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Abstract: - This paper is concerned with the robust stability of a class of uncertain discrete-time systems with 

time-varying delays and state saturation nonlinearities. The saturation nonlinearities are assumed to be the 

standard saturation function, and the delay is allowed to be time-varying with known bounds. By applying the 

Lyapunov stability theorem and the delay-fractioning approach, a suitable Lyapunov-Krasovskii functional and 

a non-negative scalar are constructed respectively. A delay-dependent criterion of the robust stability is given 

for the addressed systems. Finally, a numerical example is given to illustrate the effectiveness of the presented 

criterion.  
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1 Introduction 
Due to its important significance, the stability of 

dynamical systems has been widely studied over the 

past decades. On the other hand, in various 

engineering systems, time delays are introduced into 

the model of physical systems due to the inevitable 

reason such as measurement, transmission and 

transport lags, computational delays or un-modeled 

inertia of system components. The time delay is an 

important source of instability of the systems. So far, 

a large amount of results have been published for 

the stability and control of time-delay systems, see 

e.g. [1, 2]. Moreover, it is also well known that 

parameter uncertainties are inherent features of 

many physical systems. The uncertainties exist due 

to the variations in system parameters, modeling 

errors or some other ignored factors. Accordingly, 

the problems of analysis and synthesis have been 

addressed for uncertain systems [3-5].  

Dynamical systems with state saturation 

nonlinearities exist commonly in neural networks, 

analogue circuits and control systems, and hence the 

stability analysis of such systems is highly 

nontrivial [6, 7]. Recently, many important results 

have been reported on this issue, see e.g. [8-14]. To 

be specific, the problems of the global asymptotic 

stability of the equilibrium have been investigated in 

[8, 9] for n-order discrete-time systems with state 

saturations and partial state saturation. An improved 

version of Ritzerfeld-Werter’s criterion for the 

nonexistence of overflow oscillations in second-

order state-space digital filters has been presented. 

A new zero-input limit cycle-free realizability 

condition has been given in [10] for a generalized 

overflow characteristic and a complete stability 

analysis has been proposed in [11] for a planar 

discrete-time linear system with saturation. In [12], 

a criterion of the global asymptotic stability has 

been presented for discrete-time systems with partial 

state saturation nonlinearities. Subsequently, the 

extension of this approach has been performed in 

[13] to a situation involving partial state saturation 

nonlinearities.  

Recently, the problem of global asymptotic 

stability has been studied in [15] for uncertain 

discrete-time state-delayed systems with saturation 

nonlinearities. By using the linear matrix inequality 

(LMI) technique, a new criterion has been presented 

to guarantee the global asymptotic stability for the 

related systems. It has been shown that the 

presented result has improved the results in [8, 13]. 

However, it is worth pointing out that the delays 

have been assumed to be time-invariant in most 

relevant literature concerning the robust stability 

problem for the uncertain time-delay systems with 

state saturation nonlinearity. To the best of the 

authors’ knowledge, there has been little work 

undertaken on the robust stability of uncertain 

discrete-time systems with time-varying delay and 

state saturation nonlinearity. Note that the delay-

fractioning approach has been proved to be an 

effective way in [19-21] for addressing the time-

delay. Hence, we will employ this approach to give 

a new stability criterion.  

Motivated by the above discussions, in this paper, 

we aim to investigate the problem of robust stability 

for a class of uncertain discrete-time state-delayed 

systems with state saturation nonlinearity. Here, the 

delay is time-varying with known bounds and the 

parametric uncertainties are norm-bounded. By 



 

 

using the delay-fractioning approach and 

constructing an appropriate Lyapunov-Krasovskii 

functional, the delay-dependent robust stability 

condition is presented. It is shown that the proposed 

condition is in term of the solutions of the linear 

matrix inequalities (LMIs) which can be easily 

solved by using the standard numerical software. 

Finally, an illustrative example is given to 

demonstrate the effectiveness of the proposed 

results. 

The rest of this paper is organized as follows. 

Section 2 briefly introduces the problem under 

consideration and gives some useful Lemmas. The 

criterion of robustly global asymptotic stability is 

given in Section 3. In Section 4, a numerical 

example is presented to illustrate the feasibility and 

effectiveness of the developed results. This paper is 

concluded in Section 5. 

 

2 Problem Formulation and 

Preliminaries 
In this paper, we consider the following 

uncertain discrete-time systems with time-

varying delay and state saturated nonlinearities: 

 1 1( 1) (( ( )) (( ( )), , (( ( ))
T

n nx k f y k f y k f y k  

                                                                       (1a) 

 1( ) ( ), , ( )

       ( ) ( ) ( ) ( ( ))

T

n

d d

y k y k y k

A A x k A A x k d k



      
 

                                                              (1b) 

( ) ( ), [ ,0]Mx k k k d                                 (1c) 

where, ( ) nx k R  is the state vector; , dA A  
n nR 

are known matrices; , n n

dA A R    are the 

unknown matrices representing parametric 

uncertainties in the state matrices; ( )d k is the 

positive integer for time delays; ( ) nk R  is the 

initial state value at time k; ( ( ))f y k is the 

vector saturation function. 

The saturation functions ( ( ))i if y k are defined 

as 

1,     ( ) 1

( ( )) ( ), ( ) 1

1,        ( ) 1

i

i i i i

i

y k

f y k y k y k

y k

  


 




, i=1, 2, … , n  (1d) 

The uncertain matrix satisfies the following 

condition:  

, d dA HFE A HFE                (1e) 

where ,H E  and
dE are known constant matrices 

with appropriate dimensions and F is an 

unknown matrix satisfying 
TF F I                        (1f) 

The time-varying delay ( )d k  satisfies 

( )m Md d k d                    (1g) 

where
md  and 

Md  are known positive integers 

representing the upper and lower bounds of 

delay ( )d k . The lower bound of delay  
md  can 

always be described by 
md m , where   and 

m  are positive integers. 

To proceed, we introduce the following 

definition and lemmas that will be used in the 

proofs of the main results. 

Definition 1
[15] 

The zero solution of the 

system described by (1a)-(1g) is globally 

asymptotically stable if the following holds: 

(i) it is stable in the sense of Lyapunov, i.e., 

for every 0   there exists a 0  so that 

( )x k  for all 1,2,k  , whenever 

[ ,0]
( ) max ( )

Mk d
k  

 
   ; 

(ii) it is attractive, i.e., lim ( ) 0
k

x k


 . 

Lemma 1
[16]

 Let , ,D E F and M be real 

matrices of appropriate dimensions with M  

satisfying
TM M , then  

0T T TM DFE E F D              (2a) 

for all 
TF F I , if and only if there exists a 

scalar 0  such that 
1 0T TM DD E E               (2b) 

Lemma 2
[16]

 Let , ,D E F and M be real 

matrices of appropriate dimensions with M  

satisfying
TM M , and P is a symmetric 

positive definite matrix, then 

 
1

1 1

( ) ( )T

T T T

M DFE P M DFE

M P DD M E E 


 

 

  
       (3) 

for any scalar 0   

Lemma 3
[17]

 Given constant matrices 

,A B and C of appropriate dimension, with 

A and C  symmetrical, then 
1 0TA BC B    and  0C         (4a) 

if and only if 

0
T

A B

B C

 
 

 
                    (4b) 



 

 

or equivalently 

0
TC B

B A

 
 

 
                    (4c) 

Lemma 4
[15] 

Suppose matrix ( ) n n

ijC c R     

is characterized by 

1,

( ),   1, 2, ,

,   , 1, 2, , ( )

n

ii ij ij

j j i

ij ij ij

c i n

c i j n i j

 

 

 

  

   


     (5a) 

0, 0,   , 1,2, ,ij ij i j n     

then the scalar   is a nonnegative number with 

 

    

     

1

1,

2 ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

n

i i i

i

n

ij ij i i ij ij j j

j j i

T TT T

y k f y k

f y k f y k

y k Cf y k f y k C y k f y k



   



 

   

 
    
 

  





    ( ) ( )TC C f y k                                        (5b) 

 

3 Main Result 
In this section, by using the delay-fractioning 

approach and the LMI technique, the criterion 

of robustly global asymptotic stability is given 

for uncertain discrete-time systems with time-

varying delay and state saturation nonlinearities. 

Theorem 1 Consider system (1a)-(1g). If 

there exist symmetry positive definite matrices 

0, 0, 0, 0P Q R S    , the symmetry 

positive semi-definite matrix 0, 0M N  real 

matrices X, Y, Z with appropriate dimensions 

and matrix C satisfying (5a), and positive scalar 

0   such that 

1 2 2 3

2

3 4 5

2 1
0 

*

T

T

T
h C H

I

    
 

   
  

   (6a) 

0
T

M X

X P

 
 

 
, 0

T

N Y

Y P

 
 

 
, 0

T

N Z

Z P

 
 

 
 

                            (6b) 

where 

1 21,  M m M mh d d h d d       , 

1 ( )M mM d d N    , 

( 2)

2 2

( 1)

, ,

[ , , ] , , ,

, , ,

n n n n n m n

n mn n n n n n n

n m n n n n n n n

I I O

X Y Z O I I O

O I I O

   

   

    

 
 

   
  

, 

3 2 1 2 42( 1)( )T

dh A A C      ,  

4

T

R RW RW  , 

 5 1 2 1 1 2 2(2 1)T Th P hQ S Q          

3 3 2 4 4(2 1) ( )T T TS h P C C         

2 1 2 1 2(2 1)( ) ( )T

d dh E E E E        , 

3

3

, ,

, ,

mn mn mn n mn n

R

mn n mn mn mn n

I O O
W

O I O

  

  

 
  
 

, 
R

R
R

 
  

 
, 

1 ( 3),n n n m nI O   
    , 2 ( 1) 2, ,n m n n n n nO I O    

    , 

3 ( 2) , ,n m n n n n nO I O    
    , 4 ( 3) ,n m n n nO I   

    , 

then the zero solution of system (1a)-(1g) is 

globally asymptotically stable. 

Proof. By using the delay fractioning 

approach in [19], construct the following 

Lyapunov-Krasovskii functional 
4

1

( ) ( )i

i

V k V k


                    (7) 

where 

1( ) ( ) ( )TV k x k Px k  

1 1

2

( ) 1

( ) ( ) ( ) ( ) ( )
m

M

dk k
T T

j k d k j d l j k

V k x j Qx j x l Qx l
 

     

   
1 1

3( ) ( ) ( ) ( ) ( )
M

k k
T T

j k j k d

V k j R j x j Sx j


 
 

   

    

11 1 1

4( ) ( ) ( ) ( ) ( )
m

M

dk k
T T

j l k j j d l k j

V k l P l l P l


   
   

     

      

( ) ( 1) ( )l x l x l     

( ) ( ), ( ), , ( ( 1) )T T T Tj x j x j x j m         

with 0, 0, 0, 0P Q R S    being matrices to 

be determined. 

Denote ( ),kx x k ( ),ky y k ( ),l l 
j   

( ),j  ( )kd d k . Calculate the difference of 

V(k) along systems (1a)-(1g). 
4

1

( ) ( 1) ( ) ( )i

i

V k V k V k V k


            (8) 

where 



 

 

1( ) ( ) ( )

          ( ) ( ) ( ) 2 ( )

T T

k k k k

T T T

k k k k

V k f y Pf y x Px

f y P C C f y y Cf y

  

   

 T

k kx Px                                              (9) 

1

2

1 1 1

1 1

1

( )

               

m

k M

m

k M

dk k
T T

j j l l

j k d j d l k j

dk k
T T

j j l l

j k d j d l k j

V k x Qx x Qx

x Qx x Qx





       

 

     

  

 

  

  

 

1 k k

T T

k k k d k dh x Qx x Qx                        (10) 

3

1 1

1 1

( )

               

           

M

M

M M

k k
T T

l l l l

l k l k d

k k
T T

l l l l

l k l k d

T T T T

k k k k k k k d k d

V k R x Sx

R x Sx

R R x Sx x Sx





 

 

 

   

     

 

   

   

  

 

   

 

 

 

                                         (11) 
11

4

1 1

( )
m

M

dk k
T T

l l l l

j l k j j d l k j

V k P P


   
 

       

       

11 1 1m

M

dk k
T T

l l l l

j l k j j d l k j

P P


   
   

     

      

11

2

m

M

k dk
T T T

k k j j j j

j k j k d

h P P P


     
 

   

     

(12) 

Note that 

1 1( ) ( ) 4 ( )T T T

k k k k k k k kP x x P x x y Cf y        

2 ( )( ) ( ) 2T T

k k k kf y C C P f y x Px   

4 ( ) ( )
k k

T

k d k d k d k dAx A x HF Ex E x 
       

( ) 2 ( )( ) ( ) 2T T

k k k k kCf y f y C C P f y x Px      

14( ) ( ) 2 ( )
k

T T T

k d k d k kAx A x Cf y f y C H 

    

( ) 2 ( ) ( )
k k

T T

k k d k d k d k dH Cf y Ex E x Ex E x       

2 ( ) ( ) ( ) 2T T T

k k k kf y C C P f y x Px          (13) 

 

Hence, from (9)~(13), we have  

 2 1( ) (2 1)
k k

T T

k k k d k dV k x h P hQ S x x Qx      

2

1

(2 1)

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

M M

k k

k k

T T T

k d k d k k k k

T T T T

k k k

T T

k k d k d k d k d

T T T

k d k d k k k d k d

x Sx R R h

f y C C P f y f y C H

H Cf y Ex E x Ex E x

Ax A x Cf y f y C Ax A x

    





   



 

 

    

    

    

   
1 11 m k

k M

k d k dk
T T T

j j j j j j

j k j k d j k d

P P P


     
   

     

         (14) 

Let 
( 4)[ , , , , ( ) ]

m k M

T T T T T T m n

k k d k d k d kx x x f y R  

     

Then, it is easy to see that 

1 2 3 4, , , ( )
k Mk k k d k k d k k kx x x f y             

Thus 

 1 2 1 1 2 2( ) (2 1)T T T

kV k h P h Q S Q           

3 3 2 4(2 1) (T T T T

R RS W RW h P C C       

1

4 1 2 1 2) ( ) ( )T T T

d dC HH C E E E E         

1 2 4( )T

dA A C    4 1 2( )T T

d kC A A    


 

1 11 m k

k M

k d k dk
T T T

j j j j j j

j k j k d j k d

P P P


     
   

     

         (15)       

For any matrices , ,X Y Z with appropriate 

dimensions, we have 
1

1

1

2 0

2 0

2 0

m

m k

k

k

k M

M

k
T

k k k j

j k

k d
T

k k d k d j

j k d

k d
T

k k d k d j

j k d

X x x

Y x x

Z x x




 

 

 





 

 

 

 

 

 

 

 
   

 

 
   

 

 
   

 







     (16)  

On the other hand, for any symmetry positive 

semi-definite matrix 0, 0M N   with 

appropriate dimensions, the following equations 

always hold 
1

1

0

( ) 0
m

M

k
T T

k k k k

j k

k d
T T

M m k k k k

j k d

M M

d d N N



   

   



 

 

 

 

  





      (17) 

It follows from (16)-(17) that 

1 2 2 3 3 4 5( ) T T T
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    Noting (6b), we know that ( )V k  is negative 

definite if the following inequality 

1 2 2 3 3 4 5

1

2 4 4      (2 1) 0

T T

T T Th C HH C  

       

  
 

holds. By using Lemmas 1 and 3,  0   is 

equivalent to (6a). This completes the proof of 

this theorem. 

Remark 1: Up to know, the problem of the 

robustly global asymptotic stability has been 

studied for a class of uncertain discrete-time 

systems with time-varying delay and state 

saturation nonlinearities. By using the delay-

fractioning approach, an appropriate Lyapunov-

Krasovskii functional has been introduced to 

deal with the time-varying delay. By employing 

the LMI technique, a new stability criterion has 

been given to guarantee the robustly global 

asymptotic stability of the addressed system.  

As a special case, if there is no saturation 

nonlinearities in system (1a), we have the 

following system: 

1 ( ) ( )
kk k d d k d kx A A x A A x y        (18) 

In the following corollary, a sufficient condition 

is proposed to ensure the robustly global 

asymptotic stability of system (18). 

Corollary 1 Consider the system (18). If 

there exist the symmetry positive definite 

matrices 0,P  0,Q  0,R  0S  , the 

symmetry positive semi-definite matrix 

0, 0M N   real matrices X, Y, Z, and positive 

scalar 0  such that 

11 12 12

* 0 0

* *

T T

T

W W W

P HH

I





 
 

   
  

        (19a) 
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   (19b) 

where 

11 1 2 2 4 5

TW         ,  

 12 2 1 22 1 dW h A A     , 

 13 2 1 22 1 dW h E E     , 

and 
1 2 1, , ,h h R  are same as in the Theorem 1, 
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1 ( 2),n n n m nI O   
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3 ( 2) ,n m n n nO I   
     

then the zero solution of system(18) is globally 

asymptotically stable. 

Proof. Constructing the Lyapunov-

Krasovskii functional as in (7), we have 

1( ) T T

k k k kV k y Py x Px    

and 
2 3 4( ), ( ), ( )V k V k V k    are same as in the 

Theorem 1. Note that 

( ) ( ) 2 2T T T T
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Therefore, 
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By using Lemmas 2 and the method as in the 

Theorem 1, the proof of this corollary is 

complete. 
 

4 A Numerical Example 
In this section, a numerical example is given to 

illustrate the usefulness of the proposed results. 

Example 1. Consider the system (1a) –(1g) with 

the following parameters: 

3, 1, 1, 1M md d m     

1.01 2.5 0.001 0
,

0.1 0 0 0.002
dA A

   
    
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   
0

, 0.01 0 , 0 0.01
0.1

dH E E
 

   
 

 

By using the Matlab LMI Toolbox, it turns out that 

LMI (6a)-(6b) is feasible. We obtain the following 

values: 

14.87 0 26.76 0
,

0 14.87 0 22.3
P Q

   
    
   

 

22.3 0 22.3 0
,

0 17.84 0 22.3
R S

   
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44.6 0 8.92 40.14 4.62
   

4.46 0 360.91 4.46 4.46

4.46 4.46 104.15 8.92 4.46
  

492.88 4.46 8.94 0 8.92

  

Y

Z

   
 

  
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 

35.68 8.92
, 22.3

0 44.6
C 

 
  
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Thus, according to Theorem 1, the system under 

consideration is robust globally asymptotical stable 

which confirms the feasibility of the proposed 

stability criterion. 

 

5 Conclusion 
In this paper, a new criterion of the robust stability 

has been given for a class of uncertain discrete-time 

systems with time-varying delay and state saturation 

nonlinearities. The norm-bounded parametric 

uncertainties have been considered. The delay-

dependent stability criterion has been given by 

integrating the delay-fractioning approach and the 

LMI technique. It is worth mentioning that the 

proposed results are less conservative than the 

existing results if there is no saturation nonlinearity 

in the addressed system. Also, both the constructed 

Lyapunov-Krasovskii functional based on the delay 

fractioning approach and the nonnegative scalar   

are important. It has been shown that the proposed 

scheme can be easily checked by using the standard 

numerical software. Finally, a numerical example 

has been given to illustrate the feasibility of the 

proposed results. 
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