj

i }, j = N be
some set of its first integrals in involution. We have shown [2] that number
N could be chosen as large as needed if each system Ci is enough large. Let
∀~a ∈ R

3 Ta : R
3 → R

3 is a map defined as follows:

Ta : x 7→ x+ ~a. (162)

∀~a ∈ R
3 put by definition C(~a) = T~aC.

Let ~a be an arbitrary vector from R
3. Denote by K

j
i (a), j = 1, 2, 3, ... the

integrals of the system Ci(~a) obtained from K
j
i by translation on vector ~a in

obvious sense.
Let ∀~a ∈ R

3 Kj
i (~a) = 〈Kj

i (~a)〉Ξ,Ξ∗,T=0. Here 〈·〉Ξ,Ξ∗,T by definition is an
averaging by relative Gibbs distribution corresponding to fixed Ξ(x) and Ξ∗

and the temperature T .
Now let Ξ(x) be some localized in the space function. Let Ξ(x, t) be

a solution of Pitaevskii equation such that Ξ(x, 0) = Ξ(x). Recall that
Pitaevskii equations are Hamiltonian equations with respect to Hamiltonian
F (Ξ(x),Ξ+(x))|T ). According to the asymptotic completeness assumption if
chose enough large time t we can assume that Ξ(x, t) is a set of space sepa-
rated thermodynamical solitons such that for each i = 1, 2, 3... each cube Ci

has nontrivial intersection at most with one of such solitons. ∀j = 1, 2, ...N
put by definition:

Kj(Ξ,Ξ
∗) =

∫

C1

d3~a

∞∑

i=1

Kj
i (~a(Ξ(x, t),Ξ

∗(x, t)). (163)

It is evident that this definition do not depend on t (if t is enough large) and
Kj(Ξ,Ξ

∗) are integrals of motion.
Theorem. Integrals Kj(Ξ,Ξ

∗), j = 1, 2, ..., N are in involution i.e. com-
mutes to each other.
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Proof. Suppose that the time t is chosen as above. We have:

(Km(Ξ,Ξ
∗),Kn(Ξ,Ξ

∗))

=

∫ ∫

C1×C1

d3~a1d
3~a2

∑

i,j=1,2,...

(Ki
m(Ξ(t),Ξ

∗(t)),Kj
n(Ξ(t),Ξ

∗(t)))

=

∫ ∫

C1×C1

d3~a1d
3~a2

∫ ∫

R3×R3

d3x1d
3x2

×
∑

i,j=1,2,...

δKi
m(Ξ(t),Ξ

∗(t))

δΞ(x1)
,
δKj

n(Ξ(t),Ξ
∗(t))

δΞ∗(x2)
× (Ξ(x1),Ξ

∗(x2))

+

∫ ∫

C1×C1

d3~a1d
3~a2

∫ ∫

R3×R3

d3x1d
3x2

×
∑

i,j=1,2,...

δKi
m(Ξ(t),Ξ

∗(t))

δΞ∗(x1)
,
δKj

n(Ξ(Ξ(x2)

δΞ(x2)
× (Ξ∗(x1),Ξ(x2)). (164)

Therefore to prove that the Poisson Bracket (Km(Ξ,Ξ
∗),Kn(Ξ,Ξ

∗)) is equal
to zero it is enough to prove that the following equalities holds:

δKi
m(Ξ,Ξ)

δΞ(x)
=

δKi
m(Ξ,Ξ

∗)

δΞ∗(x)
= 0 (165)

for all i = 1, 2, 3..., j = 1, ..., N , ~a, x ∈ R
3. Let us prove second of these

equalities. Second of these equalities could be proved by analogy.
Fix a cube Ci(~a). Suppose that the soliton (at most one) which has

nontrivial intersection with Ci(~a) has zero velocity. In the opposite case we
can chose an inertial system such that the soliton has zero velocity in this
new system. Then we just perform all reasoning below in this moving system.

The (non-commutative) phase space of the system Ci(~a) could be repre-
sented as a direct product of two non-commutative phase spaces S1 × S2

where the phase space S1 is a classical space and Ξ(x) and Ξ∗(x) are the
set of canonically-conjugated coordinates on it. And the space S2 roughly
speaking corresponds to over-condansate particles. Let H be a Hilbert space
corresponding S1. Hamiltonian H and the integrals Kj of the system Ci(~a)
are the functionals of Ξ(x) and Ξ∗(x) which take values in the space of op-
erators acting in H. We have

Ki
m(Ξ,Ξ

∗) =
tr(Km(Ξ,Ξ

∗)exp(−H(Ξ,Ξ∗)
T

))

tr(exp(−H(Ξ,Ξ∗)
T

))
. (166)
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Here trace is taken over the space Hi(~a). We have

δKi
m(Ξ,Ξ)

δΞ(x)
=

tr{ δKm(Ξ,Ξ∗)
δΞ(x)

exp(−H(Ξ,Ξ∗)
T

)}
tr(exp(−H(Ξ,Ξ∗)

T
))

+

1∫

0

ds
{trKm(Ξ,Ξ

∗)exp(−s
H(Ξ,Ξ∗)

T
) δH(Ξ,Ξ∗)

δΞ(x)
exp(sH(Ξ,Ξ∗)

T
)exp(−H(Ξ,Ξ∗)

T
)}

tr(exp(−H(Ξ,Ξ∗)
T

))

−tr{Km(Ξ,Ξ
∗)exp(−H(Ξ,Ξ∗)

T
)}

tr(exp(−H(Ξ,Ξ∗)
T

))

tr{ δH(Ξ,Ξ∗)
δΞ(x)

exp(−H(Ξ,Ξ∗)
T

)}
tr( δH(Ξ,Ξ∗)

δΞ(x)
exp(−H(Ξ,Ξ∗)

T
))
(167)

Let us show that each of three term in right hand side of this equation is
equal to zero. Let us consider the third term. It is evident that this term
is proportional to Ξ̇(x, t). But the soliton which has nontrivial intersection
with Ci(~a) moves with zero velocity. So, this term is equal to zero. Let us
consider first term:

tr{ δKm(Ξ,Ξ∗)
δΞ(x)

exp(−H(Ξ,Ξ∗)
T

)}
tr(exp(−H(Ξ,Ξ∗)

T
))

. (168)

This term is proportional to 〈Ξ′(x, t)〉, where dash means the derivative cor-
responding to the flow, which generates by Km(Ξ,Ξ

∗). The averaging here
is an averaging over generalized microcanonical distribution. The flow gen-
erated by Km(Ξ,Ξ

∗) preserve this microcanonical distribution. Therefore
〈Ξ′(x, t)〉 = 0.

At last let us consider second term. Let us represent it as follows:

+∞∑

n=0

1

n!

1∫

0

(− s

T
)n
{trKm(Ξ,Ξ

∗)[H(Ξ,Ξ∗), ...[H(Ξ,Ξ∗), δH(Ξ,Ξ∗)
δΞ(x)

]...]exp(−H(Ξ,Ξ∗)
T

)}
tr(exp(−H(Ξ,Ξ∗)

T
))

(169)

Note that the iterated commutator here remains finite if the volume of Ci(~a)
tends to infinity. Note that the averaging in last formula is an averaging over
the generalized microcanonical distribution:

ρ = constδ(H −E)

N∏

j=

δ(Kj −K ′
j) (170)
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In result in each term of series (169) the integral Kmm(Ξ,Ξ∗) could be re-
placed by its observable value K ′

m. In result the second term is equal to

K ′
mtr(

δH(Ξ,Ξ∗)
δΞ(x)

exp(−H(Ξ,Ξ∗)
T

))

tr(exp(−H(Ξ,Ξ∗)
T

))
(171)

One can prove that this term is equal to zero by the same method as has
been used for third term. Therefore the theorem is proved.

Programm — Hypothesis. So we have proved that the equation for
condensate wave function (hamiltonian with respect to F (Ξ,Ξ∗|T )) admit a
lot of independent first integrals in involution (in limit λ = 0, T = 0). In the
limit λ = 0, T = 0 the condensate wave function (after suitable rescaling of
space coordinates and time) satisfies to Pitaevskii equation. Pitaevskii equa-
tion is a non linear Schrodinger equation. In 1D case the nonlinear Pitaevskii
equation is an completely integrable system. But we have proved that in 3D
case nonlinear Schrodinger equation (under the assumption of asymptotical
completeness) admit a lot of independent integrals in involution. Therefore
there arise the following program-hypothesis of constructing (not necessary
completely) integrable systems. One can take some system of statistical me-
chanics such that there exists a phase transition of second order at some
temperature concerning with some symmetry breaking. Then one may find
some small parameter η for this system and write some (partial) differential
equation for the order parameter in the limit λ = 0 by some exact asymptot-
ical method. Obtained equation will be a hamiltonian system which admit
a lot of independent commuting first integrals in involution.

6 Conclusion.

In the present paper we have considered some physical examples to illustrate
basics principles of the generalized thermodynamics, developed in [2]. I am
very grateful to A.V. Koshelkin for valuable critical comments on this article
and very useful discussions.
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