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Abstract

New classes of exact solutions of the three-dimensional unsteady Navier–Stokes
equations containing arbitrary functions and parameters are described. Various
periodic and other solutions, which are expressed through elementary functions
are obtained. The general physical interpretation and classification of solutions is
given.
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1 Class of motions of the viscous incompressible fluid
under consideration

Self-similar, invariant, partially invariant, and certain other exact solutions of the
Navier–Stokes equations including those with generalizedseparation o f variables were
considered, for example, in [1–15]. Below, the term ”exact solutions” is used according
to the definition given in [14, p. 10].

Three-dimensional unsteady motions of a viscous incompressible fluid are de-
scribed by the Navier–Stokes and continuity equations:
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Herex, y, andz are the Cartesian coordinates,t is time;V1, V2, andV3 are the fuid-
velocity components;P is pressure; andρ andν are the fluid density and kinematic
viscosity, respectively. When writing Eqs. (1)–(4), it wasassumed that the mass forces
are potential and included in the pressure.

We consider the flow of a viscous incompressible fluid when thefluid-velocity
vector on thez axis is directed along this axis. Near thez axis, the transverse velocity
components are small and can be expanded in a Taylor series interms of the transverse
x andy coordinates. If we restrict ourselves to the main terms of the expansion inx
andy for the velocity components, it is possible to obtain the following representation
for the desired values after the corresponding analysis:
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wherep0, α, β, andγ are arbitrary functions of timet setting the transverse pressure
distribution;F , u, v, andw are unknown functions dependent on the coordinatez andt.
The substitution of Eqs. (5) into Navier–Stokes Eq. (3) and continuity Eq. (4) results in
identities, and Eqs. (1) and (2) becomeAnx+Bny = 0 (n = 1, 2), whereAn andBn

represent certain differential expressions dependent on the variablesz andt. The split
in the variablesx andy results in four equationsAn = 0 andBn = 0 (n = 1, 2),
which can be transformed to the following form:
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It is important to emphasize that solution (5) precisely satisfies Eqs. (1)–(4) for the
viscous fluid motion by virtue of Eqs. (6)–(9).

For γ = 0, the structure of exact solution (5) and system (6)–(9) was obtained in
[12] from other reasons by the investigation of the class of partially invariant solutions
(the case ofα = β = γ = 0 was considered in [7]). In [12], the group classifica-
tion of system (6)–(9) was carried out forγ = 0, which resulted in singling out two
types of time dependences for the determining functions: (i) α andβ are constant, and
(ii) α andβ are proportional tot−2 (the exact solutions of the Navier–Stokes equations
with a reasonably simple structure correspond to these dependences).

In this work, we obtained new classes of exact solutions of system (6)–(9), when
the determining functions contain a functional arbitrariness. The basic idea of the
following analysis is that we can obtain a single isolated equation for the longitudinal
velocity componentV3 = F from system (6)–(9).
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2 Reduction of system (6)–(9) to a single equation

We consider first the special class of exact solutions described by a single equation.
In Eqs. (6)–(9), we put
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∂z
+A, v = n
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∂z
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∂z
+ C, (10)

wherem, n, k, A, B, andC are the desired functions of timet. We require that
four Eqs. (6)–(9) coincide after the substitution of Eq. (10) in them. As a result, for
determining the desired functions, we obtain the nonlinearsystem consisting of one
algebraic equation and six ordinary differential equations:
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This system contains seven equations for nine functions—six functionsm, n, k,A,B,
andC from Eq. (10) and three functionsα, β, andγ from Eqs. (6)–(9) (in this case, they
are also treated as desired). It is possible to show that the last equation in Eq. (12) is
the consequence of three other equations (11), (12). Therefore, three desired functions
in system (11), (13) can, in general, be chosen arbitrarily.

Taking into account Eqs. (10)–(13), we reduce system (6)–(9) to a single equation
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the functionsp = p(t) andq = q(t) are defined by the relations
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m
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m
. (15)

The general property of Eq. (14). SupposeF0(z, t) is a solution of this equation.
Then the function

F = F0(z + ψ(t), t) − ψ′

t(t), (16)

whereψ(t) is an arbitrary function, is also a solution of Eq. (14).
For constructing solutions of system (11)–(13), it is necessary to distinguish two

cases.

1◦. Case ofm = n. In this case, the general solution of system (11)–(13) can be
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represented as
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wherep = p(t), q = q(t), andϕ = ϕ(t) are arbitrary functions. For convenience,
the free functionsp andq in Eq. (17) are chosen so that system (6)–(9) is reduced to a
single equation (14) with the same functionsp = p(t) andq = q(t) as a result of the
transformation (10), (17).

Thus, this important statement is proved. An arbitrary solution of Eq. (14) for
arbitrary functionsp = p(t) andq = q(t) generates an exact solution of the Navier–
Stokes equations (1)–(4). This solution is described by thefunctionF = F (z, t) and
Eqs. (5), (10), (17).

2◦. Case ofm 6= n. In this case, the general solution of system (11)–(13) can
be obtained as follows. The functionsm = m(t), k = k(t), andq = q(t) are set
arbitrarily under the conditionm2 + k2 6= 1/4. The remaining functions included in
system (11)–(13) and Eq. (14) are calculated sequentially from the formulas
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In this case, the coefficientp = p(t) in Eq. (14) is determined through the functions
m = m(t), k = k(t), andq = q(t) and their derivatives (instead of being set arbitrarily
as in the case ofm = n). An attempt to setp = p(t) directly instead of the functionm
(or k) results in a nonlinear ordinary differential equation of the second order for the
functionm (or k) with an arbitrary functionq = q(t).

We consider how to choose the functionq = q(t) so that the identityp ≡ 0 is
satisfied. From the expression forp in Eq. (18), we haveA = B + s0, wheres0 is an
arbitrary constant. From here, taking into account Eqs. (18) for A, B, andn, we find
the function

q =
4s0m− 8(mm′

t + kk′t)

4(m2 + k2) − 1
+
m′

t

m
(for p = 0). (19)
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3 Exact solutions of Eq. (14) for variousp = p(t) and
q = q(t)

1◦. Functional separable solution:

F = −a′t(t) + b(t)[z + a(t)] −
6ν

z + a(t)
, q = −4b, p = b′t + 3b2,

wherea = a(t) andb = b(t) are arbitrary functions.

2◦. Periodic solutions in the form of the product of functions of different argu-
ments:

F = a(t) sin(σz +B), a(t) = C exp
[

−νσ2t+

∫

q(t) dt
]

,

p = −σ2a2(t), q = q(t) is an arbitrary function,
(20)

whereB,C, andσ are arbitrary constants. Putting in Eq. (20) thatq(t) = νσ2 +ϕ′

t(t),
whereϕ(t) is a periodic function, we obtain a solution periodic in bothargumentsz
andt.

Example. Consider the stationary case. In Eqs. (17), (20), we put

ϕ = 0, a = −
a1 + a2

σ
, q = νσ2 = 2a1, p = −a2σ2, σ = (2a1/ν)

1/2.

As a result, using Eqs. (5) and (10), we obtain the solution

V1 = a1x, V2 = [(a1 + a2) cos(σz) − a1]y, V3 = −
a1 + a2

σ
sin(σz),

which describes the three-dimensional flow of a fluid layer between two flat elastic
films (the film position depends on the values ofz = 0 andz = 2π/σ), the surfaces of
which are stretched according to the lawV1 = a1x andV2 = a2y.

3◦. Generalized separable solutions exponential inz:

F = a(t)e−σz + b(t), p = 0, q =
a′t
a

− σb− σ2ν, (21)

wherea = a(t) andb = b(t) are arbitrary functions. Choosinga(t) andb(t) to be
periodic functions, we obtain a solution periodic in time.

Formulas (20) and (21) together with Eqs. (5), (10), (17) define two classes of
solutions of the Navier–Stokes equations dependent on several arbitrary functions.
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4◦. Solution (21) can be represented in the form

F = a0 exp
[

−σz + σ2νt+

∫

(q + σb) dt
]

+ b(t), p = 0, (22)

whereb = b(t) andq = q(t) are arbitrary functions anda0 is an arbitrary constant.
Formula (22) defines a new class of exact solutions of the Navier–Stokes equations
with the help of Eqs. (5), (18), forp = 0 and Eq. (19).

5◦. Exact solution in the form of the product of functions of different arguments:

F = a(t)(C1e
σz + C2e

−σz), p = 4C1C2σ
2a2(t), q =

a′t
a

− σ2ν,

wherea = a(t) is an arbitrary function,C1, C2, andσ are arbitrary constants.

6◦. Monotonic traveling-wave solution:

F = −6νσ tanh[σ(z − λt) +B] + λ, p = 0, q = 8νσ2.

7◦. Unbounded periodic traveling-wave solution:

F = 6νσ tan[σ(z − λt) +B] + λ, p = 0, q = −8νσ2.

8◦. Functional separable solution:

F =
a(t)

λ(t)
exp[−λ(t)z] + b(t) + c(t)z,

where the functionsa = a(t), b = b(t), c = c(t), andλ = λ(t) satisfy the system of
ordinary differential equations

λ′t = −cλ, a′t = (νλ2 + q + 2c+ bλ)a, c′t = c2 + qc+ p.

Here, three of the six functionsa(t), b(t), c(t), λ(t), p(t), andq(t) can be set arbitrarily.

9◦. Functional separable solution:

F = ω(t)z +
ξ(t)

θ(t)
sin[θ(t)z + a], (23)

wherea is an arbitrary constant, and the functionsω = ω(t), ξ = ξ(t), andθ = θ(t)
are described by the system of ordinary differential equations

θ′t = −ωθ, ω′

t = ω2 + q(t)ω + p(t) + ξ2, ξ′t = [2ω − νθ2 + q(t)]ξ. (24)

In this system, it is possible to treat the functionsθ(t) andξ(t) as arbitrary, whereas
the functionsω(t), p(t), andq(t) are elementarily determined (without quadratures).
A periodic solution (23) corresponds to periodic functionsθ(t) andξ(t).
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10◦. Functional separable solution:

F = ω(t)z +
ξ(t)

θ(t)

[

C1e
θ(t)z + C2e

−θ(t)z
]

, (25)

whereC1 andC2 are arbitrary constants, and the functionsω = ω(t), ξ = ξ(t), and
θ = θ(t) are described by the system of ordinary differential equations

θ′t = −ωθ, ω′

t = ω2 + q(t)ω+ p(t)− 4C1C2ξ
2, ξ′t = [2ω+ νθ2 + q(t)]ξ. (26)

Remark. See also [8, 13, 15] for exact solutions of Eq. (14) withq = 0.

4 Reduction of system (6)–(9) to two equations

We describe two cases of reducing system (6)–(9) to a single isolated nonlinear equa-
tion for the longitudinal velocityF and a second equation for determining a new aux-
iliary function.

1◦. First case.By letting

u = a2G, v = −b2G, w = abG, α = β, γ = 0, (27)

wherea andb are arbitrary constants, we reduce system (6)–(9) to an isolated equation
for the longitudinal velocityF and an additional equation for the functionG = G(z, t):
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2◦. Second case.In Eqs. (6)–(9), let
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wherep = p(t) andq = q(t) are arbitrary functions, anda andb are arbitrary con-
stants,Θ = Θ(z, t) is an unknown function, andϕ is the constant determined from the
transcendental equation

(a2 − b2) sinϕ+ 2ab cosϕ = 0. (31)

As a result, system (6)–(9) is reduced to two equations:

∂2F

∂t∂z
+ F

∂2F

∂z2
−

(∂F

∂z

)2

= ν
∂3F

∂z3
+ q

∂F

∂z
+ p, (32)

∂Θ

∂t
+ F

∂Θ

∂z
− Θ

∂F

∂z
= ν

∂2Θ

∂z2
. (33)

The nonlinear equation (32) forF coincides with Eq. (14) and can be treated indepen-
dently (some of its exact solutions were described previously), and Eq. (33) is linear
with respect to the desired functionΘ.

For stationary solutions of Eqs. (32) and (28) (for constantp, q, andα), the nonsta-
tionary equations (33) and (29) are linear separable equations, whose solutions can be
obtained using the Laplace transform in time.

Equation (32) (and Eq. (28)) admits an obvious degenerate solution F = a(t)z +
b(t); in this case, the corresponding Eq. (33) (and Eq. (29)) can be reduced to the linear
heat equation.

System (28), (29) for an arbitrary functionα = α(t) has a solution in the form

F = az2 + b(t)z +
1

4a
[b2(t) − 2b′t(t) − 4α(t)],

w = A(t)z2 +B(t)z + C(t),

wherea is an arbitrary constant (a 6= 0), b(t) is an arbitrary function, and the func-
tionsA = A(t), B = B(t), andC = C(t) are described by the system of ordinary
differential equations, which is not presented here.

5 Interpretation and classification of the flows under
consideration

Arbitrary fluid flows having two symmetry planes admit a representation of the type
of Eq. (5) in the vicinity of the line of intersection of theseplanes (in the adopted
notation, the planes intersect in thez axis). Such flows include the axisymmetric flows,
combinations of axisymmetric flows with rotation around of thez axis (in particular,
the von Karman type flows), plane flows symmetric with respectto a straight line,
flows in rectilinear impenetrable and porous pipes with elliptic and rectangular cross
sections, fluid jets flowing from orifices of elliptic and rectangular shapes, etc. (see also
[10, 11]).

It is convenient to treat the axial flows described by Eqs. (5)as a nonlinear super-
position of a translatory (nonuniform) flow along thez axis and a linear shear flow of
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a special type. In the vicinity of the pointz = z0 lying on the axis, the components of
fluid velocity taking into account Eq. (5) can be representedas

Vk = Fδk3 +GkmXm;

G11 = − 1
2Fz + w, G12 = v, G21 = u, G22 = − 1

2Fz − w,

G13 = G23 = G31 = G32 = 0, G33 = Fz ;

X1 = x, X2 = y, X3 = z − z0.

(34)

Herek, m = 1, 2, 3; theGkm are shear matrix components; the summation is as-
sumed over the repeated subscriptm; δkm is the Kronecker delta; andFz is the partial
derivative with respect toz. All values in Eq. (34) are taken forz = z0. The vanish-
ing of the sumG11 + G22 + G33 = 0 of diagonal elements is a consequence of fluid
incompressibility.

An arbitrary matrix‖Gkm‖ can be represented in the form of the sum of a symmet-
ric and an asymmetric matrix

‖Gkm‖ = ‖Ekm‖ + ‖Ωkm‖,

Ekm = Emk = 1
2 (Gkm +Gmk), Ωkm = −Ωmk = 1

2 (Gkm −Gmk).
(35)

In turn, the symmetric matrix‖Ekm‖ (in this case, it can be identified with the
strain-rate tensor) can be reduced to a diagonal form with diagonal elementsE1, E2,
andE3, which are roots of the cubic equationdet ‖Ekm − λδkm‖ = 0 for λ, by
appropriately rotating the system of coordinates.

For this flow (34), the diagonal elements determining the intensity of the tension
(compression) motion along the respective axes are calculated from the formulas

E1,2 = −
1

2
Fz ±

1

2

√

4w2 + (u+ v)2, E3 = Fz . (36)

The splitting of the shear coefficient matrix‖Gkm‖ into symmetric and asymmetric
parts (35) corresponds to the representation of the velocity field of the linear shear
flow of the fluid as a superposition of a linear deformational flow with the tension
coefficientsE1,E2, andE3 along the principal axes and rotations of the fluid as a solid
body with the angular velocity~ω = (Ω32,Ω13,Ω21).

For this flow (34), we haveΩ32 = Ω13 = 0 and the fluid rotates around thez axis
with the angular velocity

Ω21 =
1

2
(u− v). (37)

It is easy to show that Eqs. (36) and (37) remain valid for an arbitrary point
(x0, y0, z0) of the flow (5) under consideration.

The analysis of Eqs. (36), (37) enables us to single out certain characteristic types
of flows indicated in the classification table.
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Table 1:Classification of axial flows described by Eqs. (5)

Type of flow Desired functions Functions included in pressure

Axisymmetric u = v = w = 0 α = β, γ = 0

Combination of axisymmetric flow
and rotation around of thez axis

w = 0, v = −u α = β, γ = 0

Pure deformational (without rotation) u = v α, β, γ are arbitrary functions

General axial u 6= v α, β, γ are arbitrary functions

6 Some generalizations

Let V1(x, y, z, t), V2(x, y, z, t), V3(x, y, z, t), andP (x, y, z, t) be a certain solution of
Navier–Stokes equations (1)–(4). Then the set of functions

V̄1 = V1(x− x0, y − y0, z − z0, t) + x′0,
V̄2 = V2(x− x0, y − y0, z − z0, t) + y′0,
V̄3 = V3(x− x0, y − y0, z − z0, t) + z′0,
P̄ = P (x− x0, y − y0, z − z0, t) − ρ(x′′0x+ y′′0y + z′′0 z),

(38)

wherex0 = x0(t), y0 = y0(t), andz0 = z0(t) are arbitrary functions (primes de-
note the derivatives with respect tot), also gives the solution of Eqs. (1)–(4) [4, 15].
The combination of Eqs. (5) and (38) forz0 = 0 determines an exact solution of the
Navier–Stokes equations, which can be treated as the generalized axial flow with thez
axis moving along the planex, y, according to the lawx = x0(t), y = y0(t). The indi-
cated solution can be used for the mathematical simulation of destructive atmospheric
phenomena such as waterspouts and tornados.
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