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1. Introduction

This paper is a continuation of the previous
works by the author [1–7] and, specifically, of the
paper [7].

In [7] free quantum fields at low energies
E ≪ Ep have been studied in terms of the
measurability concept [1–5] within the scope of
a scalar field model.

In the present paper a perturbation theory
for the indicated model at the same energies is
subjected to a measurable consideration. The
principal objective is to construct at low energies
E ≪ Ep the correct perturbation theory for a
scalar field model in the measurable picture.

In this case the correct perturbation theory
is understood as a quantum theory considered
within the lattice approach and

(a) including only the integrals making
contributions into the corresponding amplitudes
in QFT the integration domain of which lies
within the indicated energy range;
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(b) containing only finite values of all available
parameters, both experimental (i.e. renormalized)
and bare, expressed in terms of quantities from
the same energy range;

(c) having a continuum limit without ultraviolet
divergences.
The structure of the paper is as follows.

Section 2 briefly presents earlier obtained
results which are significant in this consideration,
with all required refinements and additions.

In Section 3 the principal difference in the
occurrence of ultraviolet divergences in canonical
QFT and its measurable analog is revealed.

Section 4 that is of major importance
presents the results associated with the above
points (a), (b), and (c).

It should be noted that, because in [7]
QFT in the measurable consideration has been
presented as a lattice theory, we can adequately
use the mathematical apparatus of this theory for
derivation of key results in this new work.
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2. Important preliminary

information and some refinements

2.1. Measurability concept in quantum

theory and gravity

In this Section we briefly consider some of
the results from [1–7] which are essential for
subsequent studies. Without detriment to further
consideration, in initial definitions we lift some
unnecessary restrictions and make important
specifications.

Presently, many researchers are of the
opinion that at very high energies (Planck’s or
trans-Planck’s) the ultraviolet cutoff exists that
is determined by some maximal momentum.

Therefore, it is further assumed that there is
a maximal bound for the measurement momenta
p = pmax represented as follows:

pmax
.
= pℓ = ~/ℓ, (1)

where ℓ is some small length and τ = ℓ/c is
the corresponding time. Let us call ℓ the primary
length and τ the primary time.

Without loss of generality, we can consider
ℓ and τ at Planck’s level, i.e. ℓ ∝ lp, τ = κtp,
where the numerical constant κ is on the order
of 1. Consequently, we have Eℓ ∝ Ep with
the corresponding proportionality factor, where
Eℓ

.
= pℓc.

Explanation.
In the theory under study it is not assumed from
the start that there exists some minimal length
lmin and that ℓ is such. In fact, the minimal
length is defined with the use of Heisenberg’s
Uncertainty Principle (HUP) ∆x · ∆p ≥ 1

2~ or
its generalization to high (Planck) energies –
Generalized Uncertainty Principle (GUP) [8–16],
for example, of the form [8]

∆x ≥ ~

∆p
+ α′l2p

∆p

~
, (2)

where α′ is a constant on an order of 1. Evidently
the formula (2) initially leads to the minimal
length ℓ̃ on an order of the Planck length

ℓ̃
.
= 2

√
α′lp. Besides, other forms of GUP [16] also

lead to the minimal length.
Thus, we should note that in all the works

lmin is actually (but not explicitly) introduced on
the basis of some measuring procedure (different
forms of the Generalized Uncertainty Principle
(GUP)). In any form GUP in turn is a high-energy
generalization of HUP. But in the original proof of
HUP a planar geometry of the initial space-time
was actively used [17]. Extension of this principle
to other pairs of conjugate variables is also valid
only for quantum mechanics in zero-curvature
spaces [18]. As HUP is a local principle, at low
energies in the curved space-time, by virtue of
Einstein’s Equivalence Principle, we can consider
that in a fairly small neighborhood of an any point
the geometry is planar an hence HUP is valid too.
But all the results obtained point to the fact that
lmin should be at a level of lp,i.e. lmin ∝ lp, or
even should be smaller. As noted in the Section 2
of [7], at the Planck scales Einstein’s Equivalence
Principle is obviously inapplicable, and there is no
way to use the measuring procedure ignoring the
space geometry at these scales. Meantime, none
of the GUP forms [16] makes an effort to include
it and is hardly completely correct. Moreover,
there are some serious arguments against GUP
as demonstrated in Section IX of the review
paper [16]. The foregoing considerations support
argumentation against the introduction of lmin

from the start.
Because of this, in the present work the

validity of this principle is not implied from the
start too. GUP is given merely as an example.
As pmax (1) is taken at Planck’s level, it is
clear that HUP is inapplicable. Taking this into
consideration, the existence of a certain minimal
length ℓ̃ is not mandatory. So, we start from the
primary length ℓ and the primary time τ . The
whole formalism, developed in [1–5] on condition
that ℓ is the minimal length, is valid for the case
when ℓ is the primary length but now we can lift
the formal requirement for involvement of lmin in
the theory from the start.

There is one more barrier for the use of
lmin in the theory as indicated in [15] and
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QFT in Flat Space and Measurability II. Perturbation Theory for a Scalar Field Model 35

other works (for example, [16]). In the above-
mentioned papers, it has been noted that there
is a nonzero minimal uncertainty in position, i.e.
lmin implies that there is no physical state which
is a position eigenstate since an eigenstate would,
of course, have zero uncertainty in position.
So, in this case in a quantum theory we have
the momentum representation rather than the
position representation, and the quantum theory
becomes very depleted.

The question arises whether the introduction
of pmax is naturally associated with the
involvement of a minimal length. But this
is the case only when at the energies Emax

corresponding to pmax we have the substantiated
measuring procedure. Unfortunately, this is not
the case.

Note that in the canonical QFT in
continuous space-time (i.e. without lmin)[19–22]
measurements of the contributions in the loop
amplitudes involve the standard cut-off procedure
for some large (maximal) momentum pcut

.
= pmax.

Then it is demonstrated that the theory at low
energies p ≪ pcut is in fact independent of the
selection of pcut

.
= pmax. Of course, the theory

still remains to be continuous [19–22]. In this
case we make another step forward, relating the
corresponding length ℓ = ~/pmax to pmax and
constructing on its basis a low-energy theory very
close to the initial continuous theory. Now, we
have the naturally derived parameter ℓ for the
construction of a high-energy deformation of this
theory at the energies E ≈ Emax within the scope
of determining the physical theory deformation
[23]. So, we start from the primary length ℓ
and the primary time τ . The whole formalism,
developed in [1–5] on condition that ℓ is the
minimal length, is valid for the case when ℓ is
the primary length but now we can lift the formal
requirement for involvement of lmin in the theory
from the start.

In what follows we mainly make references
to [5] and [7]. In particular, the basic definitions
of Primary Measurability, Generalized
Measurability, Primarily Measurable
Quantities (PMQ), Primarily Measurable

Momenta (PMM), Generalized Measurable
Quantities (GMQ) and the like are given in
Section II of [5].

Besides, in Section III from [5] it has been
demonstrated how, at low energies E ≪ Ep, the
arbitrary metric gµν(x) may be derived in terms
of measurable quantities. In the process it is
important to note the following.

Remark 2.1
According to the present approach, there is no
relativistic invariance (RI) from the canonical
statement (for example, [22]). Specifically, for
momenta PMM this is obvious just from the
start. Indeed, as at low energies E ≪ Ep a set of
four-momenta PMM is limited and is not space,
it is not retained by the Lorentz Group (LG) or
Poincare Group (PG). As a matter of fact, for
the scalar

m2c2 = ηabp
apb =

E2

c2
− p2x − p2y − p2z, (3)

the quantities E, p2x, p
2
y, p

2
z have no limits because

boosts may result in values of any highness,
conflicting with the condition E ≪ Ep. Because
of this, in the case under study we can speak only
about the transformations from LG or PG which
retain PMM at low energies E ≪ Ep (or same
E ≪ Eℓ).

However, as noted in Section 2.2, RI should
be violated at high energies not only in the model
proposed but also in the general case of the well-
known QFT. In what follows, unless the contrary
is stated, QFT is considered at the energies
E ≪ Ep (same E ≪ Eℓ).

2.2. Relativistic invariance, equivalence-

principle applicability boundary, and QFT in

flat space

The canonical quantum field theory (QFT)
[19–22] is a local relativistically-invariant theory
considered in continuous space-time with a plane
geometry, i.e with the local Minkowski metric
ηµν(x). And this assumption is valid for all
the energy range. Still, it is quite clear that
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the quantum processes associated with QFT
(particle collisions, decay, ...) can introduce
perturbations into the space-time geometry,
varying its curvature. But as QFT is a local
theory, a strong Equivalence Principle (EP) [24]
enables one, in a sufficiently small region Vr of
the fixed point, to consider space-time as a flat
space in this case too. Consequently, we naturally
think about the applicability boundary of this
principle. In Section 2 of [7] this problem has been
thoroughly studied.

In essence, sufficiently small Vr means
that the region V ′

, for which x ∈ V ′

r′ ⊂ Vr with
r′ < r (here r, r′ are characteristic spatial sizes of
Vr and V ′

r, respectively), satisfies the condition
gµν(x) ≡ ηµν(x), where ηµν(x) is Minkowski
metric. In this way we can construct the sequence

. . . ⊂ V ′′

r
′′ ⊂ V ′

r′ ⊂ Vr,

. . . < r
′′

< r′ < r.
(4)

The problem arises: is there any lower limit for
the sequence in formula (4)?

The answer is positive. Currently, there
is no doubt that at very high energies (on
the order of Planck energies E ≈ Ep), i.e.
on Planck scales, l ≈ lp quantum fluctuations
of any metric gµν(x) are so high that in
this case the geometry determined by gµν(x)
is replaced by the ”geometry” following from
quantum foam that is defined by great quantum
fluctuations of gµν(x),i.e. by the characteristic
spatial sizes of the quantum-gravitational region
(for example, [26–31]). The above-mentioned
geometry is drastically differing from the locally
smooth geometry of continuous space-time and
EP in it is no longer valid [32–39]. Actually, the
quantum foam is not geometry in a common
sense as locally it is determined by a set of
different metrics, each of which is taken into
consideration with its statistical weight [29].

From this it follows that the region Vr,t

with the characteristic spatial size r ≈ lp (and
hence with the temporal size t ≈ tp) is the lower
(approximate) limit for the sequence in (4).

In this way EP has the applicability
boundary that, at least, lies in the region

of Planck energies and hence the relativistic
invariance must be violated at the same energy
scales because its applicability necessitates space-
time with the locally flat geometry, just supported
by EP.

It should be noted that initially strong EP
has been formulated for the macroscopic case (i.e.
for the space-time domains of great size) that is
beyond quantum consideration. On extension of
this principle to microscopic domains, the problem
of its applicability boundaries is absolutely
natural.

It is difficult to find the exact lower limit
for the sequence in formula (4) – it seems to be
dependent on the processes under study. Section
2 of [7] presents the arguments that it should be
associated with the energy scales E ≪ Ep.

Therefore, it is assumed that the
Equivalence Principle is valid for the locally
smooth space-time and this suggests that all the
energies E of the particles in the most general
form meet the necessary condition

E ≪ Ep. (5)

As validity of RI requires the applicability of
EP, we can consider the condition (5) a necessary
condition for the validity of RI. Then, if not
stipulated otherwise, we can assume that the
condition (5) is valid.

The canonical quantum field theory (QFT)
[19–22] is a local theory considered in continuous
space-time with a local plane geometry, i.e with
the Minkowski metric ηµν(x) . In addition, it is
assumed that all objects in QFT are point-like.
However, as noted above, this assumption will
be true to a certain limit: the assumptions that
(a) even local space-time geometry is plane and
(b) all objects in QFT are point-like have natural
applicability boundaries directly specifying the EP
applicability boundary.

Within the scope of the canonical QFT, the
process of passage to more higher energies without
a change in the local curvature has no limits [19–
22], just this fact is the reason for ultraviolet
divergences in QFT.

However, on passage to the Planck energies
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E ≈ Ep (Planck scales l ≈ lp), the space in
the Planck neighborhood Vr,t of the point x one
cannot consider flat even locally and in this case
(as noted above) EP is not valid.

Then we introduce the following assumption:

Assumption 2.2
In the canonical QFT in calculations of
the quantities it is wrong to sum (or same
consider within a single sum) the contributions
corresponding to space-time manifolds with
locally nonzero or zero curvatures since these
contributions are associated with different
processes: (1) with the existence of a gravitational
field that, in principle, can hardly be excluded;
(2) in the absence of a gravitational field.
From the start, we can isolate the case when EP
is valid and hence RI takes place (at sufficiently
low energies, specifically satisfying the condition
(5)) from the cases when EP becomes invalid (for
example, Planck energies E ≈ Ep).

Remark 2.3
According to Assumption 2.2, we should
consider two limiting cases:
(a) low energies E ≪ Ep and
(b) very high (essentially maximal) energies
E ≈ Ep.
Then it should be noted that, as all the
experimentally involved energies E are low,
they satisfy condition a). Specifically, for LHC
maximal energies are ∼ 10 TeV = 104 GeV,
that is by 15 orders of magnitude lower than the
Planck energy ∼ 1019 GeV.
Moreover, the characteristic energy scales of all
fundamental interactions also satisfy condition
a). Indeed, in the case of strong interactions
this scale is ΛQCD ∼ 200 MeV; for electroweak
interactions this scale is determined by the
vacuum average of a Higgs boson and equals
υ ≈ 246 GeV; finally, the scale of the (Grand
Unification Theory (GUT)) MGUT lies in the
range of ∼ 1014–1016 GeV. It is obvious that all
the above figures satisfy condition a).
Thus, only the expected characteristic energy
scale of quantum gravity satisfies condition b).

From Remark 2.3 it directly follows that
even very high energies arising on unification of
all the interaction types MGUT ≈ 1014–1016 GeV
(except gravitational), satisfy the condition (5).
At the same time, it is clear that the RI validity
requirement in canonical QFT [19–22], due to
the action of Lorentz boost (or same hyperbolic
rotations) (formula (3) in [25]), results in however
high momenta and energies. But it has been
demonstrated that unlimited growth of the
momenta and energies is impossible because in
this case we fall within the energy region, where
the conventional quantum field theory is invalid.
Just this has been indicated in Remark 2.1
for a measurable consideration. This section
supports the validity of the fact in the general
case of the canonical QFT in continuous space-
time as well.
Note that at the present time there are
experimental indications that RI is violated
in QFT on transition to higher energies
(for example, [40]). Besides, one should note
important recent works associated with EP
applicability boundaries and violation in nuclei
and atoms at low energies (for example [41]).
We can mention other works indicating the
applicability boundaries of EP for specific
processes, especially associated with the context
of this paper (for example, [42, 43]). Proceeding
from the above, the requirement for RI and EP
is possible only within the scope of the condition
(5).
Due to the condition E ≪ Ep and to the results
of Section 2 in [7], all conclusions made in this
section are valid both for the canonical Quantum
theory in continuous space-time, [19–22], and
for its measurable analog in Section 2 of [7]
(Subsection 2.1 in the present paper).

Remark 2.4
Why in canonical QFT it is so important to never
forget about the fact that space-time has a flat
geometry, or the same possesses the Minkowski
metric ηµν(x)? Simply, in the contrary case we
should refuse from some fruitful methods and
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from the results obtained by these methods in
canonical QFT, in particular from Wick rotation
[22]. In fact, in this case the time variable is
replaced by t 7→ it

.
= tE , and the Minkowski

metric ηµν(x) is replaced by the four-dimensional
Euclidean metric

ds2 = dt2E + dx2 + dy2 + dz2. (6)

Clearly, such replacement is possible only
in the case when from the start space-time
(locally) has a flat geometry, i. e. possesses
the Minkowski metric ηµν(x). This is another
argument supporting the key role of the EP
applicability boundary. Otherwise, when we go
beyond this boundary, Wick rotation becomes
invalid. Naturally, some other methods of
canonical QFT will lose their power too.

2.2.1 In this paper we consider two limiting
energy scales:E ≪ Ep and E ≈ Ep. Of course,
the whole energy range 0 < E ≤ Ep is not reduced
to these scales. But, assuming that the onset of
the Universe had started from the energies close
to the Planck energies Ep and its expansion was
very fast, the above boundary is reasonable. An
additional argument in support is the fact that,
as noted in Remark 3.2, the energy ranges for
all the fundamental models combining various
interactions are associated with these scales.

2.2.2 It is clear that the equivalence-
principle applicability boundaries (EPAB) in each
specific case are dependent on the particular
processes studied in particle physics. In what
follows we consider only the energy range E ≪ Ep

assuming that the common EPAB lies within
0 < E ≤≈ 10−2Ep.

2.3. Quantum field theory in measurable

format

In Section 4 of [7] it has been shown that
at low energies E ≪ Ep (same E ≪ Eℓ) we can
construct a measurable QFT variant, very close
to canonical QFT in continuous space-time [19].

It is important that all the principal components
of the mathematical apparatus for canonical QFT
have their direct analogs in measurable QFT.

In particular, the d’Alembertian
measurable in this case is represented as
(formula (15) in [7])

2Nxµ
=

∆

∆Nxµ

· ∆

∆Nxµ

. (7)

where ∆

∆Nxµ

, ∆

∆N
xµ

are corresponding piecewise-

differential analogs of the usual derivatives (the
formula (9) in [5]).

The paper [5] presents in detail a measurable
form of the Least Action Principle. In this
case in all the formulae on passage from QFT
in continuous consideration to the measurable
form of QFT, in accordance with (8) and (9) in
[5], the substitution is performed (formula (71) in
[5]):

∫
7→

∑
; ∂µ 7→ ∆

∆Nxµ

; d4x 7→
3∏

µ=0

ℓ

Nxµ

, ... (8)

The Dirac’s Delta Function in position
representation has the measurable form
(formula (17) in [7])

∞∑

−∞

δmeas(xµ)
ℓ

Nxµ

, |Nxµ | ≫ 1. (9)

and in momentum representation (formula (23) in
[7])

pN∗∑

pN∗

δmeas(pi)pNi(Ni+1), |Ni| ≫ 1 (10)

where GMQ ℓ/Nxµ and PMQ
pN∗ , pN∗

, pNi(Ni+1) are taken from Section II
of [5].

In a similar way Section 4 of [7] presents
definitions of all other analogs for the principal
components of the mathematical apparatus of
canonical QFT in continuous space-time [19]
including the Fourier transformations. At the
same time, we should take into consideration that
at low energies a set of Primarily Measurable
Momenta (PMM), being a discrete finite set, is
not a space.
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3. General remarks on ultraviolet

divergences in canonical QFT and its

measurable analog

It is known that an ultraviolet divergence
(UVD) in QFT can be described as one that
comes from

(1) the region in the integral where all particles
in the loop have large energies and momenta;

(2) very short wavelengths and high-frequencies
fluctuations of the fields, in the path integral for
the field;

(3) very short proper-time between particle
emission and absorption, if the loop is thought of
as a sum over particle paths.
That is, all of them are short-distance, short-time
phenomena.

As noted in Section 2.1, the available
energies E satisfy the condition E ≪ Eℓ (or same
E ≪ Ep), E takes the form E = Eℓ/N

′ and
momenta p take the form pN ′ = pℓ/N

′, |N ′| ≫ 1.
So, in the case under study “large energies and
momenta” in point (1) will always be bound
and hence there will be no UVD associated
with point (1). We can speak only about some
minimal values of N and |N ′|, characterized
by the property N ≫ 1, |N ′| ≫ 1, and the
corresponding maximal values of EN and p′N .

Similarly, due to the condition E ≪
Eℓ, we will not have “very short wavelengths”
in point (2) and “very short proper-time” in
point (3). Proceeding from the definition of
observables (p. 140 in Section 4 of [7]), at the
above-mentioned energy scales variations of the
observable quantities are limited to L = NLℓ
and t = Ntτ with NL ≫ 1, Nt ≫ 1. So, in
this case we can also speak about some minimal
values of NL, L and Nt, t having the indicated
property. Because of this, in the case under study
there are no UVD associated with points (2) and
(3). This means that the present paradigm in a
measurable consideration includes no UVD.

Then the problem arises, how to derive
to a high accuracy all the principal results
(PCCT) (Section 2 in [7]) of canonical QFT
in continuous space-time [19–22] in accordance
with the Principle of Correspondence to
Continuous Theory within measurable QFT,
by definition finite in all orders of a perturbation
theory, i.e. in the absence of UVD.

Since ℓ is chosen at a level of Planck length,
i.e. ℓ ∝ lp ≈ 10−33 cm, the quantities ℓ/N ,
where |N | ≫ 1 from Remark 2.3, are of the
order of 10−33−lg |N | cm. It is clear that for all
calculations these quantities may be considered
infinitesimal to any accuracy. Similar statement
is possible for PMM pN as well. On the face
of it, at low energies E ≪ Ep the difference
between measurable QFT and canonical QFT
in continuous space-time is negligible. But
we should take into consideration the above-
mentioned definition of observables in Section 4
of [7]. Actually, the meaning of this definition is
as follows.

Remark 3.1
When at low energies, E ≪ Eℓ, the observable
quantity A has the space-time coordinates
{xµ}, all real variations of these coordinates
for A, provided A remains an observable
quantity,take the form xµ 7→ xµ + ∆(xµ), where
∆(xµ) = Nxµℓ, |Nxµ | ≫ 1 or ∆(xµ) = 0. In this
case, at least, for one index we ν,∆(xν) 6= 0.
Other variations of space-time coordinates we
regard as nonobservable shifts A. For example,
such shifts as A(xµ) → A(xµ + ℓ

Nxµ
).

Similarly, in the momentum representation:
if coordinates of the observable quantity A
are {pNxi

} in the momentum representation,
then all variations of these coordinates for A,
provided A remains an observable quantity,
are of the form pNxi

7→ pNxi
+ ∆pNxi

= pN∗
xi

,

where |Nxi
− N∗

xi
| ≫ 1. Other variations

in the momentum representation lead to
the non-observable shifts A, in particular,
A(pNxi

) 7→ A(pNxi
±1).

As the theory is studied in a measurable
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representation, the numbers Nxµ must be integers
[1–7]. Considering Remark 4* in [7], due to
the condition |Nxµ | ≫ 1, this fact seems to be
insignificant. Still, note that the measurable
picture is associated with a lattice model, for
which both RI and translational invariance is
violated. As indicated below, spacing (or pitch) of
the emerging lattice is very small, the proposed
lattice model may be considered continuous to
a high accuracy. Then at low energies E ≪ Ep

the translational invariance is retained to a high
accuracy when the condition |Nxµ −N ′

xµ
| ≫ 1 is

imposed at |Nxµ | ≫ 1, |N ′
xµ
| ≫ 1. But in this

case a role of the condition Nxµ is significant.
Otherwise, nothing prevents taking noninteger
numbers Nxµ , |Nxµ | ≫ 1 together with their
integer part [Nxµ ] to obtain |∆(xµ)| < 1. in
Remark 3.1.

As noted above, in the measurable picture
at low energies E ≪ Ep UVD are nonexistent.
This is true for a classical consideration too. To
illustrate, the electromagnetic mass mem of a
classical particle with the charge q, uniformly
distributed over the surface of the sphere having
the radius a, equals mem = q2/6πac2 (section
1.3 in [22]) and mem → ∞ if a → 0. At the
same time, in the measurable picture, due to
Remark 3.1, for observable values we always
have a = Nℓ, N ≫ 1 and hence the condition
a → 0 is not fulfilled.

Remark 3.2
Taking into account the above information,
without loss of generality, at low energies
E ≪ Eℓ we, to a high accuracy, can replace a
measurable variant of QFT by canonical QFT
in continuous space-time [19–22] with due regard
for two important moments:
3.2.1 Remark 3.1 points to the fact that
definitions of the observable in canonical QFT
[19–22] and in its measurable variant are
different;

3.2.2 In canonical QFT we have problems
with UVD, whereas in a measurable form of
QFT we have no UVD.

Obviouslly, point 3.2.1 is technically insignificant
and is related to different theoretical views on
the observable.
Point 3.2.2 is very important. Naturally, the
question arises: how close a measurable picture
is to QFT in continuous space-time?
This problem is considered in the following
section in connection with the scalar quantum-
field model ϕ4, where it is shown that we have
no UVD on the limiting transition of this model
in a measurable form to canonical QFT.

4. Scalar quantum field model ϕ
4

in measurable form

4.1. Free fields

As follows from the results of Section 2, in a
measurable consideration the usual derivatives
are replaced by their corresponding piecewise-
differential analogs. In this way we can derive
measurable analogs of the known Lagrangians.
In particular canonical Lagrangian for model ϕ4

in continuous space-time has the form [19]

L =
1

2
(∂µϕ)

2 − m2
0

2
ϕ2 − g0

4!
ϕ4, (11)

where L0
.
= 1

2((∂µϕ)
2 − m2

0ϕ
2) is free fields

Lagrangian and LI
.
= − g

4!ϕ
4 is interaction

Lagrangian and g0 is a dimensionless constant (in
four dimensions).

Using operator definition ∆

∆Nxµ

from

formula (7), we can easily obtain, instead of L its
measurable form

Lmeas,{N} =
1

2
(

∆

∆Nxµ

ϕmeas)
2 − 1

2
m2

0ϕ
2
meas

−g0
4!
ϕ4
meas

(12)

and instead L0 with the corresponding Klein–
Gordon equation or KGE

(2 +m2
0)φ = 0 (13)
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their measurable forms

Lmeas,{N},0 =
1

2
(

∆

∆Nxµ

φmeas)
2−m2

0

2
φ2
meas (14)

and

(2Nxµ
+m2

0)φmeas = 0 . (15)

Similarly, using the replacement from formula (8),

a solution of the equation (13) in terms of a
complete set of the plane waves e±ikx

φ(x) =
1

(2π)3/2

∫
d3k

2k0
[a(k) e−ikx + a†(k) eikx ]

(16)
in the measurable form should be written as
follows:

φ(x,N∗, N∗)meas
.
=

1

(2π)3/2

N∗∑

Ni=N∗

∆3k

2k0
[a(k) e−ikx + a†(k) eikx]

=
1

(2π)3/2

pN∗∑

pN∗

∆3k

2k0
[a(k) e−ikx + a†(k) eikx].

(17)

Here N∗ .
= {N∗

i }; N∗
.
= {Ni∗}, i = 1, 2, 3 are

integer set, x = {xi}, xi = Nxi
ℓ, Nxi

– integers
with the property |Nxi

| ≫ 1, k
.
= {ki},

ki
.
= pNi

= ~/(Niℓ), ∆ki
.
= ki − ki+1 = ki(i+1),

∆3k
.
=

∏3
i=1∆ki, k

0 =

√
~ki

2
+m2

0, Ni

are integer numbers too, and condition
|N∗| ≥ |Ni| ≥ |N∗| ≫ 1 is satisfied.

Which conditions should be satisfied by the

lower N∗ and upper N∗ bounds of the summation
in formula (17)?

Clearly, in the measurable case the
function φ(x,N∗, N∗)meas from this formula is
not a complete analog of the function φ(x) from
formula (17). It is only an analog of the function
φ(x,N∗, N∗):

φ(x,N∗, N∗)
.
=

1

(2π)3/2

pN∗∫

pN∗

d3k

2k0
[a(k) e−ikx + a†(k) eikx ] (18)

that seems to be a certain low-energy part
of φ(x). It is natural that φ(x,N∗, N∗) is a
summand in the general solution KGE. Similarly,
φ(x,N∗, N∗)meas (17) is a summand in the general
solution for the measurable KGE analog of (15).

In the proposed paradigm for propagators
in momentum and position representations with
a measurable picture we have the same

formalism as of the wave functions. Specifically, in
canonical QFT in continuous space-time [19–22]
the propagators in the momentum and position
representations G(k) and G(x− y) are related by
the Fourier transformation

G(x− y) =

∫
d4k

(2π)4
G̃(k) e−ik(x−y), (19)
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and the Green function G(x − y) is a solution of
the inhomogeneous field equation

(2 +m2
0)G(x− y) = −δ4(x− y) . (20)

Similar to formula (18), at low energies E ≪ Ep

in the canonical case of the well-known QFT in
G(x − y) one can emphasize the summand (or
cutoff) G(x− y,N∗, N∗):

G(x− y,N∗, N∗)
.
=

pN∗∫

pN∗

d4k

(2π)4
G̃(k) e−ik(x−y),

(21)
where N∗, N∗ – sets of the numbers from formula
(17) with the added corresponding bound for p0.
G(x−y,N∗, N∗) – low-energy term dependent on
N∗, N∗ in the full propagator G(x− y).

In a measurable consideration at low
momenta in the domain of E ≪ Eℓ formula (21)
is replaced by

G(x− y,N∗,N∗)meas

.
=

pN∗∑

pN∗

∆4k

(2π)4
G̃(k)meas e

−ik(x−y),

(22)

where ∆4k is defined in the same way as ∆3k in
formula (17) with the addition of the zero-index
coordinate.

It should be noted that since only free fields
are considered in this subsection, the point 3.2.2
of the Remark 3.2 is not applicable

Therefore as follows from the Remark 3.2,
to a high accuracy, we have

G̃(k)meas = G̃(k), (23)

for G̃(k) from formula (21).
For the wave functions in continuous space-

time describing free scalar particles for the
propagator in the momentum space, we have well-
known formula [19–22]

(k2 −m2
0) G̃(k) = 1 (24)

and a solution for (24) is of the form

i G̃(k) =
i

k2 −m2
0 + iǫ

. (25)

Remark 4.1
In this way by virtue of Remark 3.2 the above-
mentioned formulae point to the fact that at low
energies E ≪ Ep in a measurable consideration
for free scalar fields we can use the results of the
corresponding continuous theory, but taking into
account Remark 3.1.

The Feynman diagram associated with a
scalar propagator in this case is of the standard
form

i G̃(k)meas •- - - >- - -•
k

Of particular importance are the following
remarks.

Remark 4.2
(1) If we assume that |N∗| are large enough (and
the corresponding momenta p∗N are thus small)
so that, without any detriment for the performed
calculations, we can consider |N∗| = ∞, (and,
consequently, p∗N = 0).
Then the above-mentioned functions
φ(x,N∗, N∗)meas, φ(x,N∗, N∗),
G(x− y,N∗, N∗)meas, G(x− y,N∗, N∗), ...
should be dependent on the single parameter N∗

φ(x,∞, N∗)meas ≡ φ(x,N∗)meas,

G(x− y,∞, N∗)meas ≡ G(x− y,N∗)meas, ...

(26)

It is clear that |N∗|–integer cutoff parameter
at the upper bound of momenta: the lower the
parameter, the larger the momenta p|N∗|, the
closer the quantities φ(x,N∗)meas, φ(x,N∗),
G(x− y,N∗)meas, G(x− y,N∗), ... to the initial
ones φ(x), G(x− y), ... But, considering that (see
Section 2.2) the Einstein Equivalence Principle
(EP) should have the applicability boundary, it
is assumed:

(2) The parameter |N∗| has the minimum
|Ñ∗| determined by linear dimensions of the
minimal neighborhood |Ñ∗|ℓ, for which (EP)
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remains valid in the process under study. The
fact that such a neighborhood should be the case,
with |N∗| ≫ 1, was noted in Section 2.2.

4.2. Perturbation theory

Within the scope of a perturbation theory,
let us consider examples of Feynman diagrams,
which give UVD for the ϕ4-model in canonical
QFT in continuous space-time [19–22], to find
what are the correspondences with a measurable
picture.

Now, we consider one-loop corrections for
the two- and four-vertex functions given by the
following diagrams in Fig. 1.

(a) (b)

FIG. 1. Diagrams for one-loop corrections to the two-
vertex (a) and four-vertex (b) Green functions.

Then the quantity G(0), quadratically
divergent over the momentum k (associated with
the diagram (a) in Fig.1, formula (9.1) in [19])

G(0) = g0

∫
d4k

(2π)4
G̃(k) = g0

∫
d4k

(2π)4
1

k2 −m2
0

(27)
corresponds in a measurable picture to the
integral, finite over k, from formula (21) with
|N∗| = ∞

G(0, N∗)
.
= g0

pN∗∫

−pN∗

d4k

(2π)4
1

k2 −m2
0

. (28)

Similarly, another divergent diagram–graph
of the order O(g2), whose contribution is
represented by the logarithmically divergent
integral (formula (9.2) in [19])

g20

∫
d4k

(2π)8
1

(k2 −m2
0)((p1 + p2 − k)2 −m2

0)
(29)

in a measurable consideration will be associated
with the finite quantity

g20

pN′
∗∫

−pN′
∗

d4k

(2π)8
1

(k2 −m2
0)((p1 + p2 − k)2 −m2

0)
.

(30)
(Here in the measurable case the right-hand
sides of formulae (28),(30) should have the
corresponding sums instead of the integrals but,
due to formula (23), the sums may be replaced by
the corresponding integrals).

Obviously, this is the case for all the
loop Feynman diagrams in canonical QFT – no
wonder, because, as noted at the beginning of
Section 3, UVD disappear in a measurable
variant of canonical QFT.

Then we should understand how, with the
use of this approach, we can obtain to a high
accuracy the correspondence of a measurable
finite quantum-field theory to renormalized QFT
in continuous space-time.

From Section 2 in [5] it follows directly that
the measurable approach generates a lattice
quantum-field theory, with the lattice that in
the momentum representation differs from the
canonical lattice involved in the Lattice Quantum
Field Theory (LQFT). Hereinafter we use the
symbols, terms, and results from LQFT [44, 45].

Then it is assumed that the theory under
study is considered in a sufficiently large
hypercubic box with the edge length L and space-
time size L4, where L = NLℓ,NL ≫ 1. In general,
not necessarily NL is an integer number.

For convenience, let us introduce the
following:

Ω
.
= L4. (31)

Assuming that t varies over the interval 0 ≤ t ≤
T, T 6= L, (31) will take the form (formula (2.3)
in [45])

Ω
.
= V T = L3T. (32)

In what follows, when not stated otherwise, we
assume T = L and hence formula (32) takes the
form (31).
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Without loss of generality, we can assume
that all integer Nxµ are equal to each other and
are equal to some integer N ≫ 1 maximally
high in the absolute value. Then, according to
the present consideration, in the measurable
form there arises a lattice model of the position
representation with a = ℓ/N , where a is the
lattice distance or same lattice spacing (section
2.5 from [44]).

In line with the general approach, in LQFT
we have [44]

L = aM =
ℓ

N
M, (33)

i.e. i.e. LM = ℓ
N , where M ≫ 1 is an integer

number. It is obvious that M/N = NL, i.e.
M ≫ NL.

As L is great, also without loss of generality,
it is assumed that the periodic boundary
conditions (formula (2.58) in [44])) are valid

φ(x+ L) = φ(x). (34)

Then all formulae of LQFT in the position
representation (Sections 2.5, 2.6 in [44]) are valid
for the measurable form of a continuous theory.
And formula (2.54) from [44]

∑

x

f(x) →
L∫

0

d4xf(x),M → ∞, a =
L

M
(35)

(L fixed) may be rewritten for such consideration
with substitution of f(x) → L under the
integration sign for f(x) → Lmeas,{N} within the
summation, and a → ℓ/N , where L is taken from
formula (11) and Lmeas,{N} – from formula (12),
respectively.

Since ℓ is also a fixed quantity, it is clear
that the conditions M → ∞ and N → ∞ in
the case under study are equivalent, representing

the thermodynamic limit that gives a continuous
pattern. Note that in this case we can use the
results from Sections 2.5 and 2.6 of [44],assigning
at as the temporal lattice distance at

.
= τ/Nt,

where τ/Nt is taken from formula (4) in [5].
Thus, in the coordinate representation the

studied lattice of measurable quantities may
be regarded as a canonical space-time lattice of
LQFT, with the spacing a = ℓ/N and temporal
distance at = τ/Nt.

In this case all the basic operators in Sections
2.5 and 2.6 of [44] have their analogs in the
present work. Specifically, piecewise difference
operators finite-differences operators ∂µϕx, ∂

′
µϕx

from formulae (2.55), (2.56) in [44] and formulae
of Section 2.3 in [46] in the present paper
correspond to the operators ∆

∆N
for positive and

negative values of N. The transfer-operator T̂
may be constructed for the lattice of interest,
with the spacing a = ℓ/N and temporal distance
at = τ/Nt, in accordance with formulae (2.71),
(2.74) of [44], so all the formulae from Section
2.6 in [44] are valid for this case. We assume that
at = a.

It should be noted that we can pass to
Euclidean space-time by means of Wick rotation
(Remark 2.4) for better convergence of the
integrals. Then, with the help of an analytical
extension, we can return to Minkowski space-
time. This is a standard method both for QFT
and LQFT [44, 45].

The continuum action of the theory (11)
in Euclidean space-time is of the form (formula
(2.17) from [46])

S =

∫
d4x(

1

2
(∂µϕ)

2 +
m2

0

2
ϕ2 +

g0
4!
ϕ4), (36)

and the corresponding lattice action has the
following form:

Smeas,{N} = a4
∑

x

(
1

2
(
∆

∆N

ϕmeas)
2 +

1

2
m2

0ϕ
2
meas +

g0
4!
ϕ4
meas). (37)
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For the lattice values of momenta, in the
momentum representation, according to formula
(2.81) in [44], we have

pµ(latt) = nµ
2π

L
, (38)

where nµ are integers.
Consequently, the lattice edge in the momentum
representation ∆pµ(latt) adopts the value

∆pµ(latt) =
2π

L
∝ 1

NL
, (39)

where it is assumed that ~ = 1.
At the same time, the integer numbers nµ are
varying in magnitude over the interval [0, NLN ],,
where NLN = L/a (formula (2.82) in [44]). As a
result, in the case of interest a maximum value of
the momentum along any axis will be given by

platt,max =
π

a
=

π

ℓ/N
=

πN

ℓ

.
= Λ. (40)

However, here the difficulty arises – the
corresponding lattice in the momentum
representation on L4 is uniform with the
lattice spacing in formula (39).
In the considered case the lattice of measurable
momenta is nonuniform with the lattice spacing

△pµ(meas) =
1

(N∗ − κ)(N∗ − κ∓ 1)ℓ
, (41)

where κ is an integer number, |κ| ≪ |N∗| ≫ 1.
As shown in [7], in order to use the results from
[44], it is required that the condition

△pµ(latt) ≈ △pµ(meas) (42)

be fulfilled.
As follows from formula (41) and [7] this is the
case when

NL ≈ (N∗)2. (43)

This condition is quite natural considering that L
may be chosen no matter how large but finite.

Formula (40) gives an explicit expression for
a maximal lattice momentum platt,max = Λ. To be

more exact, the momenta are restricted to the so-
called first Brillouin zone (BZ) B (formula (1.218)
from [45])

B .
=

{
p
∣∣∣
−π

a
< pµ ≤ π

a

}
. (44)

It is clear that platt,max = Λ ≫ pℓ. As follows
from formula (40), Λ ∝ Npℓ, N ≫ 1, i.e. the
boundary of BZ Λ passes far beyond the region
of the physical energy values.

But due to the condition E ≪ Ep, we
consider only a low-energy part of the lattice,
the momenta of which, in line with (41)–(43),
are given as p ≈ ~

N∗ℓ with |N∗| ≫ 1.
Because of this, in the case under study only
particular momenta may be maximal (so-called
“maximally reachable” momentum) pmax,reach

and pmax,reach ≪ platt,max.
In this way BZ in formula (44) is narrowed

significantly

−pmax,reach ≤ pµ ≤ pmax,reach, (45)

where pmax,reach ≪ pℓ.
As a = ℓ/N ,where N ≫ 1, when the mass

m is fixed, am is close to zero and hence the
correlation length ξ (formula (1.224) in [45])

ξ ≡ 1

am
=

N

ℓm
(46)

is finite but very great. Transition to a continuum
limit ξ → ∞ means going to N → ∞. In this case,
within the constant factor m−1, we have

ξ =
N

ℓ
∝ Npℓ ≈ Nppl ∝ platt,max = Λ. (47)

From formulae (40), (45) it follows directly that

pmax,reach =
pl

Ñ
=

Λ

NÑ
,N ≫ 1, Ñ ≫ 1. (48)

Then, proceeding from the formulae above, in the
case of interest (BZ) B (44) is narrowed to BN

BN
.
= {p| −π

NÑa
< pµ ≤ π

NÑa
}, N ≫ 1, Ñ ≫ 1.

(49)
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Lattice summation in the general case is given by
formula (2.7) from [45]

∫

p∈B

.
=

∫

B

≡ 1

a4Ω

∑

p∈B

. (50)

In the case under study the lattice summation
takes the form

∫

p∈BN

.
=

∫

BN

≡ 1

a4Ω

∑

p∈BN

. (51)

Respectively, on transition to the thermodynamic
limit L → ∞, T → ∞, in the general case we

arrive at formula (2.8) in [46]

∫

p∈B

=
1

(2π)4

∫ π
a

−π
a

d4p. (52)

In the case of interest (52) is transformed to

∫

p∈BN

=
1

(2π)4

∫ π

NÑa

−π

NÑa

d4p. (53)

Now in the same way we consider the momentum
representation and Fourier transformation of the
above mentioned lattice (formula (1.171) in [45])

G(x− y; a) =

π/a∫

−π/a

d4p

(2π)4
eip(x−y)G̃(p; a) =

∫

p∈B

d4p

(2π)4
eip(x−y)G̃(p; a). (54)

Then we can use the results of [45] to find, how
well a continuous propagator of the momentum
representation is approximated by the ”lattice”
propagator in this representation. As it has been
noted, all calculations in [45] are first performed
in Euclidean space-time and followed by the
analytical extension to Minkowski space.

In virtue, using formula (1.173) from [45], we
have

G̃(p; a) =





4∑

µ=1

a−24 sin2
apµ
2

+m2





−1

. (55)

But it has been shown that in the case under
study the momenta p are taken only from the
subset BN . Consequently, pµ ∝ 1/Nµ, |Nµ| ≫ 1.
As a = ℓ/N,N ≫ 1, the argument of the function
sin2 is ∝ 1/(NNµ), i.e. it is very close to zero.
Further we use a simple property: sinx ≈ x for x
close to 0. Immediately, within a high accuracy,
by formula (55) we can obtain

G̃(p; a) =





4∑

µ=1

a−24
a2p2µ
4

+m2





−1

=





4∑

µ=1

p2µ +m2





−1

= (p2 +m2)−1 (56)

in a good agreement with the corresponding
formula in a continuous picture, i.e. for a → 0

([45], formula (1.178)).
So, in a measurable form at low energies
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E ≪ Ep the theory studied is to a high accuracy
coincident with the corresponding theory in the
continuous case.

However, we are interested not in a
continuum limit of the theory but in its
measurable variant. We are most interested

not in the lattice as an approximation
and regularization means in a continuous
consideration but in the lattice as it is.

The lattice operation (37) may be rewritten
in the dimensionless form (formulae (1.220),
(1.221) in [45]) as follows:

S{N}
.
=

∑

x



−2κ

4∑

µ=1

ϕ(x)ϕ(x+ aµ̂) + ϕ(x)2 + λ[ϕ(x)2 − 1]2 − λ



 , (57)

where for a = ℓ/N we have aϕmeas(x) = 2κϕ(x),
a2m2

0 =
1−2λ
κ − 8, g0 =

6λ
κ2 .

Obviously, (57) includes only dimensionless
quantities, and m0 is a bare value of mass,
ϕmeas(x) and g0 are bare values for the field and
coupling constant, respectively.

Perturbation theory and Feynman rules for
this lattice are analogous to a continuous theory
but they have the interaction term

S(1) = a4
∑

x

g0
4!
ϕ4
meas. (58)

Remark 4.3
As a rule, in the literature devoted to LQFT it
is assumed that the lattice edge a is equal to 1.
Then the formula for the first Brillouin zone B
(44) is of the form

B .
=

{
p
∣∣∣− π < pµ ≤ π

}
. (59)

Whereas for the “short-cut” Brillouin zone BN

(49) we have

BN
.
= {p| −π

NÑ
< pµ ≤ π

NÑ
}, N ≫ 1, Ñ ≫ 1,

(60)
with the corresponding changes in all other
formulae.

As distinct from a continuous consideration,
by the lattice approach all Feynman graphs satisfy
the following properties in momentum space ([45],
p. 64) in the general case:

• each line is associated with the propagator
∆̃(q) ≡ (m2

0 + q̂2)−1;

• each vertex is an end point of four lines and
is associated with the factor −g0;

• at in inner vertices momentum
conservation holds modulo 2π;

• loop momenta should to be integrated
over the first Brillouin zone B with the
integration measure

∫
p∈B

;

• there is in overall factor (2κ)−n/2 resulting
from our normalization of the lattice scalar
fields;

• UVD appear only in the continuum limit,
i.e. when a → 0

Note that in the second point −g0 should be
replaced by −g0,BN

, and it seems that the fourth
item should be replaced by:

• loop momenta should be integrated over
the short-cut Brillouin zone,BN with the
integration measure

∫
p∈BN

.

Now let us consider these points as applied
to the particular lattice that is under study in
this work.
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(1) As, for N ≫ 1, the lattice edge a = ℓ/N
is very small and hence the correlation length
ξ (formula (46)) is very great but not infinite,
the indicated lattice in the space-time and
momentum representation is actually not distinct
from a continuous consideration for the momenta
satisfying BZ B (44).

(2) It has been already mentioned (e.g., formula
(45)) that, due to the condition E ≪ Ep, we
need only a low-energy part of the lattice, i.e.
BN (formula (49)), and we should take this into
consideration when calculating the contributions
into amplitudes of the corresponding processes
which generate the loop Feynman diagrams.

Thus, as directly follows from formula (49),
we should include the contributions made only by
very small momenta p in B,i.e. for p ∈ BN . Taking
this into account, further we use the known
formulae of LQFT for small momenta (Section 2
in [45]).

First, we consider the field ϕ(x) in a
symmetric phase

〈ϕ(x)〉 = 0, (61)

i.e. Z2-symmetry of ϕ(x) 7→ −ϕ(x) is the case,
whereas Green’s functions with an odd number
of arguments vanish.

As it has been correctly noted in Section 2
of [20] ”...Renormalization has its own intrinsic
physical basis and is not brought about solely
by the necessity to expurgate infinities. Even
in a totally finite theory we would still have
to renormalize physical quantities”. This is
associated with the fact that the theoretical initial
(bare) quantities (mass m0,charge q0 and so on)
can differ drastically from the real (physical)
quantities (mR, qR and so on).But because in this
case in the measurable picture at energies E ≪
Ep a low-energy part of the lattice is involved,
very close to continuous space-time, there is a
possibility to derive QFT without infinities, when
renormalization of the theory is understood as a
passage from some finite quantities to the other.

Note that the “infinities” (i.e. LQFT) are
understood as all the energies lying beyond
the initial physical boundary E ≪ Ep (same
E ≪ Ep). The principal objective of this work is
to derive

Main target: a completely finite quantum
theory within the scope of the proposed
paradigm when all quantities are at the
energy scales E ≪ Ep meeting all the
above-mentioned restrictions.

Let us revert to one-loop diagrams (a) and
(b) in Fig. 1. Using the designations from Section
2 in [45], we have

∆̃(q) ≡ (m2
0 + q̂2)−1,

Jn(m0) ≡
∫

B(q)

∆̃(q)n,

I3(m0, p) ≡
∫

B(q1)

∫

B(q2)

∆̃(q1)∆̃(q2)∆̃(p− q1 − q2),

(62)

where B(q̃) is BZ for the variable q̃.
In the general case a one-loop correction to

the two-vertex function (diagram (a)) takes the
form ([46], p. 53):

Γ(2)(p,−p) = −(p̂2 +m2
0)−

g0
2
J1(m0), (63)

where, as a rule, the term O(g20) in the right-hand
side is omitted.

But, proceeding from the earlier results, in
this case it follows that Γ(2)(p,−p) should be
replaced by

Γ(2)(p,−p,BN ) = −(p̂2 +m2
0,BN

)

− g0,BN

2
J1(m0,BN ),

(64)

where p ∈ BN ,

Jn(m0,BN ) ≡
∫

BN (q)

∆̃(q)n, (65)

and m0,BN
, g0,BN

are corresponding bare mass
and coupling constant within BN . Here, similar

Нелинейные явления в сложных системах Т. 23, № 1, 2020



QFT in Flat Space and Measurability II. Perturbation Theory for a Scalar Field Model 49

to formula (62), BN (q̃) is the narrowed BZ BN

for the variable q̃, and in the right side (64) there
is no term O(g20,BN

).
Generally, formula (63) may be given as

Γ(2)(p,−p) = −(p̂2 +m2
0)−

g0
2
J1(m0)

≡ −(p̂2 +m2
R),

(66)

where mR is the renormalized mass in the general
case.

In a similar way formula (64) is given as

Γ(2)(p,−p,BN ) = −(p̂2 +m2
0,BN

)− g0,BN

2
J1(m0,BN ) ≡ −(p̂2 +m2

R,BN
), (67)

where mR,BN
are the experimental values of

mass obtained for the energies on the order
of BN . Naturally, we can suppose that the
renormalized (i.e. experimental) values of mass
mR and coupling constant gR at energies E ≪ Ep

should not depend on the whole domain of B, the
limiting values of which are much greater than
Ep. Besides, in any region satisfying the condition
E ≪ Ep they are independent of this domain and
hence we have mR,BN

= mR, gR,BN
= gR.

Due to the condition mR,BN
= mR and

considering the terms O(g20),O(g20,BN
), we can

rewrite formula (66) as (formula (2.93) in [45])

m2
R = m2

0 +
g0
2
J1(m0) +O(g20), (68)

and formula (67) as

m2
R,BN

= m2
R = m2

0,BN
+

g0,BN

2
J1(m0,BN

,BN )

+O(g20,BN
).

(69)

Similar calculations may be performed
for the coupling constant too. Specifically, let

Γ
(4)
R (p1, p2, p3, p4) be the renormalized four-point

function. Then, for the renormalized coupling
constant gR, we have ([45], formula (2.96))

gR = −Γ
(4)
R (0, 0, 0, 0) = g0 −

3

2
g20J2(m0) +O(g30),

(70)

and, since gR,BN
= gR, we have

gR,BN
= gR = −Γ

(4)
R,BN

(0, 0, 0, 0)

= g0,BN
− 3

2
g20,BN

J2(m0,BN
,BN ) +O(g30,BN

).

(71)

As follows from the four last equations,
since left sides of each pair of these equations
are equal, whereas the integrals J1(m0) and
J1(m0,BN ) and hence J2(m0) and J2(m0,BN )
are greatly differing (because in the second case
the integration domain is drastically narrowed),
the quantities m0,m0,BN

and g0, g0,BN
should also

differ from each other. And this really is the case.
According to formulae (2.110), (2.111) from

[45] in the general case, for bare quantities in the
one-loop order we have

m2
0 = m2

R +
gR
2
J1(mR) +O(g2R),

g0 = gR +
3

2
g2RJ2(mR) +O(g3R).

(72)

Then, considering the equalities, we can rewrite
mR,BN

= mR, gR,BN
= gR (72) in the one-loop

order in the measurable picture under study as
follows:

m2
0,BN

= m2
R +

gR
2
J1(mR,BN ) +O(g2R),

g0,BN
= gR +

3

2
g2RJ2(mR,BN ) +O(g3R).

(73)

BZ BN is a narrow low-energy (in
fact central) part of the total BZ B. From
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this it follows that the integrals J1(mR,BN ),
J2(mR,BN ) are low-energy components of the
integrals J1(mR), J2(mR), respectively, and hence
they are small.

As it has been noted above, by the lattice
approach UVD in QFT appear on passage to a
theory in continuous space-time, i.e. for a → 0.
However, in this measurable picture we study
the lattice per se rather than the continuum limit.
As this takes place, UVD of a continuous theory in
this case are associated with the quantities lying
beyond the boundary of Ep and, in particular,
beyond that of the narrowed BZ, i.e. BN .

Because we are most interested in the

experimental (renormalized) quantities of mR, gR
which are coincident in the cases BN and B and
defined within the energy range E ≪ Ep, formula
(73) demonstrates that bare quantities can be also
defined at low energies E ≪ Ep and in terms
of ”narrow” BZ BN . Just this solution is the
principal objective of this paper – above Main

target for a scalar field theory when using the
measurable picture in the one-loop order.

For the two-loop order the foregoing
algorithm remains valid, excepting greater
complexity of the formulae. To illustrate, in the
two-loop order formula (2.85) in [45] for the
general case is of the form

− 1

2κ
G̃(p)−1 = −(p̂2 +m2

0)−
g0
2
J1(m0) +

g20
4
J1(m0)J2(m0) +

g20
6
I3(m0, p) +O(g30), (74)

where G̃(p) = (2κ)−1∆̃(p).
In the measurable picture within the

boundaries of BZ BN equation (74) may be
rewritten as

− 1

2κ
G̃(p,BN )−1 = −(p̂2 +m2

0,BN
)− g0,BN

2
J1(m0,BN

,BN ) +
g20,BN

4
J1(m0,BN

,BN )J2(m0,BN
,BN )

+
g20,BN

6
I3(m0,BN

, p,BN ) +O(g30,BN
),

(75)

where G̃(p,BN ) = (2κ)−1∆̃(p,BN ),
(2κ)−1∆̃(p,BN ) = (2κ(m2

0,BN
+ p̂2))−1 and

g0,BN
, m0,BN

are taken from formula (73). It is
important that all formulae of a perturbation
theory in the two-loop order in a measurable
consideration can be derived in the same way
as in the one-loop order by substitution of the
short-cut Brillouin zone BN for the corresponding
integrals around loop momenta over the first
Brillouin zone B, as well as in formulae (62)–(65).

It should be noted that the case of symmetry
violation (61), i.e. 〈ϕ(x)〉 6= 0 (Section 2.2.3

in [45]) has no principal differences from our
consideration. We can derive all the basic
formulae in the measurable picture at low
energies E ≪ Ep replacing the Brillouin zone B by
the short-cut Brillouin zone BN in all the relevant
formulae in Section 2.2.3 from [45].

Next we consider the limiting transition of
this LQFT in the general case to a theory in
continuous space-time, i.e. when a → 0. As a =
ℓ/N,N ≫ 1, we get N → ∞, and from formula
(44) it is inferred that full (BZ) B → ∞. It is
obvious that the right and left sides of formulae
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(63), (72), ..., where we have full (BZ) B, tend to
infinity. Precisely this is demonstration of UVD
in canonical QFT in continuous space-time.

Since we are interested particularly in the
short-cut Brillouin zone BN that is invariable, due
to formulae (49) (or same (60)), the left and right
sides of the corresponding formulae (64),(73),...
for N → ∞ always are finite limited quantities
and hence we have no UVD on passage to the
continuum limit in the present consideration.

The principal distinction of the earlier
results, e.g. [45, 46], from those obtained in this
paper is the fact that in the previous works
bare quantities m0 and g0 take infinite values on
passage to the continuum limit, as is accepted
by canonical QFT in continuous space-time (for
example, Section 10.2 in [21]), whereas in this
paper they are finite quantities obtained within
the energy range E ≪ Ep.

5. Conclusion

In conclusion, it should be noted:

• Quantum scalar field model ϕ4 in the
measurable form is a lattice field model
with a very short edge length of the space-
time lattice a = ℓ/N,N ≫ 1 and hence it
is very close to the corresponding model in
continuous space-time;

• Smallness of a results in a large variability
domain of the momenta, i.e. the first
Brillouin zone B with this model. But the
restrictions imposed by the Equivalence
Principle Applicability Boundary (Section

2.2) lead to drastic narrowing of B to the
domain of very small momenta in B– short-
cut Brillouin zone BN ;

• Within the domain of the momenta
belonging to BN , the quantum scalar
model ϕ4 in the measurable form presents
a completely finite theory, with all the
parameters (quantities) obtained within
the energy range E ≪ Ep.
The limiting transition to a continuous
theory in this case involves no UVD.

5.1 As follows from the restrictions imposed
on the existent energies E at the very end of
Section 2.2, Ñ from formula (49) should meet
the condition Ñ ≥ 102.

5.2 Though in this paper of the author the
part of a perturbation theory associated with
the renormgroup methods (Section 1.7 in [45])
has not been used, for similar studies of more
complex theories (electrodynamics, electroweak,
non-Abelian gauge theories) the renormgroup
will be involved without fail.

5.3 Considering the contents of Section 2.2,
selection of pmax = pℓ (formula (1)) at the level
of ppl or (same primary length ℓ at the level lp) is
quite natural because at such a level of energies
the space-tine geometry is drastically changed
and hence there is no way to describe it, even
locally, in terms of any special metric gµν(x).
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