Scalar Equation of Motion

Alejandro A. Torassa
Creative Commons Attribution 3.0 License
(2014) Buenos Aires, Argentina
atorassa@gmail.com

Abstract

In classical mechanics, this paper presents a scalar equation of motion, which can be applied in any reference frame (rotating or non-rotating) (inertial or non-inertial) without the necessity of introducing fictitious forces.

Scalar Equation of Motion

If we consider two particles A and B of mass m_{a} and m_{b} respectively, then the scalar equation of motion, is given by:

$$
\frac{1}{2} m_{a} m_{b}\left[\frac{\left(\mathbf{r}_{a}-\mathbf{r}_{b}\right)}{\left|\mathbf{r}_{a}-\mathbf{r}_{b}\right|} \cdot\left(\mathbf{v}_{a}-\mathbf{v}_{b}\right)\right]^{2}=\int m_{a} m_{b}\left[\frac{\left(\mathbf{r}_{a}-\mathbf{r}_{b}\right)}{\left|\mathbf{r}_{a}-\mathbf{r}_{b}\right|} \cdot\left(\frac{\mathbf{F}_{a}}{m_{a}}-\frac{\mathbf{F}_{b}}{m_{b}}\right)\right] d\left[\frac{\left(\mathbf{r}_{a}-\mathbf{r}_{b}\right)}{\left|\mathbf{r}_{a}-\mathbf{r}_{b}\right|} \cdot\left(\mathbf{r}_{a}-\mathbf{r}_{b}\right)\right]
$$

where \mathbf{r}_{a} and \mathbf{r}_{b} are the positions of particles A and $\mathrm{B}, \mathbf{v}_{a}$ and \mathbf{v}_{b} are the velocities of particles A and B , and \mathbf{F}_{a} and \mathbf{F}_{b} are the net forces acting on particles A and B.

This scalar equation of motion can be applied in any reference frame (rotating or non-rotating) (inertial or non-inertial) without the necessity of introducing fictitious forces. In addition, this scalar equation of motion is invariant under transformations between reference frames.

