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Abstract

New classes of exact solutions of the three-dimensionakadg Navier—Stokes
equations containing arbitrary functions and parametegsdascribed. Various
periodic and other solutions, which are expressed throlgynentary functions
are obtained. The general physical interpretation andifieation of solutions is

given.
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1 Class of motions of the viscous incompressible fluid
under consideration

Self-similar, invariant, partially invariant, and ceniadbther exact solutions of the
Navier—Stokes equations including those with generakeg@ration o f variables were
considered, for example, in [1-15]. Below, the term "exatti8ons” is used according
to the definition given in [14, p. 10].

Three-dimensional unsteady motions of a viscous inconsfirlesfluid are de-
scribed by the Navier—Stokes and continuity equations:
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Herex, y, andz are the Cartesian coordinatess time; V1, V5, andV3 are the fuid-
velocity componentsP is pressure; ang andv are the fluid density and kinematic
viscosity, respectively. When writing Egs. (1)—(4), it vassumed that the mass forces
are potential and included in the pressure.

We consider the flow of a viscous incompressible fluid whenfhiiel-velocity
vector on ther axis is directed along this axis. Near thaxis, the transverse velocity
components are small and can be expanded in a Taylor set@srin of the transverse
x andy coordinates. If we restrict ourselves to the main terms efekpansion in:
andy for the velocity components, it is possible to obtain théoiwing representation
for the desired values after the corresponding analysis:
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wherepyg, «, (8, and~ are arbitrary functions of time setting the transverse pressure
distribution; ", u, v, andw are unknown functions dependent on the coordinaited:.
The substitution of Egs. (5) into Navier—Stokes Eq. (3) amatiouity Eq. (4) results in
identities, and Egs. (1) and (2) becomigz + B,y = 0 (n = 1, 2), whereA,, andB,,
represent certain differential expressions dependerti®@ndriables: andt. The split

in the variables: andy results in four equationd,, = 0 andB,, = 0 (n = 1, 2),
which can be transformed to the following form:
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It is important to emphasize that solution (5) preciselys$ias Eqs. (1)—(4) for the
viscous fluid motion by virtue of Egs. (6)—(9).

For~ = 0, the structure of exact solution (5) and system (6)—(9) waaioed in
[12] from other reasons by the investigation of the classaofiglly invariant solutions
(the case oftx = 8 = v = 0 was considered in [7]). In [12], the group classifica-
tion of system (6)—(9) was carried out for= 0, which resulted in singling out two
types of time dependences for the determining functiofs: &nds are constant, and
(i) o andp are proportional té—2 (the exact solutions of the Navier—Stokes equations
with a reasonably simple structure correspond to thesendigpees).

In this work, we obtained new classes of exact solutions sfesy (6)—(9), when
the determining functions contain a functional arbitrags. The basic idea of the
following analysis is that we can obtain a single isolatedatipn for the longitudinal
velocity componenV; = F from system (6)—(9).



2 Reduction of system (6)—(9) to a single equation

We consider first the special class of exact solutions desdtby a single equation.
In Egs. (6)—(9), we put
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wherem, n, k, A, B, andC are the desired functions of time We require that
four Egs. (6)—(9) coincide after the substitution of Eq.)(fOthem. As a result, for
determining the desired functions, we obtain the nonlirsyatem consisting of one
algebraic equation and six ordinary differential equagion
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This system contains seven equations for nine functiong-fasctionsm, n, k, A, B,
andC from Eqg. (10) and three functioms 3, andy from Egs. (6)—(9) (in this case, they
are also treated as desired). It is possible to show thaggteefuation in Eq. (12) is
the consequence of three other equations (11), (12). Tdverghree desired functions
in system (11), (13) can, in general, be chosen arbitrarily.

Taking into account Egs. (10)—(13), we reduce system (§}e(8 single equation
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the functiong = p(t) andg = ¢(t) are defined by the relations
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The general property of Eq. (14). Supposery(z,t) is a solution of this equation.
Then the function
F = Fy(z+¥(t),t) = ¥i(t), (16)

wherey(t) is an arbitrary function, is also a solution of Eq. (14).
For constructing solutions of system (11)—(13), it is nsaeeg to distinguish two
cases.

1°. Case ofn = n. In this case, the general solution of system (11)-(13) @&n b



represented as

m=n= %sing&, k= %cosgo,

A= B=3(gsing+ ¢, cosp), C =3(qcosp—¢}singp),
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wherep = p(t), ¢ = q(t), andy = ¢(t) are arbitrary functions. For convenience,
the free functiong andq in Eq. (17) are chosen so that system (6)—(9) is reduced to a
single equation (14) with the same functigns= p(t) andq = ¢(t) as a result of the
transformation (10), (17).

Thus, this important statement is proved. An arbitrary sofuof Eq. (14) for
arbitrary functiong = p(t) andg = ¢(t) generates an exact solution of the Navier—
Stokes equations (1)—(4). This solution is described byuhetion ' = F'(z,t) and
Egs. (5), (10), (17).

2°. Case ofm # n. In this case, the general solution of system (11)—(13) can
be obtained as follows. The functions = m(t), & = k(¢), andg = ¢(t) are set
arbitrarily under the conditiom? + k% # 1/4. The remaining functions included in
system (11)—(13) and Eqg. (14) are calculated sequentialiy the formulas
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In this case, the coefficiept = p(¢) in Eq. (14) is determined through the functions
m =m(t), k = k(t), andg = ¢(t) and their derivatives (instead of being set arbitrarily
as in the case ofv = n). An attempt to sep = p(¢) directly instead of the functiom

(or k) results in a nonlinear ordinary differential equation o€ second order for the
functionm (or k) with an arbitrary functioy = ¢(t).

We consider how to choose the functign= ¢(t) so that the identitpy = 0 is
satisfied. From the expression foin Eq. (18), we havel = B + sg, wheresg is an
arbitrary constant. From here, taking into account Eqs) {di84, B, andn, we find
the function
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3 Exact solutions of Eq. (14) for variousp = p(t) and
q=q(t)

1°. Functional separable solution:
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F = —aj(t) + b(t)[z + a(t)] —

wherea = a(t) andb = b(t) are arbitrary functions.

2°. Periodic solutions in the form of the product of functiorfsddferent argu-
ments:

F =a(t)sin(cz + B), a(t) = Cexp[-vo’t+ /q(t) dt} ,
p = —c2a®(t), q = q(t)is an arbitrary function

(20)

whereB, C, ando are arbitrary constants. Putting in Eq. (20) th@) = vo? + ¢} (1),
wherep(t) is a periodic function, we obtain a solution periodic in batiguments:
andt.

Example. Consider the stationary case. In Egs. (17), (20), we put

=0, a:—w, qg=vo?=2a,, p=—ad’d? U:(2a1/u)l/2.
o

As aresult, using Egs. (5) and (10), we obtain the solution

Vi =a1z, Va=[(a1 +az)cos(oz) —aily, Vz= Gt sin(oz),
(o
which describes the three-dimensional flow of a fluid layemieen two flat elastic
films (the film position depends on the values:of 0 andz = 27/0), the surfaces of

which are stretched according to the &= a;x andVs = asy.

3°. Generalized separable solutions exponential in

!
F=a(t)e 7 +b(t), p=0, q= &% op— 2 (21)
a
wherea = a(t) andb = b(t) are arbitrary functions. Choosingt) andb(t) to be
periodic functions, we obtain a solution periodic in time.
Formulas (20) and (21) together with Egs. (5), (10), (17)raetwo classes of
solutions of the Navier—Stokes equations dependent omaderbitrary functions.



4°, Solution (21) can be represented in the form
F = agexp —0z+02yt+/(q+ab) dt} +b(t), p=0, (22)

whereb = b(t) andg = ¢(t) are arbitrary functions and, is an arbitrary constant.
Formula (22) defines a new class of exact solutions of the éta8tokes equations
with the help of Egs. (5), (18), fgr = 0 and Eq. (19).

5°. Exact solution in the form of the product of functions offdient arguments:
ay 2

F= a(t)(Cle”Z + CQG_UZ), p= 4010202a2(t), q=——0°v,

a

wherea = a(t) is an arbitrary function(;, Cs, ando are arbitrary constants.

6°. Monotonic traveling-wave solution:

F = —6votanh[o(z —X) +B]+ )\, p=0, ¢=8vo>.

7°. Unbounded periodic traveling-wave solution:

F =6votanjo(z — M) + B]+ A\, p=0, ¢=—8vo>.

8°. Functional separable solution:

F = % exp[—A(t)z] + b(t) + c(t)z,

where the functions = a(t), b = b(t), ¢ = ¢(t), andX = \(t) satisfy the system of
ordinary differential equations

No=—c\, a, =W\ +q+2c+bNa, ¢, =c*+qc+p.
Here, three of the six functionst), b(t), c(t), A\(¢), p(t), andg(t) can be set arbitrarily.

9°. Functional separable solution:

F=w()z+ &) sin[0(t)z + al, (23)
o(t)
wherea is an arbitrary constant, and the functians= w(t), £ = £(¢t), andd = 6(t)
are described by the system of ordinary differential equneti

0 = —wb, wi=w’+qlt)lw+pt)+&, & =[2w-—vd>+q) (24)

In this system, it is possible to treat the functidtis) and¢{(t) as arbitrary, whereas
the functionsu(t), p(t), andq(t) are elementarily determined (without quadratures).
A periodic solution (23) corresponds to periodic functiéfyy andé(t).



10°. Functional separable solution:

F—w(t)z+ % [C1e®% 4 et 9], (25)

whereC; andC are arbitrary constants, and the functians= w(t), £ = £(¢), and
6 = 0(t) are described by the system of ordinary differential equnti

0, = —wb, w;=uw’+q(t)w+p(t) -4C1C2€?, & = [2w +v8” +q(t)]E. (26)

Remark. See also [8, 13, 15] for exact solutions of Eq. (14) wijth 0.

4 Reduction of system (6)—(9) to two equations

We describe two cases of reducing system (6)—(9) to a sisglated nonlinear equa-
tion for the longitudinal velocity' and a second equation for determining a new aux-
iliary function.
1°. First caseBy letting
u=a’G, v=-b’G, w=abG, a=p, =0, (27)

wherea andb are arbitrary constants, we reduce system (6)—(9) to aatesbequation
for the longitudinal velocity¥" and an additional equation for the functién= G(z, t):
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2°. Second casdn Eqs. (6)—(9), let
1. (OF )
u = 5811190(%—1-(1) +a“0,
1 F
v = §sincp(2—z +q) — b0,
1 oF
w = —coscp(— +q) + abO,
% 1 02 1 (30)
T2l 2
a =7¢ — 5p(1 —cosp) + 5g; cosp,
1, 1 1,
B =74 — 5p(1+cosp) = 5g; cosp,
1 . 1, .
Y= 5p31n‘ﬁ+ 5‘]1& s @,



wherep = p(t) andg = ¢(t) are arbitrary functions, and andb are arbitrary con-
stants© = ©(z,t) is an unknown function, angd is the constant determined from the
transcendental equation

(a® — b*)sinp + 2abcosp = 0. (31)

As aresult, system (6)—(9) is reduced to two equations:

2 2 2 3
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The nonlinear equation (32) fdf coincides with Eq. (14) and can be treated indepen-
dently (some of its exact solutions were described preWduand Eq. (33) is linear
with respect to the desired functién

For stationary solutions of Egs. (32) and (28) (for constapt anda), the nonsta-
tionary equations (33) and (29) are linear separable empgmtivhose solutions can be
obtained using the Laplace transform in time.

Equation (32) (and Eq. (28)) admits an obvious degenerdttieo F' = a(t)z +
b(t); in this case, the corresponding Eq. (33) (and Eq. (29)) earetiuced to the linear
heat equation.

System (28), (29) for an arbitrary functien= «(¢) has a solution in the form

(33)

F =az’ +b(t)z+ i[bQ(t) —2b}(t) — 4a(t)],
w = A(t)z* + B(t)z + C(t),

wherea is an arbitrary constant.(#£ 0), b(¢) is an arbitrary function, and the func-
tions A = A(t), B = B(t), andC = C(t) are described by the system of ordinary
differential equations, which is not presented here.

5 Interpretation and classification of the flows under
consideration

Arbitrary fluid flows having two symmetry planes admit a resaetation of the type
of Eq. (5) in the vicinity of the line of intersection of thepéanes (in the adopted
notation, the planes intersect in thexis). Such flows include the axisymmetric flows,
combinations of axisymmetric flows with rotation aroundloé t axis (in particular,
the von Karman type flows), plane flows symmetric with respgec straight line,
flows in rectilinear impenetrable and porous pipes withpétliand rectangular cross
sections, fluid jets flowing from orifices of elliptic and rangular shapes, etc. (see also
[10, 11)).

It is convenient to treat the axial flows described by Eqsagba nonlinear super-
position of a translatory (nonuniform) flow along thexis and a linear shear flow of



a special type. In the vicinity of the poiat= z, lying on the axis, the components of
fluid velocity taking into account Eq. (5) can be represeied

Vi = Forz 4+ GrmXm;
Gi=—3F.+w, Gu=v, Gu=u Grpn=—3F. —uw,

(34)
Gis3 =Go3 =G31 = G320 =0, G33=F,;

Xi=z, Xo=y, Xz=z—2.

Herek, m = 1, 2, 3; the Gy, are shear matrix components; the summation is as-
sumed over the repeated subscriptdy,, is the Kronecker delta; an#, is the partial
derivative with respect te. All values in Eq. (34) are taken far = z,. The vanish-
ing of the sumG1; + G2 + G33 = 0 of diagonal elements is a consequence of fluid
incompressibility.

An arbitrary matrix|| G, || can be represented in the form of the sum of a symmet-
ric and an asymmetric matrix

1Grmll = [ Exm | + QI

35
Ekm - Emk - %(ka + Gmk)a ka = _ka = %(ka - Gmk) ( )
In turn, the symmetric matriX Ex.. || (in this case, it can be identified with the
strain-rate tensor) can be reduced to a diagonal form wabatial element&’;, Fs,
and E5, which are roots of the cubic equatia@rt || E,,, — Adkm|| = 0 for A, by
appropriately rotating the system of coordinates.
For this flow (34), the diagonal elements determining therisity of the tension
(compression) motion along the respective axes are cédclieom the formulas

1 1
E172:—§in§\/4w2+(u+v)2, FE3=F,. (36)

The splitting of the shear coefficient mattj&y.,, | into symmetric and asymmetric
parts (35) corresponds to the representation of the vgldieid of the linear shear
flow of the fluid as a superposition of a linear deformationavfiwith the tension
coefficientst;, F», andE3 along the principal axes and rotations of the fluid as a solid
body with the angular velocity = (32, Q13, Q21).

For this flow (34), we hav€s, = Q13 = 0 and the fluid rotates around theaxis

with the angular velocity
1

le = E(U - ’U). (37)
It is easy to show that Egs. (36) and (37) remain valid for diti@ry point
(x0, Yo, z0) of the flow (5) under consideration.
The analysis of Egs. (36), (37) enables us to single outioectaracteristic types
of flows indicated in the classification table.



Table 1:Classification of axial flows described by Egs. (5)

Type of flow Desired functions| Functions included in pressurg

Axisymmetric u=v=w=0 a=8v=0

Combination of axisymmetric flow

and rotation around of the axis w=0v=-u a=pv=0
Pure deformational (without rotation u=uv a, 3, are arbitrary functions
General axial u#v a, 3, are arbitrary functions

6 Some generalizations

LetVi(z,y, z,t), Va(z, vy, 2, t), V3(z, 9, 2,t), andP(x, y, z, t) be a certain solution of
Navier—Stokes equations (1)—(4). Then the set of functions

‘/1:%(x_Ian_y()aZ_ZOat)—i_I/Oa
‘_/2:VQ(x_I07y_y07Z_Z03t)+y67
‘/3:‘/B(x_any_yOaz_ZO’t)—i_Zé7
P = P((E_x07y_y072_201t) _p(xlo/x+y()/y+2612)7

(38)

wherezy = x0(t), yo = yo(t), andzy = zo(t) are arbitrary functions (primes de-
note the derivatives with respect ty also gives the solution of Egs. (1)—(4) [4, 15].
The combination of Egs. (5) and (38) fag = 0 determines an exact solution of the
Navier—Stokes equations, which can be treated as the dizedraxial flow with thex
axis moving along the plane y, according to the law = z((¢), y = yo(t). The indi-
cated solution can be used for the mathematical simulaficiestructive atmospheric
phenomena such as waterspouts and tornados.
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