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Abstract

This paper presents a study of the applicability boundary of the

well-known quantum �eld theory. Based on the results of black hole

thermodynamics, it is shown that this boundary may be lying at a

level of the energy scales much lower than the Planck's. The direct

inferences from these results are given, speci�cally for estimation of

a cosmological term within the scope of the quantum �eld theory.

1 Introduction

The local quantum �eld theory (QFT) is understood as a canonical Quan-
tum Field Theory in �at space-time [1]�[3]. But in what follows it is demon-
strated that a �at geometry of space-time in the processes of high energy
physics is not ensured from the start, being based on validity of the Ein-
stein's Strong Equivalence Principle (EP). However, this principle has its
applicability boundaries. The Planck scales present a natural (upper) bound
for applicability because at these scales a natural geometry of space-time,
determined locally by the particular metric gµν(x), disappears due to high
�uctuations of this metric and is replaced by space-time (or quantum) foam.
In [4],[5] the author suggested a hypothesis that actually the real appli-
cability boundary of EP lies in a domain of the energies E considerably
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lower than the Planck energies. The principal objective of this paper is
to demonstrate that the hypothesis is true for some, quite naturally aris-
ing, assumptions. Proceeding from the afore-said, this condition sets the
applicability boundaries for the canonical QFT. Besides, direct inferences
from the obtained result are considered. Hereinafter, EP is understood as
a Strong Equivalence Principle.

2 The QFT Applicability Boundaries and Equiv-

alence Principle

The canonical quantum �eld theory (QFT) [1]� [3] is a local theory consid-
ered in continuous space-time with a plane geometry, i.e with the Minkowskian
metric ηµν(x). In reality, any interaction introduces some disturbances, in-
troducing an additional local (little) curvature into the initially �at Minkowskian
space M. Then the metric ηµν(x) is replaced by the metric ηµν(x)+ oµν(x),
where the increment oµν(x) is small. But, when it is assumed that EP is
valid, the increment oµν(x) in the local theory has no important role and,
in a fairly small neighborhood of the point x in virtue EP.
The Einstein's Equivalence Principle (EP) is a basic principle not only in
the General Relativity (GR) [6]�[8], but also in the fundamental physics as
a whole. In the standard formulation it is as follows: ([8],p.68):
�at every space-time point in an arbitrary gravitational �eld it is possible
to choose a locally inertial coordinate system such that, within a suf-
�ciently small region of the point in question, the laws of nature take the
same form as in unaccelerated Cartesian coordinate systems in the absence
of gravitation�.
Then in ([8],p.68) �...There is also a question, how small is �su�ciently

small� . Roughly speaking, we mean that the region must be small enough
so that gravitational �eld in sensible constant throughout it...�.
However, the statement �su�ciently small� is associated with another
problem. Indeed, let x be a certain point of the space-time manifold M
(i.e. x ∈ M) with the geometry given by the metric gµν(x). Next, in accor-
dance with EP, there is some su�ciently small region V of the point x so
that, within V it is supposed that space-time has a �at geometry with the
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Minkowskian metric ηµν(x).
In essence, su�ciently small V means that the region V ′

, for which
x ∈ V ′ ⊂ V , satis�es this condition as well. In this way we can construct
the sequence

... ⊂ V ′′ ⊂ V ′ ⊂ V . (1)

The problem arises, is there any lower limit for the sequence in formula (1)?
The answer is positive. Currently, there is no doubt that at very high en-
ergies (on the order of Planck's energies E ≈ Ep), i.e. on Planck's scales,
l ≈ lp quantum �uctuations of any metric gµν(x) are so high that in this case
the geometry determined by gµν(x) is replaced by the �geometry� following
from space-time foam that is de�ned by great quantum �uctuations of
gµν(x),i.e. by the characteristic dimensions of the quantum-gravitational
region (for example, [9]�[14]). The above-mentioned geometry is drastically
di�ering from the locally smooth geometry of continuous space-time and
EP in it is no longer valid [15]�[22].
From this it follows that the region Vr,t with the characteristic spatial di-
mension r ≈ lp (and hence with the temporal dimension t ≈ tp) is the lower
(approximate) limit for the sequence in (1).
It is di�cult to �nd the exact lower limit for the sequence in formula (1)�it
seems to be dependent on the processes under study. Speci�cally, when
the involved particles are considered to be point, their dimensions may be
neglected in a de�nition of the EP applicability limit. When the charac-
teristic spatial dimension of a particle is r, the lower limit of the sequence
from formula (1) seems to be given by the region Vr′ containing the above-
mentioned particle with the characteristic dimensions r′ > r, i.e. the space
EP applicability limit should always be greater than dimensions of the par-
ticles considered in this region. By the present time, it is known that spatial
dimensions of gauge bosons, quarks, and leptons within the limiting accu-
racy of the conducted measurements < 10−18m. Because of this, the con-
dition r′ ≥ 10−18m must be ful�lled. In addition, the radius of interaction
of particles rint must be taken into account in quantum theory. And this
fact also imposes a restriction on considering concrete processes in quantum
theory. However, the interactions radii of all known processes lie in the en-
ergy scales E ≪ Ep.
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At the present time there is a series of the results demonstrating that EP
may be violated at the energies E considerably lower than Ep(for example,
the quantum phenomenon of neutrino oscillations in a gravitational back-
ground [23] [24] [25] and others [43],[27],[28]).
As QFT � local theory applicable only to space-time with a �at geometry
determined by the Minkowskian metric ηµν(x),the applicability boundary
EP may be considered the applicability boundary of QFT as well.
Main Hypothesis

It is assumed that in the general case EP, and consequently, QFT is valid
for the locally smooth space-time only if all the energies E of the particles
are satis�ed the necessary condition

E ≪ Ep, (2)

In the following section this hypothesis is proven in the assumption that
space-time foam consists of micro black holes (mbh) with the event hori-
zon radius r ≈ lp and mass m ≈ mp.

Remark 2.1

Why in canonical QFT it is so important never forget about the fact that
space-time has a �at geometry, or the same possesses the Minkowskian met-
ric ηµν(x)? Simply, in the contrary case we should refuse from some fruitful
methods and from the results obtained by these methods in canonical QFT,
in particular from Wick rotation [3]. In fact, in this case the time variable
is replaced by t 7→ it

.
= tE, and the Minkowskian metric ηµν(x) is replaced

by the four-dimensional Euclidean metric

ds2 = dt2E + dx2 + dy2 + dz2. (3)

Clearly, such replacement is possible only in the case when from the start
space-time (locally) has a �at geometry, i. e. possesses the Minkowskian
metric ηµν(x). This is another argument supporting the key role of the EP
applicability boundary. Otherwise, when we go beyond this boundary, Wick
rotation becomes invalid. Naturally, some other methods of canonical QFT
will lose their force too.
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3 The Strong Equivalence Principle,Black Holes

and QFT

As shown in [29],[30], EP is violated for an observer distant from the black
hole event horizon. Considering our objective, it seems expedient to give in
brief the main results from [29],[30].
In view of the Unruh e�ect, an accelerating observer does detect thermal
radiation (so-called Unruh radiation) with the Unruh temperature given by
[31]

TUnruh =
~a
2π

, (4)

where a = |a| is a corresponding acceleration.
When an observer is at the �xed distance, r > rBH , from a Schwarzschild
black hole of mass M and event horizon radius rBH = 2GM , then, due to
the existence of Hawking radiation [32], the observer will measure radiation
with thermal spectrum and a temperature given by formula [29]

TH,r =
~

8πGM
√
1− rBH

r

, (5)

where r > rBH .
Besides, in [29] it is shown that an observer, positioned at the �xed distance
r > rBH from the above-mentioned black holes and measuring Hawking
temperature with the value TH,r, experiences the local acceleration

aBH,r =
1√

1− rBH

r

(rBH

2r2

)
. (6)

Another observer in the Einstein elevator, moving with acceleration through
Minkowskian space-time, will measure the same acceleration toward the
�oor of the elevator, thermal radiation with the Unruh temperature given
by formula (4). Substituting the acceleration a = aBH from formula (6)
into formula (4), we can obtain a formula for TUnruh,r in this case [30]:

TUnruh,r =
~

2π
√
1− rBH

r

(rBH

2r2

)
. (7)
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If EP is valid, the quantities TUnruh,r from formula (7) and TH,r in (5) should
be coincident for r > rBH to a high degree of accuracy. However, we see that
this is not true. In [30], e.g. for r = 4GM = 2rBH , we have TH,r = 4TUnruh,r.
So, far from the event horizon, EP is not the case. Moreover, violation of
EP is the greater the farther it is from the black hole event horizon. Indeed,
for an observer at the distance r > rBH we can write r = α(r)GM =
1
2
α(r)rBH , α(r) > 2. Then

TUnruh,r =
~

2πα2(r)GM

√
1− 2

α(r)
. (8)

When r is su�ciently large, i.e. r ≫ 2GM , α(r) ≫ 2, and we have for TH

from (5) and TUnruh,r from formula (7)the following:

TH,r ≈ TH =
~

8πGM
≫ TUnruh,r ≈

~
2πα2(r)GM

. (9)

In this way TH/TUnruh,r = α2(r)/4. And the ratio is the greater, the higher
α(r),i.e. the farther from horizon the observer is. Next, for compactness,
we denote TUnruh,r in terms of TU,r. Of course, in this case we bear in mind
only an observer at a su�ciently great but �nite distance from a black hole,
i.e. only when a gravitational �eld is thought signi�cant and must be taken
into consideration. So, in the general case rBH < r ≪ ∞, whereas in the
case of a distant observer we have

rBH ≪ r ≪ ∞. (10)

Obviously, this case of violated EP is not directly associated with theMain

Hypothesis concerning the boundaries of EP validity (formula (2)) from
the previous section, because in [29],[30] consideration is given to a large
black hole with the event horizon radius rBH much greater than Planck
length rBH ≫ lp at su�ciently low energies.
Really, the resulting distribution of the particles emitted by a black hole
has the form (last formula on p.122 in [33])

nE = Γgb[exp(
E

TH

)− 1]−1, (11)
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where nE is the number of particles with the energy E and Γgb < 1 is the
so-called greybody factor. As the black hole mass M is large, the tempera-
ture TH is low, and then from the last formula it follows that arbitrary large
values of nE will be given only by particles with the energies E close to a
small value of TH .
The principal result from the remarkable papers [29],[30] may be summa-
rized as follows:
Comment 3.1

In any point of space-time that is in a �eld of a large classical Schwarzschild
black hole, and in the cases when this �eld must be taken into consideration,
it is impossible to remove this �eld in the vicinity of the point even locally,
i.e. to consider space-time as �at.

Comment 3.2

It is important to re�ne some formulations from [29],[30]. Speci�cally, if
r → rBH , then TH,r → ∞, TUnruh,r → ∞ in formulae (5) and (7), re-
spectively. Note that for r → rBH these temperatures become in�nite
TH,r = ∞, TUnruh,r = ∞. Based on this fact, in [29],[30] it is inferred �that
the equivalence principle is restored on the horizon�. But this statement is
not correct. Restoration of EP is not following from the fact that the above
temperatures take in�nite values. We can only state that temperature on
the BH horizon and in its vicinity cannot be the parameter detecting a de-
viation from EP. In the opposite case one can arrive at violation: on the
black hole event horizon, where a gravitational �eld is very large in value,
EP holds, whereas far from the event horizon, where a gravitational �eld is
much weaker, this principle is violated.

Let us return to high energy physics and to the subject of the previous
section. One of the preferable models for space-time foam is the model
based on the assumption that its unit cells are mbh, with radius and mass
on the order of the Planck's (for example, [14],[19], [20]. Of great impor-
tance for mbh are the quantum-gravitational e�ects and the corresponding
quantum corrections of black hole thermodynamics at Planck's scale (for
example, [34]).
Then, in line with formula (20) in [34], we have minimal values for radius
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and mass of a black hole

rmin =

√
e

2
α

′
lp, mmin

.
= m0 =

α
′√

e

2
√
2
mp, (12)

where the number α
′
is on the order of 1, and in [34] we take the normal-

ization ~ = c = kB = 1 in which lp = m−1
p = T−1

p =
√
G.

From 12) it directly follows that the formula for the event horizon radius
r = 2MG, valid for large classical black holes, will be valid in the case when
we include the quantum-gravitational e�ects formbh because rmin = 2m0G.
Such a black hole of a minimal size is associated with a maximal tempera-
ture (formula (24) in [34]):

Tmax
H =

Tp

2π
√
2α′ .. (13)

A black hole satisfying the formulae (12),(13) is termed as minimal (or
Planck).
Without loss of generality, it is assumed that for event horizon radii and
masses of mbh the following is valid:

rmbh ≈ rmin,mmbh ≈ m0, (14)

i.e. mbh are Planck black holes.
As seen from the formulae in [34] and from the above-mentioned formulae,
all the relations for radius, mass, and temperature of black holes, valid in
the case of large (classical) black holes, will be valid for minimal (Planck)
black holes too (and hence for mbh with signi�cant quantum-gravitational
e�ects.
It should be noted that the use by an observer of a standard Unruh-Dewitt
detector in radiation measurement for coupled to a massless scalar �eld
[35],[36] will be valid for any scales much greater than the Plamck's and,
consequently, for the energies E considerably lower than the Planck energies
E ≪ Ep, meeting the condition (2) from the Main Hypothesis. Then all
the calculations from [29],[30] for large black holes will be also valid for
mbh at a large distance from their horizon, i.e. at the energies E ≪ Ep
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(2). Thus, in the case of Planck's energies andmbh we can use the formulae
from (4)�(7) with the substitution

rbh 7→ rmbh ≈ rmin,M 7→,mmbh ≈ m0, ~ 7→ 1. (15)

The substitution of ~ 7→ 1 in (15) is taken with regard to the above nor-
malization ~ = c = kB = 1 adopted in [34].
Next, similar to [14], we assume that in every cell of space-time foam a
micro black hole (mbh) with a typical gravitational radius of rmin ∝ lp may
be present. Then, by substitution of (15) in (4)�(7), in formula (10)we come
to violation of the strong EP for distance r, satisfying the condition

lp ≪ r ≪ ∞, (16)

that is equivalent to Ẽr ≪ Ep for the energies Ẽr associated with the scale
of r.
Clearly, r in formula (10) may be greater than lp only by several orders of
magnitude , being at a distance, where a gravitational �eld of the corre-
sponding micro black hole in space-time foam should be taken into consid-
eration. For large black holes, this fact was noted in the paragraph before
the formula (10).
In this way, if the quantum foam structure is determined by mbh, the ap-
plicability of QFT is limited to the energies E < Ẽr ≪ Ep and the formula
(2) is the case. This supports theMain Hypothesis from Section 2 within
the assumption concerning the quantum foam structure made in this section.

Comment 3.3

Quantum corrections at Planck scales were obtained in [34] proceeding from
validity of the Generalized Uncertainty Principle (GUP)[37]�[39]. But the
results presented in this work are independent of this aspect. Actually,
during studies of black hole thermodynamics at Planck scales with the
use of other methods [40],[41] (di�ering from those in [34]),in particular,
Loop Quantum Gravity (LQG)[41], the obtained results were similar to
[34]. Because of this, for mbh with all the thermodynamic characteris-
tics (mass,radius,temperature,...)on the order of the corresponding Planck's
quantities, all the calculations in this section are valid on the proper substi-
tution (15) in formulae (4)�(7). As noted above, far from horizon of mbh,
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i.e. at the energies E ≪ Ep (2), the results from [29],[30] remain valid in
this case as well.

Comment 3.4

In the case of mbh Comment 3.2 is absolutely clear. In fact, at a
horizon of mbh,i.e. for r = rmin, TH,r = TUnruh,r = ∞ similar to large
black holes but , naturally, without any restoration of EP as the domain
r = rmbh ≈ rmin ∝ lp is the region of Planck's energies or of quantum foam,
where EP in its canonical formulation becomes invalid. It is obvious that at
the event horizon r = rmbh of mbh and in its vicinity a gravitational �eld
becomes very strong due to quantum e�ects and nothing could destroy it.

4 Some Immediate Consequences

4.1 Based on the above results, all the energies E we can classify into 3
groups:

a)low energies 0 < E ≤ Ẽ ≪ Ep � energies, for which the Strong Equiv-
alence Principle is valid in virtue of formula (2), and hence this energy
interval sets the QFT applicability boundaries.
a1) Initially, it is supposed that Ẽ ≈ 10−3Ep or Ẽ ≈ 10−2Ep. However, this
may be not true;

b)intermediate energies Ẽ < E < Ep � energies, for which the Strong
Equivalence Principle and, consequently QFT, becomes invalid but the cor-
responding scales are greater than the Planck's. It can be assumed that
QFT in this energy range will be a theory in a gravitational �eld that could
not be destroyed even locally. In the case under study it is assumed that this
�eld is created by mbh. Impossibility of destroying this �eld even locally is
associated with large quantum corrections for the corresponding quantities
which should be taken into consideration at these energies [34],[40],[41].

Let us call the energy scale Ẽ < E < Ep as prequantum gravity phase;

c)high (essentially maximal) energies E ≈ Ep or E > Ep. This interval
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is the region of quantum gravity energies.

Next note that, as all the experimentally involved energies E are low,
they satisfy condition a) or b). Speci�cally, for LHC, maximal energies
are ≈ 10TeV = 104GeV , that is by 15 orders of magnitude lower than the
Planck energy ≈ 1019GeV . Moreover, the characteristic energy scales of
all fundamental interactions also satisfy condition a). Indeed, in the case
of strong interactions this scale is ΛQCD ∼ 200MeV ; for electroweak inter-
actions this scale is determined by the vacuum average of a Higgs boson
and equals υ ≈ 246GeV ; �nally, the scale of the (Grand Uni�cation Theory
(GUT)) MGUT lies in the range of ∼ 1014GeV −−1016GeV .
It should be noted, however, that on validity of assumption a1) the energy
scale MGUT lies within the applicability region of the energy group a) and
hence of QFT. Provided the EP applicability boundaries are lying at con-
siderably lower energies, a study of GUT necessitates a theory with (even
locally) unremovable curvature.
At the same time, it is clear that the requirement of the Lorentz-invariant
QFT, due to the action of Lorentz boost (or same hyperbolic rotations) (for
example formula (3) in [7]), results in however high momenta and energies.
But it has been demonstrated that unlimited growth of the momenta and
energies is impossible because in this case we fall within the energy region,
where the conventional quantum �eld theory [1]�[3] is invalid.
Note that at the present time there are experimental indications that Lorentz-
invariance is violated in QFT on passage to higher energies (for example,
[42]). Besides, one should note important recent works associated with EP
applicability boundaries and violation in nuclei and atoms at low energies
(for example [43]). Proceeding from the above, the requirement for Lorentz-
invariance and EP is possible only within the scope of the condition (2).

4.2 Proceeding from the above results, it is inferred that the well-known
QFT [1]�[3], from the start, is a ultraviolet-�nite theory with the natural

cuto� parameter lẼ ∝ ~/Ẽ. Note that the quantum-gravitational parameter
rmbh ∝ lp is beyond the applicability limits of QFT.

4.3 It is possible to correct the estimates obtained within the scope of

11



the known QFT by means of the condition (2). Let us consider a typical
example.
In his well-known lectures [44] at the Cornell University Steven Weinberg
considered an example of calculating, within the scope of QFT, the expected
value for the vacuum energy density < ρ > that is proportional to the cos-
mological term λ. To this end, zero-point energies of all normal modes
of some �eld with the mass m are summed up to the wave number cuto�
Λ ≫ m for the selected normalization ~ = c = 1 (formula (3.5) in [44]):

< ρ >=

∫ Λ

0

4πk2dk

(2π)3
1

2

√
k2 +m2 ≃ Λ4

16π2
. (17)

Assuming, similar to [44], that GR is valid at all the energy scales up to
the Planck's, we have the cuto� Λ ≃ (8πG)−1/2 and hence (formula (3.6) in
[44]) leads to the following result:

< ρ >≈ 2 · 1071GeV 4, (18)

that by 10118 orders of magnitude di�ers from the well-known experimental
value for the vacuum energy density

< ρexp >≼ 10−29g/cm3 ≈ 10−47GeV 4. (19)

Here G is a gravitational constant.
It is clear that in this case the condition (2) is not ful�lled and this leads to
such a monstrous discrepancy with < ρexp >. Based on the afore-said, the
following estimate for < ρ > is more correct:

< ρẼ >
.
=

∫ Λ
Ẽ

0

4πk2dk

(2π)3
1

2

√
k2 +m2 ≃

Λ4
Ẽ

16π2
, (20)

where Λ(Ẽ)�cut-o� parameter of the corresponding energy Ẽ from point a)
in 4.1.
Of course, the main contribution into the integral in the right side of 17)

is made by high energies Ẽ < E < Ep from point b) in 4.1,which are not
involved in formula (20). Consequently, it seems possible that < ρẼ >≪<
ρ > and hence < ρẼ > may be much closer to < ρexp > than < ρ >.
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In this respect of interest is the inverse problem: if the experimental value
of the vacuum energy density < ρexp > is known from (19), substituting it
into formula (20), we can estimate Λexp at the upper limit of integration by
the above formula

< ρexp >=

∫ Λexp

0

4πk2dk

(2π)3
1

2

√
k2 +m2 ≃ 10−47GeV 4. (21)

Assuming that Λexp = ΛẼ, we can derive the estimate Ẽ for the upper
applicability boundary of QFT.

5 Conclusion

Thus, within the scope of natural assumptions, in this paper it is demon-
strated that the applicability boundary of the well-known QFT is lying in
the region of energies considerably lower than the Planck energies, i.e. the
canonical QFT [1]�[3] is an ultraviolet-�nite theory.
In this paradigm it is important to understand the way to transform the
well-known results for ultraviolet regularization, renormalization, and so on
from QFT within the scope of the applicability boundary Ẽ of QFT indi-
cated in point a) of the preceding section. Possibly, this boundary will be
dependent on a nature of the processes under study in high energy physics.
In a similar way, based on point 4.3 in the previous section, the inverse
problem may be considered: derivation of a real estimate for the boundary
Ẽ proceeding from experimental values of the observables.
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