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ABSTRACT

Aims. The small-scale nature of spacetime can be tested with observations of distant quasars. We comment on a recent paper by
Tamburini et al. (A&A, 533, 71) which claims that Hubble Space Telescope (HST) observations of the most distant quasars place
severe constraints on models of foamy spacetime.
Methods. If space is foamy on the Planck scale, photons emitted from distant objects will accumulate uncertainties in distance and
propagation directions thus affecting the expected angular size of a compact object as a function of redshift. We discuss the geometry
of foamy spacetime, and the appropriate distance measure for calculating the expected angular broadening. We also address the
mechanics of carrying out such a test. We draw upon our previously published work on this subject, which carried out similar tests as
Tamburini et al. and also went considerably beyond their work in several respects.
Results. When calculating the path taken by photons as they travel from a distant source to Earth, one must use the comoving distance
rather than the luminosity distance. This then also becomesthe appropriate distance to use when calculating the angular broadening
expected in a distant source. The use of the wrong distance measure causes Tamburini et al. to overstate the constraints that can be
placed on models of spacetime foam. In addition, we considerthe impact of different ways of parametrizing and measuring the effects
of spacetime foam. Given the variation of the shape of the point-spread function (PSF) on the chip, as well as observation-specific
factors, it is important to select carefully – and document –the comparison stars used as well as the methods used to compute the
Strehl ratio.
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1. Introduction

Even at the minute scales of distance and duration examined
with increasingly discriminating instruments, spacetimestill ap-
pears to be smooth and structureless. However, a variety of mod-
els of quantum gravity posit that spacetime is, on Planck scales,
subject to quantum fluctuations. Hence, if probed at a small
enough scale, spacetime will appear complicated – something
akin in complexity to a turbulent froth that Wheeler (1963) has
dubbed “quantum foam,” also known as “spacetime foam.” The
detection of spacetime foam is important for constraining mod-
els of quantum gravity. If a foamy structure is found, it would
require at least a probabilistic rather than deterministicnature of
spacetime itself, as the paths taken by different photons emitted
by a distant source would not be identical to one another.

In this commentary paper, we discuss the use of as-
tronomical observations of distant sources to test mod-
els of quantum gravity. We concentrate particularly on
a recent paper by Tamburini et al. (2011), published in
Astronomy & Astrophysics in September 2011. Some of the
points discussed below were discussed in our own paper
Christiansen et al. (2011), which was published nine months
earlier. The present paper is organized as follows. In§2 we dis-
cuss the nature of quantum fluctuations and the proper distance
measure to use. This has important implications for the predicted
size of the seeing disk, and hence the constraints one can puton

spacetime foam models given a non-detection, as we then dis-
cuss in§3. In §4 we discuss practicalities of carrying out these
tests. These include the need to characterize the point-spread
function (PSF) of a given telescope in terms that can be com-
pared to the profile observed in a distant, unresolved source, such
as a quasar or supernova. Finally, in§5 we close with a summary.

2. The Nature of Quantum Fluctuations and the
Predicted Seeing Disk

To quantify the problem, let us recall that, if spacetime under-
goes quantum fluctuations, the intrinsic distance to an object will
vary, thus producing an intrinsic limitation to the accuracy with
which one can measure a macroscopic distance. If we denote the
fluctuation of a distancel by δl, we expectδl & Nl1−αlαP, (see

Ng (2003)), whereN is a numerical factor∼ 1 andlP =
√

~G/c3

is the Planck length, the characteristic length scale in quantum
gravity. The length in this expression,δl, must be defined with
reference to the macroscopic distance,l (rather than locally). The
parameterα . 1 specifies the different spacetime foam models.

Distance fluctuations±δl imply phase fluctuations±∆φ =
±2πδl/λ (see Lieu & Hillman (2003), Ragazzoni et al. (2003),
Ng et al. (2003)). One practical method of searching for these
fluctuations is to look for “halos” in images of distant, unre-
solved sources, which can be produced by fluctuations in the
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direction of the local wave-vector,±δψ ≡ ±∆φ/(2π) = ±δl/λ.
The point is that due to quantum foam-induced fluctuations in
the phase velocity of an incoming light wave from a distant point
source, the wave front itself develops a small scale “cloud of un-
certainty” equivalent to a “foamy” structure, because parts of
the wave-front lag while other parts advance. This results in the
wave vector, upon detection, acquiring a jitter in direction with
an angular spread of the order ofδψ. In effect, spacetime foam
creates a “seeing disk” whose angular diameter is

δψ = N
( l
λ

)1−α( lP

λ

)α
. (1)

We note that the magnitude ofδψ as given in the above
equation is consistent with our assumption of isotropic fluc-
tuations which implies comparable sizes of the wave-vector
fluctuations perpendicular to and along the line of sight (see
Christiansen et al. (2006)). For a telescope or interferometer
with baseline lengthDtel, this means that the dispersion (∼ δψ,
normal to the wave front) will be recorded as a spread in the an-
gular size of a distant point source, causing a reduction in the
Strehl ratio, and/or the fringe visibility whenδψ ∼ λ/Dtel for a
diffraction limited telescope.

The fundamental uncertainties caused by spacetime foam are
spatial, not angular, even though they result in a ”seeing disk”.
Strictly speaking, the models specify the uncertainty±δl, in dis-
tance between a source and observer along the line of sight. This
is becauseδl is defined by the uncertainty in the distance mea-
sured by light travel times. Of course, there is also a correspond-
ing uncertainty in the transit time for light from source to ob-
server,δt ∼ δl/c. Furthermore, since the globally averaged wave-
front is effectively spherical, globally averaged photon trajecto-
ries will deviate from the direct line of sight by an angle less than
or equal toδl/l. As a direct consequence, the expected blurring
of distant images isnot the result of a random walk of small an-
gle photon scatterings along the line of sight, since the uncertain-
ties in the derived directions of the local wave vectors mustresult
in the same spatial uncertainty,δl (no matter how many wave
crests pass the observer’s location). For example, in the ”thin
screen approximation”, the accumulated transverse path ofmul-
tiply scattered photons would be approximated as (δψ)l >> δl.
This would lead to expected time lags,δψ(l/c) >> δl/c, in con-
flict with the basic premises for spacetime foam models.

The above background, given in greater detail in our recent
paper Christiansen et al. (2011), illustrates why, when measur-
ing the lengthl for sources at cosmological distances, the ap-
propriate distance measure to use is the line-of-sight comoving
distance (see Hogg (2000)) given by

DC(z) = DH IE(z) (2)

where

IE(z) =
∫ z

0

dz′

E(z′)
, (3)

and

E(z) =
√

ΩM(1+ z)3 + Ωk(1+ z)2 + ΩΛ, (4)

with DH = c/H0 being the Hubble distance,ΩM,Ωk and
ΩΛ being the (fractional) density parameter associated with
matter, curvature and the cosmological constant respectively.
Consistent with the latest WMAP+ CMB data, we will use
ΩM = 0.25,ΩΛ = 0.75 andΩk = 0, and for the Hubble dis-
tance we will useDH = 1.3× 1026 meters.
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Fig. 1. The detectability of various models of foamy space-
time for existing and planned telescopes. We show the diago-
nal tracks for halo sizeδψ for an unresolved,z = 6.3 source,
using the comoving distance [eq. (5), dashed lines], naive ap-
plication of the luminosity distance [i.e., not redoing theinte-
gral I(z, α) as per equation (9), in dotted lines], and correct ap-
plication of the luminosity distance (dash-dot lines). Tracks are
shown forα = 0.6, 2/3, andN = 1.8. See§§2,3 for discussion.
It appears to us that Tamburini et al. (2011) used the phase un-
certainty∆φ = 2πδψ as a measure of halo size, which would
exaggerate the expected halo size by nearly an order of mag-
nitude. This displacement would make it appear that quantum
foam may be easily tested by HST imaging, which it is not.

3. Predicting the Halo Size

In terms of the comoving distance, for the various models of
spacetime foam (parametrized byα), the equivalent halo size is
given by

δψ =
N(1− α)lαPD1−α

H I(z, α)

λo
, (5)

with

I(z, α) =
∫ z

0

dz′(1+ z′)
E(z′)

IE(z′)−α, (6)

where the factor (1+ z′) in the integral corrects the observed
wavelengthλo, back to the wavelengthλ(z′) at redshiftz′. That
is, λ(z′) = λo/(1+ z′).

We have used these results to produce Figure 1. The diagonal
lines in Figure 1 show predictions for the size of the seeing disk
for different models of spacetime foam, for a source at redshift
z = 6.3, which represents the highest redshift quasar examined
by Tamburini et al. (2011). We note thatδψ in Figure 1 is a factor
of 2π smaller than the phase,∆φ, which was used incorrectly
by Tamburini et al. (2011) to calculate expected halo size. In the
case of a non-detection of angular broadening, the region above
the diagonal line for a givenα may be excluded.
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The discussion above illustrates the importance of a correct
understanding of the seeing disk caused by spacetime foam asa
spatial, rather than angular effect, thus requiring the use of the
comoving distance. Figure 1 also shows how the prediction (for
δψ not∆φ) changes if one were to incorrectly model the seeing
disk as being the result of angular fluctuations, and hence use the
luminosity distance,

DL(z) = (1+ z)DC(z) = (1+ z)DH IE(z), (7)

rather than the comoving distance. This is the assumption made
by Tamburini et al. (2011) as well as Steinbring (2007).

As an illustration of the cosmological effects we use equation
(7) to calculate the equivalent halo size that one would predict if
one incorrectly used the luminosity distance. To do this we make
use of the last part of equation (7) as ourl′, in which case

dl′ = dDL(z′) = dz′DH

∫ z′

0

dz′′

E(z′′)
+

(1+ z′)DHdz′

E(z′)
. (8)

The result is that in calculatingδψ one cannot simply use the
luminosity distance in equation (5), and multiply it by (1+ z).
Instead one must replaceI(z, α) in equation (6) with the follow-
ing:

I2(z, α) =
∫ z

0
dz′(1+ z′)

[ (1+ z′)
E(z′)

+ IE(z′)
][

(1+ z′)IE(z′)
]−α

. (9)

Unfortunately, Tamburini et al. (2011) do precisely this
(their equations (2) and (3)). We can use the above formalism
to estimate how this affects their quoted constraints. In Figure
1 we have overplotted tracks for the application of luminosity
distance, both in the case of redoingI(z, α) and not redoing the
integral. As can be seen, in Figure 1 the use of the incorrect
distance measure causes a rather large miscalculation of the ex-
pected halo size that leads to an exaggeration in size by a factor
of about 20 at a given wavelength. Furthermore, because the par-
allel set of diagonal lines in Figure 1 represents trajectories for
δψ versusλ that are specified byα, this reduction in halo size
leads to a reduction in the limiting value ofα that can be deter-
mined from observations. Tamburini et al. (2011) claim thatcur-
rent data exclude models withα < 0.68 (a0 ∼ 1, including the
holographic model which hasα = 2/3) (the “red zone” in their
Figure 5). However, by using the correct co-moving distance, we
find that their limit for excluding quantum foam models should
be reduced by∆α = 0.021, much more consistent with the limit
of α ∼ 0.65 previously established by Christiansen et al. (2011).

4. Observing Practicalities: Strehl Ratio and PSF

In conventional imaging the best way to characterize the halo is
in terms of the observed Strehl ratio. This is defined as the ratio
of the observed peak intensity from a point source as compared
to the theoretical maximum peak intensity of a perfect telescope
working at its diffraction limit. As can be seen by reference to
Fig. 1, quasars are expected to be barely resolved inHST ob-
servations, and the Strehl ratio gives a concrete way to quantify
how unresolved they are. This comparison must be done with
reference to known stars in one’s image, because the PSF of the
HST varies significantly with position on the focal plane (and
hence each individual camera). The Strehl ratio is defined asthe
ratio of the observed image peak to the peak diffraction spike. In
Christiansen et al. (2011) we approximated this ratio as

S Obs= S M exp
[

−(σ2
I + σ

2
ψ)
]

(10)

whereS M ≤ 1 represents a degradation of the observed Strehl
ratio due to masking effects,σI represents uncorrelated wave-
front errors induced by the instrumentation (i.e., telescope plus
instruments) andσψ represents uncorrelated wavefront “errors”
induced by spacetime foam. Both of these dispersions are ex-
pressed in units of the telescope’s diffraction limit, λ/Dtel. A
similar treatment is taken in Tamburini et al. (2011), alongwith
a superficially similar procedure, although it should be noted that
they do not publish a list of the comparison stars used to com-
puteσI (as we did explicitly in Christiansen et al. (2011)). This
last makes it difficult to reproduce their results.

If we follow this prescription, we can then define the space-
time foam degraded StrehlS ψ asS ψ = exp(−σ2

ψ), whereσψ is
δψ divided byλ/Dtel. Provided the comoving distance is used,
as argued in§2, we then obtain forσψ

σψ =
N(1− α)lαPD1−α

H I(z, α)Dtel

λ2
o

. (11)

This approximation, of course, breaks down whenσψ ∼ 1, i.e.,
when the wave front angular dispersion is comparable to the tele-
scope’s angular resolution. A fully parametrized version of the
resultant Strehl ratio then is

S ψ = exp















−N2(1− α)2l2αP D2(1−α)
H I2(z, α)D2

tel

λ4
o















. (12)

However, just as with the expected halo size, the use of the
luminosity distance drastically affects this expression. We can-
not simply replaceDC in equation (12) byDL, as was done in
Tamburini et al. (2011). Instead,I(z, α) must also be replaced
with I2(z, α) (equation (9)). This causes an overestimate in the
magnitude of the exponential argument, thus causing a corre-
sponding reduction in the Strehl ratio which is consistent with
the discussion following equation (9).

In Figure 2, we show the result of this error. As can be seen,
even in the case of a source atz = 6.3 – the highest redshift
source considered by Tamburini et al. (2011) – the effects of
spacetime foam simply are not detectable inHST observations.
From Figure 2, as was pointed out in Christiansen et al. (2011),
it is not surprising that effects of spacetime foam are likely not
to be detectable in HST images cross-referenced with high red-
shift SDSS quasars, because the only Hubble images from the
SDSS sample are in the near IR band. At a wavelength of 8000
Å, typical of the observations used in Tamburini et al. (2011),
which used the ACS+ F775W and F850LP filters, the expected
Strehl ratio isS ψ > 0.98 for both the comoving distance as well
as a naive application of the luminosity distance – i.e., just us-
ing eq. (7) and not including the modified integralI2 (equation
(9)). Even if both of these factors are included, we still expect
S ψ > 0.95, at most just a 5% reduction in the measured Strehl
with respect to that of the instrument. By comparison, in our
paper (Christiansen et al. (2011), Table III), we used compari-
son stars for the HUDF quasars to measure theinstrumental
Strehl ratios, finding values betweenS I = 0.27 (F435W) and
0.64 (F850LP), with the low Strehl ratios in the blue being a
result of the undersampling of the PSF by the ACS. While we
are unable to comment exactly on the success of the method of
Tamburini et al. (2011) because they did not specify which stars
were used or provide adequate information on the mechanics of
deriving the phase (in their formulation), we can say that we
find highly unrealistic their claim to have achieved the maxi-
mum possible constraint onα for this wavelength, based on our
extensive experience withHST data. Indeed, as our work showed
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Fig. 2. Expected Strehl ratio as a function of redshift (top) and
wavelength (bottom). In both plots, we assumeα = 2/3 and
N = 1.8. In the top figure we examine the change in Strehl
ratio expected for a point source with varying redshift,z, for
an observed wavelength of 400 nm. In the bottom plot, we
specifically show the case of az = 6.3 quasar, as examined by
Tamburini et al. (2011), for an observed wavelength of 400 nm.
As in Figure 1, the dashed line refers to the use of comoving dis-
tance, dotted line refers to the naive use of luminosity distance,
and dash-dot line refers to the treatment in equation (9).

(Christiansen et al. (2011), Table IV) even for the much deeper
observations of the UDF quasars (which extended to shorter
wavelengths, but were at typical redshiftsz = 4, translating to
a comoving distance about 15% lower thanz = 6.3), the cor-
rected Strehl ratio,S M/S I, that was achieved ranged from 1.04
down to 0.40, depending on the band, with two of the four being
at Strehl ratios of∼ 0.90. The lower Strehl ratios were no doubt
caused by a combination of factors, including not only the im-
perfections in the PSF of theHST and distortions across the chip
and light path of individual images, but also factors intrinsic to
the QSO such as the host galaxy. This is why in our paper, even
though theoretically the observations of the HUDF quasar could
probe toα ∼ 0.66, in practice the constraint that could be set
was onlyα = 0.65 (see Figure 5 in Christiansen et al. (2011)).
On the basis of our experience, we believe it is likely that a sim-
ilar statement can be made for the observations examined by
Tamburini et al. (2011).

It is worth mentioning that with current telescopes a sec-
ond method of measuring possible effects of spacetime foam
is becoming available. This is through the use of interferom-
etry, e.g., by using the VLTI. As can be seen in Figure 1, the
VLTI would have a significant advantage in resolution over any
optical-IR telescope, simply because its longest baselineis ∼

factor 20 longer than the largest telescope currently in useor
under construction. Moreover, it would not suffer from some of
the problems we have noted in theHST observations, namely
undersampling. As well, since interferometers are very effective
spatial filters the effect of the quasar’s host galaxy would also be
minimized. We therefore believe that the best way to probe the
α ∼ 0.7 regime is with interferometers.

We should point out that time lags from distant pulsed
sources have also been posited as a possible test of quantum
foam models. But, as explained in Christiansen et al. (2011),
the new Fermi Gamma-ray Space Telescope results
(Abdo et al. (2009)) only exclude models with α < 0.3.

5. Summary

We have reviewed the theoretical basis for expecting halos due
to spacetime foam, and also the correct distance measure. We
have shown explicitly that, while we agree with the basic result
of Tamburini et al. (2011) that current observations withHST
show no evidence for quantum gravity, as shown in our pre-
viously published paper Christiansen et al. (2011), we cannot
agree with the resulting constraint they placed on models of
quantum gravity. Because their calculations overstated the size
of quantum foam induced halos of distant quasars by a fac-
tor 20, their limit for α, is also overstated by a minimum of
∆α = 0.021. Based on our experience withHST data, we also
believe – but cannot verify (because of the lack of documenta-
tion in Tamburini et al. (2011)) – that even this resulting level
(α = 0.66) cannot be reached because of details specific to each
observation, including the variation of the PSF ofHST with po-
sition on the chip, the undersampling of the PSF by every instru-
ment onHST, as well as the host galaxy of the quasar.

This work was supported in part by the US Department of
Energy under contract DE-FG02-06ER41418.
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