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This paper allows one to obtain a criterion for the existence of a projectively invariant measure

formulated in terms of combinatorial properties of a group (amenability of some canonical quotient

group). Such necessary and sufficient condition is a basis of the classification scheme for groups of

homeomorphisms of the line. In particular, a nonamenability of Thompson’s group F follows from the

obtained criterion.
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Introduction

Groups of homeomorphisms of the line (circle) occur in studying various problems in

geometry, groups of quasiconformal mapping, functional differential equations, wave theory,

calculus of variations etc.[1],[2]-[3], [4], [5]-[9], [10]. They can be classified on the basis of various

characteristics. As such characteristics it is possible to consider an amenability property, a

growth function of a group (for finitely generated groups), a structure of the orbits (for groups

of homeomorphisms of locally compact space) etc. For groups of homeomorphisms of the line the

most detailed classification is based on the characteristics of a series of metric invariants [12]-[15].

Therefore, it is important to have criteria for the existence of such invariants in various terms of

an initial group such as topological characteristics, combinatorial characteristics, characteristics

of canonical subgroups. In [12] the criterion for the existence of an invariant measure was

obtained in terms of topological characteristics of an initial group of homeomorphisms of the

line. In [14] the criterion for the existence of a projectively invariant measure was obtained in
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terms of properties of canonical subgroups of an initial group of homeomorphisms of the line.

In [15] the criterion for the existence of an ω-projectively invariant measure was obtained in

terms of topological properties of an initial group of homeomorphisms of the line. In [11] the

criterion for the existence of an invariant measure for groups of homeomorphisms of the circle

was obtained and formulated on the basis of combinatorial characteristics of a group (lack of

free subgroups with two generators for some canonical quotient group). In the same paper there

is a reformulation of the noted criterion by dint of the other combinatorial properties of a group.

Though, classification possibilities of such criterion appear limited.

In the present paper the criterion for the existence of a projectively invariant measure is

obtained (Theorem A) on the basis of combinatorial characteristics of an initial group of homeo-

morphisms of the line (amenability of some canonical quotient group). There is a reformulation

of the noted criterion in this paper (Theorem B). This criterion is an elaboration of previously

obtained criterion for a wider class of groups. Expansion of the class of groups requires some

weakening of conditions of the criterion. In this case the condition of the existence of a free

subgroup with two generators is replaced by the condition of nonamenability. Such criterion is

the most important classification instrument and it is a basis of the classification scheme for

groups of homeomorphisms of the line. It is proved that there is not a projectively invariant

measure for Thompson’s group F , that entails, owing to offered criterion, a nonamenability of

this group (Theorem D). An example is given in the form of Brin’s group B, which is amenable

group. This example shows that the conditions, stated in Theorem B, are precise.

For implementation of the mentioned tasks there is obtained a new criterion for the existence

of a projectively invariant measure, which is formulated as a property of the commutator. There

is a reformulation of this criterion in terms of the graphs of homeomorphisms belonging to an

initial group (§2). It is shown that in case of absence of a projectively invariant measure an

initial group contains a special subgroup Λ =< p, q > with two generators, where one of

the generators p is a freely acting homeomorphism (§5). By using a property of the orbits, it

is constructed a special induced representation for the right-invariant mean on the canonical

quotient group of homeomorphisms of the line. For this representation we define and study

singular right-invariant means. For groups, which contain a freely acting homeomorphism, right-

invariant mean is singular (§3). For their studying we use the Stone-Čech compactification of

a canonical quotient group. Singular functionals are permanent functionals, therefore, in the

integral representation of the right-invariant mean a support of an invariant probability measure

belongs to the remainder of the Stone-Čech compactification (§4). The absence of a projectively

invariant measure and, consequently, the existence of a special subgroup with two generators

allows us to construct a certain map of “transposition” on the line. Such transposition map

induces a continuous mapping of involution in the Stone-Čech compactification of a canonical

quotient group, with the remainder goes into the remainder. We study the structure of the

remainder of the Stone-Čech compactification of the canonical quotient group Λ/HΛ with

respect to the action of the shift [p−1] on this extension, and, in particulary, an existence

of an invariant set for this action (§5). From the existence of such involution map it follows

that the singular right-invariant mean is simultaneously nonsingular. This contradiction proves
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the nonamenability of the canonical quotient group in case of the absence of a projectively

invariant measure (§6).

§1. Preliminaries

Through Homeo+ (X), X = R , S1 we denote a group of all orientation-preserving homeo-

morphisms of X. Let’s define an important canonical subset GS of the group G as a union of

stabilizers

GS =
⋃

t∈X

StG(t).

The set GS is not obliged to be a group. The following embeddings are obvious

GS ⊆< GS >⊆ G. (1)

It turns out that such chain of embeddings is characterized by extreme property, which is

described in the following lemma.

Lemma 1 ([12]). Let G ⊆ Homeo+(R). Then either GS =< GS > or < GS >= G. �

The alternative, formulated in this lemma, is not strict as there are groups, for which equality

GS = G is true. The given lemma underlies the important theorem about a quotient group.

Theorem 1 ([12]). Let G ⊆ Homeo+(X). Then the quotient group G/<GS> is commutative

and isomorphic to some subgroup of the additive group of X. �

Remark 1. Let G ⊆ Homeo+(X). If (G/<GS>) 6=< e >, then in the group G there is a freely

acting element. �

The theorem of the structure of a quotient group is determining in the study of groups

of homeomorphisms of the line (circle). At the same time, such characteristic, as the quotient

group G/<GS>, cannot be a universal classification instrument for groups of homeomorphisms

of the line, since this quotient group is nontrivial only for groups with an invariant measure

(Theorem 9). In particular, for the solvable group G =< t + 1, 2 t > with two generators the

quotient group G/<GS> is trivial and does not carry any new information about the initial

group G.

1.1. Minimal sets.

For the group G ⊆ Homeo+(X) its minimal set is an important topological characteristic.

Definition 1. A minimal set of the group G ⊆ Homeo(X) it is a closed G-invariant subset

of the X, which does not contain proper closed G-invariant subsets. If there is not a nonempty

minimal set then, by definition, we assume that the minimal set is empty. �
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An importance of the minimal sets is determined by the fact that if they are nontrivial

then the orbits of the points have certain canonical properties, and the minimal sets themselves

determine the supports of the metric invariants.

Another important topological characteristic is a set:

FixGS = {t ∈ X : ∀g ∈ GS, g(t) = t}.

Theorem 2 ([14]). Let G ⊆ Homeo+(R). Then one of the following mutually exclusive state-

ments is true:

a) any minimal set is discrete and belongs to the set Fix GS, and the set Fix GS consists

of the union of the minimal sets;

b) a minimal set is a perfect nowhere dense subset of the R. In that case, it is a unique

minimal set, and it is contained in a closure of the orbit G(t) of an arbitrary point t ∈ R;

c) a minimal set coincides with R;

d) a minimal set is empty. �

A nondiscrete minimal set of the group G (such set is unique) we denote through E(G).

Let’s formulate a criterion of nonemptiness of a minimal set. First let’s define a set

GS
∞ = {g ∈ GS : sup{t : g(t) = t} = +∞, inf{t : g(t) = t} = −∞}.

Proposition 1 ([14],[15]). Let G ⊆ Homeo+(R) and at least one of the conditions is fulfilled:

a) G is a finitely generated group;

b) Fix GS 6= ∅,

c) G 6= GS
∞.

Then there is a nonempty minimal set. �

Theorem 3 ([15]). Let G ⊆ Homeo+(X). If for the subgroup Γ ⊆ G the minimal set E(Γ) is

neither empty nor discrete then E(Γ) ⊆ E(G). �

Let’s give an amplification of the last theorem for the case of the normal subgroups.

Theorem 4 ([15]). Let G ⊆ Homeo+(X). If for the normal subgroup Γ ⊆ G the minimal set

E(Γ) is neither empty nor discrete then it coincide with minimal set of the initial group G, i.e.

E(Γ) = E(G). �
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As shown, the minimal sets of normal subgroups of the initial group G ⊆ Homeo+(X) have

an extremal property : they are either discrete (possibly empty) or coincide with a minimal set

of the group G.

By Theorem 4, the normal subgroup Γ and the initial group G have the same topological

complexity. This fact is especially useful when we need to reduce an algebraic complexity with

saving all topological properties.

There is another very important question: Do the minimal sets have an inheritance property?

The answer to this question is the following theorem.

Theorem 5. Let G ⊆ Homeo+(X) with nonempty minimal set. Then for the normal subgroup

Γ ⊆ G its minimal set is also nonempty.

Proof.

(i) The first case. Let Fix ΓS 6= ∅. Then, by Proposition 1, the minimal set of the subgroup Γ

is nonempty.

(ii) The second case. Let Fix ΓS = ∅. Then the condition Fix GS = ∅ is fair, and for such

group G the minimal set is not discrete. It is obvious, that for the subgroup Γ the condition

Γ 6=< e > is fair. Owing to Proposition 1, in case Γ 6= ΓS
∞ the minimal set of the subgroup Γ

is also nonempty.

Therefore, it remains to consider the case when Γ = ΓS
∞. Let’s consider the closed interval

I with the property I ∩ E(G) 6= ∅. If we show that for an arbitrary point t̄ ∈ R the orbit Γ(t̄)

satisfies the condition

I ∩ Γ(t̄) 6= ∅, (2)

then it implies the nonemptiness of the minimal set of the subgroups Γ.

Let’s consider a point τ ∈ E(G). There is an element γ̂ ∈ Γ which satisfies following

conditions

τ ∈ (t1, t2), γ̂(t1) = (t1), γ̂(t2) = (t2), γ̂(t) > t, t ∈ (t1, t2). (3)

As I, we take the interval [t1, t2]. Let’s consider an arbitrary point t̄ ∈ R. If t̄ ∈ I then this

point satisfies the condition (2).

Let t̄ /∈ I. If t̄ > t2 then we consider a family P+ of elements of the group Γ

P+ = {γ : γ = gγ̂g−1, g ∈ G, g(t1) > t1} (4)

and a corresponding family of open intervals

P
+ = {(g(t1), g(t2)) : g ∈ G, g(t1) > t1}. (5)

Each element γ ∈ P+ on the corresponding interval (g(t1), g(t2)) satisfies following conditions

γ(g(t1)) = g(t1), γ(g(t2)) = g(t2), γ(t) > t, t ∈ (g(t1), g(t2)). (6)
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Obviously, the family of open intervals P+ is a covering for a closed interval [t2, t̄]. From it we can

select a finite subcover (gj(t1), gj(t2)), j = 1, ..., K. It is not difficult to see, that an element

γ̄ ∈ Γ with a property γ̄−1(t̄) ∈ I can be formed using the elements γj = gjγ̂g
−1
j , j = 1, ..., K,

that is for the point t̄ the condition (2) is satisfied.

If t̄ < t1 then we consider a family P− of elements of the subgroup Γ

P− = {γ : γ = gγ̂g−1, g ∈ G, g(t2) < t2} (7)

and a corresponding family of open intervals

P
− = {(g(t1), g(t2)) : g ∈ G, g(t2) < t2}. (8)

Each element γ ∈ P− on the corresponding interval (g(t1), g(t2)) satisfies following conditions

γ(g(t1)) = g(t1), γ(g(t2)) = g(t2), γ(t) > t, t ∈ (g(t1), g(t2)). (9)

Obviously, the family of open intervals P− is a covering for a closed interval [t̄, t1]. From it we can

select a finite subcover (gj(t1), gj(t2)), j = 1, ..., K. It is not difficult to see, that an element

γ̄ ∈ Γ with a property γ̄−1(t̄) ∈ I can be formed using the elements γj = gjγ̂g
−1
j , j = 1, ..., K,

that is for the point t̄ the condition (2) is satisfied. The theorem is proved.

Let’s define a very important canonical subgroup of an initial group related with a minimal

set.

Definition 2. For the group G ⊆ Homeo+(X) the normal subgroup HG is defined as follows:

1) if the minimal set is neither empty nor discrete then

HG = {h ∈ G : E(G) ⊆ Fix < h >} ;

2) if the minimal set is nonempty and discrete then HG = GS

(from the discreteness of the minimal set it follows that the set FixGS is not empty, from

the nonemptiness of the set FixGS it follows that GS is a normal subgroup);

3) if the minimal set is empty then HG =< e >. �

Let’s note that if the minimal set coincide with the whole line then HG =< e >.

1.2. Metric invariants.

Let’s define an important metric invariant. Let M is the space of charges on X, which are

finite on compacts (M+ is a cone of Borel measures). In case X = R the space M is considered

as conjugate space to the space R(R) of continuous functions on R with compact support and

with topology of inductive limit [16]. In case X = S
1 the space M is considered as conjugate

space to the space C(S1) of continuous functions on S
1. For the group G ⊆ Homeo+(X) let’s

denote through G∗ a group of continuous linear operators, which are acting on the space M.
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The group G∗ is isomorphic to the group G ⊆ Homeo+(X) and isomorphism θ : G −→ G∗,

where θ(g) = g∗, is defined as follows: for any measure µ and for any Borel set B

g∗µ(B) = µ(g−1(B)).

Let’s note that the cone of positive measures M+ is invariant, relatively to the group of

continuous linear operators G∗. For any measure µ ∈ M+ through Kµ(G) we denote a closed

convex cone, generated by the orbit G∗(µ) = {g∗µ}g∈G of measure µ, i.e.

Kµ(G) = conv {λ g∗µ}g∈G,λ∈R+
.

It’s obvious, that the cone Kµ(G) is invariant, relatively to the group of continuous linear

operators G∗.

Definition 3. Let G ⊆ Homeo+(X) and µ ∈ M+. The cone Kµ(G) is called minimal if for

any measure µ̄ ∈ Kµ(G) the condition Kµ(G) = Kµ̄(G) is fulfilled. �

Let K ⊆ M+ is the cone and µ ∈ K. A ray λµ, λ > 0 is called extreme, if there aren’t

measures µ1, µ2 ∈ K\µ and nonnegative numbers λ1, λ2 such that µ = λ1µ1 + λ2µ2.

Definition 4. Borel measure µ ∈ M+, which is finite on compacts, is called ω-projectively

invariant, relatively to the group G ⊆ Homeo+(X), if the convex cone Kµ(G) is minimal, the

ray λµ is extreme, and ω is a cardinality of the set of extreme rays. �

In case ω = 1 the invariant cone Kµ(G) is one-dimensional and such measure is called

projectively invariant measure. If the invariant cone Kµ(G) is one-dimensional and also is fixed,

relatively to the group of linear operators G∗, then such projectively invariant measure is

invariant measure. It’s obvious, that in case of the circle X = S
1 any projectively invariant

measure is an invariant measure.

It’s important to formulate various criteria for the existence of an ω-projectively invariant

measure without a priori assumptions about nature of a group. Let’s note that for the group

with an invariant or projectively invariant measure the minimal set is not empty.

Theorem 6 ([15]). Let G ⊆ Homeo+(R). If the minimal set of the group G is not empty

then there is such cardinal number ω that for the group G there is an ω-projectively invariant

measure. �

It is obvious, that following estimate holds

1 ≤ ω ≤ ∞.

It’s interesting to know, in which cases is there an ω-projectively invariant measure with

finite ω? Answer to this question is given by the next theorem about extreme property of an

ω-projectively invariant measure.
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Theorem 7 ([17]). Let G ⊆ Homeo+(R) and the minimal set of the group G is neither empty

nor discrete. Then for the ω-projectively invariant measure µ the cardinal number ω is equal to

either 1 or infinity. �

There is another interesting question: under what conditions from the existence of an

ω-projectively invariant measure does the existence of an invariant or a projectively invariant

measure follow? Below we are going to describe obstacles, related with the existence of an

invariant or a projectively invariant measure in terms of topological characteristics, algebraic

characteristics or combinatorial characteristics.

1.2.1. Invariant measures.

Let’s formulate a criterion of the existence of an invariant measure in terms of topological

characteristics.

Theorem 8 ([12]). Let G ⊆ Homeo+(X). Then the following statements are equivalent:

1) there is a Borel (probabilistic, in case of X = S
1) measure µ, which is finite on compacts

and invariant, relatively to the group G;

2) the set Fix GS is nonempty. �

Let’s formulate a criterion of the existence of an invariant measure in terms of the quotient

group G/ < GS >.

Theorem 9 ([12]). Let G ⊆ Homeo+(R). If the quotient group G/ < GS > is nontrivial then

there is a measure µ, which is finite on compacts and invariant, relatively to the group G. �

Remark 2. Owing to Proposition 1 and Theorem 8, for the group G ⊆ Homeo+(R) from the

existence of an invariant measure it follows that the minimal set is nonempty. �

Remark 3. Let G ⊆ Homeo+(X) and for the group G the minimal set is nonempty. Then

for the group G there is an inclusion HG ⊆ GS. If there is a Borel measure µ, which is finite

on compacts and invariant, relatively to the group G, then the equality HG = GS holds. If the

condition HG = GS is satisfied, then for the group G there is an invariant measure. �

Remark 4. If for the group G ⊆ Homeo+(X) the minimal set is discrete then there is a Borel

measure µ, which is finite on compacts and invariant, relatively to the group G. �

We have already noted that such characteristic as the quotient group G/ < GS > cannot

be a universal classification instrument for groups of homeomorphisms of the line since this

quotient group is nontrivial only for groups with an invariant measure. On the other hand, this

characteristic, like a topological characteristic from Theorem 8, doesn’t carry any information
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about groups, which don’t satisfy these criteria. This lack can be overcome by reformulation of

the given criteria in form of alternatives.

In terms of combinatorial characteristics, let’s formulate a criterion of the existence of an

invariant Borel measure on the circle in form of a strict alternative, which is unimprovable

amplification of the Krylov-Bogolyubov-Day theorem on the existence of invariant measure for

an amenable group, acting on the circle.

Theorem 10 ([11]). For the group of homeomorphisms of the circle G ⊆ Homeo (S1) either

the quotient group G/HG contains a free subgroup with two generators or there is a probabilistic

Borel measure, which is invariant, relatively to the group G. Specified alternative is strict and

so it does not allow the simultaneous fulfillment of the conditions. �

Let’s give an equivalent reformulation of Theorem 10 where all statements are given in terms

of combinatorial characteristics.

Theorem 11 ([11]). For the group of homeomorphisms of the circle G ⊆ Homeo (S1) either

the quotient group G/HG contains a free subgroup with two generators or the quotient group

G/HG is commutative. Specified alternative is strict and so it does not allow the simultaneous

fulfillment of the conditions. �

The quotient group G/HG is a universal instrument for classification for groups of homeo-

morphisms of the circle. Such characteristic splits the set of all groups of homeomorphisms of the

circle in two classes. First class consists of groups with simple combinatorial characteristics of

the quotient group G/HG, another class is formed by groups with complex ones. Unfortunately

this classification instrument is not applicable to study the canonical normal subgroup HG. More

detailed study of normal subgroup HG leads to the study of induced groups of homeomorphisms

of the line, with which such instrument is not useful. Therefore, a problem of a formulation of

a similar characteristic for classification of groups of homeomorphisms of the line is actual.

Nevertheless, it’s also possible to formulate a criterion of the existence of invariant measure

for groups of homeomorphisms of the line G ⊆ Homeo+ (R) in terms of combinatorial characte-

ristics. It’s obvious, that in that case, in contrast to the criterion of the existence of an invariant

measure for groups of homeomorphisms of the circle, the conditions on the quotient group G/HG

must be more hard.

Theorem 12 ([11]). For the group of homeomorphisms of the line G ⊆ Homeo+ (R) with

nonempty minimal set either the quotient group G/HG contains a free subsemigroup with two

generators or there is a Borel measure, which is finite on compacts and invariant, relatively to

the group G. Specified alternative is strict and so it does not allow the simultaneous fulfillment

of the conditions. �

Let’s give an equivalent reformulation of Theorem 12 also with statements in form of combi-

natorial characteristics.
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Theorem 13 ([11]). For the group of homeomorphisms of the line G ⊆ Homeo+ (R) with

nonempty minimal set the quotient group G/HG either contains a free subsemigroup with

two generators or is commutative. Specified alternative is strict and so it does not allow the

simultaneous fulfillment of the conditions. �

For groups of homeomorphisms of the line the properties of the quotient group G/HG from

Theorem 13 can be a basis of the classification scheme. At the same time, such scheme has some

lacks. The quotient group G/HG, which contains a free subsemigroup with two generators, either

can be solvable (for example, a simple group G =< t + 1, 2 t >) or contains a free subgroup

with two generators (such group has maximal combinatorial complexity). The reason of this

lack is revealed in Theorem 12. By the noted theorem, the characteristic, in form of the quotient

group G/HG, splits the set of groups of homeomorphisms of the line in three classes: groups

with invariant measure; groups with nonempty minimal set but without invariant measure;

groups with empty minimal set. Therefore, a problem of a formulation of a more acceptable

characteristic for classification of groups of homeomorphisms of the line is still actual.

1.2.2. Projectively invariant measures.

Let’s formulate an important criterion of the existence of a projectively invariant measure

in terms of both topological and algebraic characteristics. For any element q ∈ Homeo+(R) we

use the notation:

Tq = sup{t : q(t) = t}, tq = inf{t : q(t) = t}, if Fix < q > 6= ∅;

Tq = tq = −∞, if Fix < q >= ∅.

Let’s define one more canonical subset of the group G ⊆ Homeo+(R)

CG = (G \GS) ∪GS
∞.

Theorem 14 ([13]). Let for the group G ⊆ Homeo+(R) there is not an invariant Borel measure,

which is finite on compacts. Then there is a projectively invariant Borel measure, relatively

to the group G, which is finite on compacts, if and only if following conditions are satisfied

simultaneously:

1) the set GS
∞ is a subgroup and the quotient group G

/

GS
∞ is not commutative;

2) for any g ∈ GS
∖

CG following conditions are fulfilled:

tg, Tg are finite and for any t ∈]−∞, tg[, T ∈]Tg,+∞[ it’s true that

sign[g(t)− t] = −sign[g(T )− T ];

3) for any g1, g2 ∈ GS
∖

CG either tg1 = tg2 and Tg1 = Tg2 or [tg1 , Tg1]
⋂

[tg2 , Tg2] = ∅. Specified

alternative is strict. �

For groups, which don’t have an invariant measure, we can formulate another criterion of

the existence of a projectively invariant measure also in terms of the canonical subsets GS
∞ and

CG of the initial group G ⊆ Homeo+(R).
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Theorem 15 ([14]). Let for the group G ⊆ Homeo+(R) there is not an invariant Borel measure

which, is finite on compacts. Then there is a projectively invariant Borel measure, relatively to

the group G, which is finite on compacts, if and only if the subsets GS
∞ and CG are subgroups

and it’s true that CG 6= GS
∞. �

Remark 5 ([14],[17]). If for the group G ⊆ Homeo+(R) there is a projectively invariant Borel

measure µ, relatively to the group G, which is finite on compacts, but there is not an invariant

Borel measure, which is finite on compacts, then the following statements hold: GS
∞ = HG;

the quotient groups G/CG and CG/G
S
∞ are commutative and the quotient group CG/G

S
∞ is not

cyclic; measure µ for the group CG is invariant. �

For groups without an invariant measure we can formulate another result about existence

of a projectively invariant measure, based only on presence of a special normal subgroup.

Theorem 16 ([15]). Let G ⊆ Homeo+(R) and there is not an invariant Borel measure,

relatively to the group G, which is finite on compacts. There is a projectively invariant Borel

measure µ, relatively to the group G, which is finite on compacts, if and only if there is a normal

subgroup Γ ⊆ G with following properties: for the group Γ there is an invariant measure; the

quotient group Γ/<ΓS> is not cyclic. �

Remark 6. Owing to Remarks 2 and 3, in Theorem 16 for the normal subgroup Γ there is a

condition ΓS = <ΓS>. From Remark 1 it follows that the subgroup Γ contains a freely acting

element. �

Remark 7. By Proposition 1 and Theorem 14, for the group G ⊆ Homeo+(R) the nonempti-

ness of the minimal set follows from the existence of a projectively invariant measure. �

1.3. On the maximal subgroups with invariant measure.

In the study of groups of homeomorphisms of the line the existence of a maximal normal

subgroup with an invariant measure is essential. Let’s define such subgroups and also describe

their structure.

Definition 5. Let G ⊆ Homeo+(R). The normal subgroup MG of the group G is called

0-maximal if for the MG there is an invariant measure and MG is not a proper subset of

some normal subgroup of the group G, for which there is an invariant measure. �

Theorem 17 ([15],[17]). Let G ⊆ Homeo+(R) and for the group G there is a nonempty minimal

set. Then for the group G there is a unique 0-maximal subgroup MG and also MG:

1) coincide with the group G if for the group G there is an invariant measure;

2) coincide with the normal subgroup CG if for the group G there is not an invariant measure,

but there is a projectively invariant measure;
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3) contains the normal subgroup HG if for the group G there is not a projectively invariant

measure and G = CG; moreover, it’s true that MS
G = HG and the quotient group MG/HG

is either trivial or infinite cyclic group. Specified alternative is strict;

4) coincide with the normal subgroup HG if for the group G there is not a projectively

invariant measure and G 6= CG.

Moreover, any normal subgroup with an invariant measure is contained in 0-maximal subgroup.

�

Remark 8. If in the conditions of Theorem 17 the quotient group MG/HG is an infinite cyclic

group then there is a freely acting element in the maximal normal subgroup MG. �

Let’s formulate a criterion of the existence of a projectively invariant measure for special

class of groups of homeomorphisms of the line in terms of combinatorial characteristics.

Theorem 18 ([15]). Let the group G ⊆ Homeo+(R) contains a normal subgroup Γ with

invariant measure and with freely acting element. Then either the quotient group G/HG contains

a free subgroup with two generators or there is a projectively invariant measure. Specified

alternative is strict and so it does not allow the simultaneous fulfillment of the conditions.

�

Let’s give an equivalent reformulation of Theorem 18 with statements in form of combina-

torial characteristics.

Theorem 19 ([15]). Let the group G ⊆ Homeo+(R) contains a normal subgroup Γ with

invariant measure and with freely acting element. Then either the quotient group G/HG contains

a free subgroup with two generators or the group G/HG is a solvable group of solvability length

not greater than 2. Specified alternative is strict and so it does not allow the simultaneous

fulfillment of the conditions. �

§2. Criterions for the existence of an invariant and a pro-

jectively invariant measures in terms of commutator-group

[G,G].

Let’s formulate criterions for the existence of an invariant and a projectively invariant

measures in terms of commutator-group [G,G]. Further will be given an equivalent reformu-

lation of the criterion of existence of a projectively invariant measure in terms of the geometry

of graphs of homeomorphisms of the initial group G and also in terms of commutator-group

[G,G]. In the future such reformulation will be central for obtaining a criterion of existence of

a projectively invariant measure in form of combinatorial characteristics.
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Theorem 20. Let G ⊆ Homeo+ (R) and a minimal set of the group G is nonempty. Then

there is an invariant Borel measure, which is finite on compacts, if and only if

[G,G] ⊆ HG. (10)

Proof.

Necessity. Let for the group G there is an invariant measure. By Remark 3, we have the equality

HG = GS. Consequently, < GS >= GS. Then, by Theorem 1, the quotient group G/HG is

commutative that implies the inclusion (10).

Sufficiency. Let the minimal set is discrete. Then, by Theorems 2 and 8, for the group G there

is an invariant measure.

Let the minimal set is not discrete. From the condition (10) it follows that the quotient group

G/HG is commutative. The quotient group G/HG can be realized as a group of homeomorphisms

on the minimal set E(G). The action of the left coset [g] of the group G by the normal

subgroup HG is defined by the following rule: [g](t) = g(t) for any t ∈ E(G). Then, from

the commutativity of the quotient group G/HG, it follows that any two elements g1, g2 ∈ G

commute on the minimal set E(G), i.e. for any t ∈ E(G) commutativity rule g1g2(t) = g2g1(t)

holds. Let’s note that for any element g ∈ GS there is a point t̄ ∈ E(G) such that g(t̄) = t̄.

In view of the marked commutativity rule, for any q ∈ G the following chain of equalities

g(q(t̄)) = q(g(t̄)) = q(t̄) is fulfilled. It means that along with the point t̄ the point q(t̄) also

belongs to the set Fix g. Since this holds for any element q ∈ G so next inclusion is fair

E(G) ⊆ Fix g, g ∈ GS. (11)

But for such group G it is true that FixGS 6= ∅. Hence, by Theorem 8, for such group G there

is an invariant measure.

Let’s formulate criterion for the existence of a projectively invariant measures in terms of

commutator-group [G,G].

Theorem 21. Let G ⊆ Homeo+(R) and a minimal set of the group G is nonempty. Then there

is a projectively invariant Borel measure, relatively to the group G, which is finite on compacts,

if and only if there is the following inclusion

[G,G] ∩GS ⊆ HG. (12)

Proof.

Necessity. Let there is a projectively invariant measure.

(i) The first case. For the group G there is an invariant measure. By Theorem 20, it is equivalent

to the condition [G,G] ⊆ HG that implies the inclusion (12).

(ii) The second case. For the group G there is not an invariant measure. By Remark 5, the

quotient group G/CG is commutative and, thus, [G,G] ⊆ CG. By the same Remark 5, it is true

that GS
∞ = HG. By the definition for the group CG, it is true that CS

G = GS
∞ that implies the

inclusion (12).

13



Sufficiency. Let the inclusion (12) is fulfilled.

(i) The first case. Let the following condition is satisfied

[G,G] ⊆ HG. (13)

Then, by Theorem 20, for the group G there is an invariant measure.

(ii) The second case. Let the following condition is satisfied

[G,G]\HG 6= ∅. (14)

For the commutator-group let’s use the notation Q = [G,G]. It is obvious, that QS = Q ∩GS.

Then from the inclusion (12) it follows that QS ⊆ HG. Consequently, the following chain

of relations < QS >= QS = QS
∞ ⊆ HG is fulfilled. From the property (14), it follows that

Q 6=< QS >. Therefore, by Remark 1, in the group Q there is a freely acting element and,

owing to Theorem 9, for the group Q there is an invariant measure. In that case, owing to

Theorem 18, the quotient group G/HG either contains a free subgroup with two generators or

is a solvable group of solvability length not greater than 2.

The commutator-group Q is normal in the group G and for any g ∈ G there is a relation

gGSg−1 = GS. Then, from the representation < QS >= Q ∩ GS, it follows that < QS > is a

normal subgroup of the group G and, accordingly, it is normal in HG. There is an isomorphism

(G/<Q>)/(HG/<Q>) ∼= G/HG. (15)

The quotient group G/Q is commutative by construction and, by Theorem 1, the quotient

group Q/QS is also commutative. Then, owing to the isomorphism

(G/<QS>)/(Q/<QS>) ∼= G/Q, (16)

the quotient group G/<QS> is a solvable group of solvability length not greater than 2. In that

case, owing to the isomorphism (17), the quotient group G/HG can’t contain a free subgroup

with to generators and, by Theorem 18, for the group G there is a projectively invariant

measure.

Next question is quite interesting. Can we reformulate the condition (12) in terms of local

properties of the graphs of homeomorphisms themselves from the commutator-group [G,G] or

from the initial group G?

Definition 6. Let G ⊆ Homeo+(R) is a group with nonempty minimal set. An element g ∈ G

is called plane if there is not a triple of points t1, t2, t3, t2 ∈ E(G) in case of nondiscrete

minimal set, or a triple of points t1, t2, t3, t2 ∈ FixGs in case of discrete minimal set, for

which next conditions are satisfied

t1 < t2 < t3, g(t1) = t1, g(t2) 6= t2, g(t3) = t3. (17)

�
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The following statement holds.

Lemma 2. Let G ⊆ Homeo+(R) is a group with nonempty minimal set. In order to satisfy the

inclusion

[G,G] ∩GS ⊆ HG , (18)

it is necessary and sufficient that all elements of the commutator-group [G,G] are plane.

Proof. For the commutator-group we use the notation Q = [G,G]. It is not difficult to see, that

in the case of finite values of Tq, (tq) for the element q ∈ G the point Tq, (tq) always belongs

to the minimal set of the group, i.e. Tq, (tq) ∈ E(G) in case of nondiscrete minimal set, and

Tq, (tq) ∈ FixGs in case of discrete minimal set.

Necessity. Let the inclusion (18) takes place. It is obvious, that QS ⊆ GS. Then, from the

inclusion (18), it follows that QS ⊆ HG and, hence, all elements of QS are plane. Each element

q ∈ Q\QS is freely acting and, thus, is plane. Therefore, all elements of commutator-group Q

are plane.

Sufficiency. Let’s suppose that the commutator-group is plane and let’s prove by contradiction.

Let the condition (18) is violated , i.e. there is a relation

([G,G] ∩GS)\HG 6= ∅. (19)

Step 1. The minimal set of the group G is nondiscrete.

Indeed, from the condition (19), it follows that [G,G]\HG 6= ∅. Owing to Theorem 20, for

the group G there is not an invariant measure and, by Remark 4, the minimal set of such group

is nondiscrete.

Step 2. For any element q ∈ Q it is true that

E(G) ∩ (tq, Tq) ⊆ Fix q. (20)

(In the case of finite tq or Tq inclusion can be enhanced. Instead of the interval (tq, Tq) should

be written [tq, Tq), (tq, Tq], [tq, Tq], respectively.)

The property (20) follows immediately from the condition that all elements of the group Q

are plane.

Step 3. The set QS is invariant, relatively to the operation of conjugation, i.e. gQSg−1 = QS,

g ∈ G.

This is a consequence of the invariance of the set GS, relatively to the operation of conju-

gation, i.e. of the condition gGSg−1 = GS, g ∈ G and the normality of the subgroup Q of the

group G.

Step 4. The set QS
∞ is a normal subgroup of the group G and it is true that QS

∞ ⊆ HG.

Indeed, from the condition (20), it follows that for each element q ∈ QS
∞ it is true that

q ∈ HG, i.e. QS
∞ ⊆ HG. Hence, QS

∞ is a subgroup. Since Q is a normal subgroup of the group G

then the set QS
∞ is invariant, relatively to the operation of conjugation, i.e. gQS

∞g−1 = QS
∞,

g ∈ G. Therefore, the subgroup QS
∞ is a normal subgroup of the group G.
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Step 5. For any element q ∈ QS\QS
∞ the values tq, Tq are finite.

It is obvious, that for an element q one of the values tq, Tq is finite. For definiteness let the

value Tq is finite and q(t) > t, t ∈ (Tq,+∞). Let’s suppose that tq = −∞. Since the minimal

set E(G) is nondiscrete then there is an element g ∈ G such that g(Tq) 6= Tq. For definiteness let

g(Tq) > Tq. Otherwise, this condition will be satisfied by the inverse element. Let’s consider an

element q̄ = gqg−1. From the steps 3 and 4, the inclusion q̄ ∈ QS\QS
∞ follows. For such element

it is true that Tq̄ = g(Tq), tq̄ = −∞, q̄(t) > t, t ∈ (Tq̄,+∞). Since Tq ∈ E(G) ∩ (−∞, Tq̄)

then, owing to the step 2, there is a condition q̄(Tq) = Tq. Since g(Tq) > Tq then for any

k = 1, 2, ... there is a point τ̂k, Tq ≤ τ̂k < Tq̄ for which following conditions are fulfilled

q(τ̂k) = q̄k(τ̂k), q(t) > q̄k(t), t ∈ (τ̂k, Tq̄), k = 1, 2, ... . (21)

(In fact there is a stronger property that we do not need. Since all elements of the group Q are

plane, the minimal set E(G) is nondiscrete and q̄k(t) = t, t ∈ E(G) ∩ (−∞, Tq̄] then there is

an equality τ̂k = Tq).

Let’s consider an element q̄k for sufficiently large fixed k. For such element there is a point

ξ̂k > Tq̄ such that

q(τ̂k) = q̄k(τ̂k), q(ξ̂k) = q̄k(ξ̂k), q(t) > q̄k(t), t ∈ (τ̂k, ξ̂k), k = 1, 2, ... . (22)

Then for the element l = q̄−kq it is true that

l(τ̂k) = τ̂k, l(ξ̂k) = ξ̂k, l(t) > t, t ∈ (τ̂k, ξ̂k). (23)
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Since Tq̄ ∈ E(G) and Tq̄ ∈ (τ̂k, ξ̂k) then τ̂k, ξ̂k are also belong to the minimal set E(G). Hence,

the element l ∈ Q can’t be plane. Contradiction. Therefore, the value tq is also finite.

Step 6. For any q, q̄ ∈ QS\QS
∞ either [tq, Tq] ∩ [tq̄, Tq̄] = ∅, or tq = tq̄, Tq = Tq̄.

Let’s prove by contradiction. For definiteness let it is true that tq̄ ≤ Tq < Tq̄. Also for

definiteness let for the elements q, q̄ it is true that: q(t) > t, t > Tq; q(t) > t, t > Tq̄.

Otherwise, this condition will be satisfied by the inverse elements.
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Then, literally repeating the proof of the step 5 for the elements q, q̄, we obtain a contradiction

with the fact that elements of the subgroup Q are plane. The case when tq̄ < Tq ≤ Tq̄ is studied

in a similar way. Consequently, such mutual arrangement of the elements q, q̄ can not be.

Step 7. For any element q ∈ QS\QS
∞ it is true that:

sign[g(t)− t] = −sign[g(T )− T ], t ∈ (−∞, tg), T ∈ (Tg,+∞). (24)

Let’s prove by contradiction. For definiteness let q(T ) > T, T ∈ (Tg,+∞). Otherwise, this

condition will be satisfied by the inverse element. Let the condition (24) is violated. It means

that for the element q it is true that q(t) > t, t ∈ (−∞, tg). Since the minimal set E(G) of the

group G is nondiscrete then there is an element g ∈ G for which g(Tg) 6= Tg. Let g(Tg) > Tg.

Otherwise, this condition will be satisfied by the inverse element. Let’s consider an element

q̄ = gqg−1. It is obvious, that q̄ ∈ QS\QS
∞ and Tq̄ = g(Tg). In view of the step 6, it is true

that Tg < tq̄. Let’s note that for the element q̄ the condition q̄(t) > t, t ∈ (−∞, tq̄)∪ (Tq̄,+∞)

is also fulfilled. For sufficiently large positive integer k let’s consider an element qk. For such

element there are points τ̂k, ξ̂k, τ̂k < tq, Tq < ξ̂k < tq̄ such that

qk(τ̂k) = q̄(τ̂k), qk(ξ̂k) = q̄(ξ̂k), q̄(t) > qk(t), t ∈ (τ̂k, ξ̂k). (25)

Let’s form an element l = q−kq̄. For this element it is true that

l(τ̂k) = τ̂k, l(ξ̂k) = ξ̂k, l(t) > t, t ∈ (τ̂k, ξ̂k). (26)
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Since the points tq, Tg ∈ E(G) ∩ (τ̂k, ξ̂k) then the points τ̂k, ξ̂k are also belong to the minimal

set E(G). In that case, the element l ∈ Q can’t be plane. Consequently, for the elements

q ∈ QS\QS
∞ the condition (24) is satisfied.

Step 8. The quotient group Q/QS
∞ is not commutative.

From the condition (19) and from QS
∞ ⊆ HG (see step 3), it follows that there is an element

q̃, which satisfies the condition q̃ ∈ QS\QS
∞. For such element the values tq̃, Tq̃ are finite (step

5). As it was noted in the previous steps, since the minimal set E(G) is nondiscrete then there

is an element g ∈ G with the property g(Tq̃) > Tq̃. Let’s form an element q̄ = gq̃g−1. It is

obvious, that q̄ ∈ QS\QS
∞ and there is equalities tq̄ = g(tq̃), Tq̄ = g(Tq̃) and, owing to the step

6, we obtain that tq̄ > Tq̃. Since QS
∞ ⊆ HG the quotient group Q/QS

∞ can be realized as a group

acting on the minimal set E(G). For each coset [q] of the group Q by the subgroup QS
∞ and

for any t ∈ E(G) we assume that [q](t) = q(t). Obviously, that two formed cosets [q̃], [q̄] are

different. Moreover, their actions on the minimal set E(G) do not commute. Thus, the quotient

group Q/QS
∞ is not commutative.

Step 9. For the group Q there is not an invariant measure.

In the step 8 we mentioned that owing to the condition (19) in the group Q there is an

element q̃ ∈ QS\QS
∞. In the same place by the element q̃ we formed the element q̄ ∈ QS\QS

∞.

For this elements the condition [tq̃, Tq̃]∩[tq̄, Tq̄] = ∅ is fulfilled and thus Fix Q = ∅. By Theorem

8, for such group there is not an invariant measure.

Step 10. For the group Q there is a projectively invariant measure.

Indeed, owing to the steps 4-8, the group Q satisfies all conditions of Theorem 14 that

implies the existence of a projectively invariant measure.

Step 11. The existence of a projectively invariant measure for the group Q contradicts the

assumption (19).

In the step 4 we mentioned that QS
∞ is a normal subgroup of the group G. For any freely

acting element ḡ ∈ G its conjugate elements gḡg−1 are also freely acting. For the group Q there

is a projectively invariant measure µ and, by Remark 5, the set CQ is a subgroup of the group

Q (normal subgroup). Since CQ ⊆ Q and it consists of either elements of QS
∞ or freely acting

elements, and Q is a normal subgroup of the group G, then CQ is a normal subgroup of the

group G. Since for the group Q there is a projectively invariant measure µ, but there is not an

invariant measure then, by Remark 5, the measure µ is invariant, relatively to the subgroup

CQ, and the quotient group CQ/Q
S
∞ is not cyclic. Then, by Theorem 16, for the group G there

is a projectively invariant measure µ̃.

Since for the subgroup Q there is not an invariant measure then there is not an invariant

measure also for the initial group G. Thus, by Remark 5, the projectively invariant measure µ̃ is

invariant on the subgroup CG. By the same Remark 5, the quotient group G/CG is commutative

and hence the inclusion Q = [G,G] ⊆ CG is fair. Therefore, the measure µ̃ is also invariant

on Q. But in the step 9 we obtained that for the group Q there is not an invariant measure.

Contradiction. Consequently, the condition (19) can’t take place. Lemma is proved.

Lemma 2 can be reformulated. Instead of the commutator-group [G,G] the initial group G
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will appear.

Lemma 3. Let G ⊆ Homeo+(R) is a group with nonempty minimal set. In order to satisfy the

inclusion

[G,G] ∩GS ⊆ HG , (27)

it is necessary and sufficient that all elements of the group G are plane.

Proof.

Sufficiency. It follows directly from Lemma 2.

Necessity. Let for the group G there is a projectively invariant measure.

(i) The first case. For the group G there is an invariant measure. Then, by Theorem 8, it is

true that FixGS 6= ∅ and from the definition of the set FixGS it follows that for any element

g ∈ GS the inclusion

FixGS ⊆ Fix g (28)

is fulfilled. If the minimal set is discrete then, from (28), it follows that each element of the

group G is plane. Let the minimal set is nondiscrete. From the definition of the minimal set, it

follows that inclusion E(G) ⊆ FixGS is fair. Then, from (28), it follows that each element of

the group G is plane.

(ii) The second case. For the group G there is not an invariant measure. By Remark 5, for such

group the equality GS
∞ = HG is satisfied. Thus, any element g ∈ GS

∞ is plane. It remains to

show that any element g ∈ GS\GS
∞ is also plane. Since GS\GS

∞ = G\CG then, by Theorem 14,

for an element g ∈ GS\GS
∞ the values tg, Tg are finite. Obviously, the points tg, Tg belong to

the minimal set, i.e. tg, Tg ∈ E(G). If we will show that there is not a point t̂ ∈ (tg, Tg)∩E(G),

then Lemma will be proved.

Let’s prove by contradiction. Let there is a point t̂ ∈ (tg, Tg) ∩ E(G). Then there is an

element ĝ ∈ G for which the point ĝ(Tg) is in a sufficiently small neighborhood of the point t̂

and, in particular, the condition ĝ(Tg) ∈ (tg, Tg) is fulfilled. Let’s consider an element l = ĝgĝ−1.

For such element the points tl, Tl are also finite and there is a condition Tl = ĝ(Tg). But it

contradicts the condition 3) of Theorem 14. Thus, such point t̂ ∈ (tg, Tg)∩E(G) doesn’t exist.

Lemma is proved.

§3. Right-invariant mean on discrete quotient group G/HG.

Let Y is a locally compact Hausdorff space. Through Cb(Y) we denote a Banach space

of bounded continuous real functions on Y with topology of uniform convergence and through

C0b(Y) we denote a space of bounded continuous real functions on Y with compact support.

Previously (§1 section 1.2) we already consider the space R(R) of continuous real functions

on R with compact support and with topology of inductive limit. Let’s describe a general
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construction, which allows us to specify the nature of right-invariant mean of the quotient

group G/HG, G ⊆ Homeo+(R).

3.1. Construction of a measure corresponding to the right-invariant mean on

the quotient group G/HG.

Let there is a group G ⊆ Homeo+(R) with nonempty minimal set. If the minimal set is

discrete then we fix a point t̄ ∈ Fix GS (owing to Theorem 2, the set Fix GS is a union of

all minimal sets, each of which is discrete). If minimal set is nondiscrete then we fix a point

t̄ ∈ E(G), where E(G) is a minimal set. For each continuous function f ∈ Cb(R) through fG
we denote a function defined on the quotient group G/HG by the rule: for any left coset [g] of

the group G by subgroup HG

fG([g]) = f(g−1(t̄)). (29)

The correctness of this definition follows immediately from the definition of the normal subgroup

HG.

It is obvious, that the function fG belongs to the space B(G/HG) of all bounded complex

functions on the discrete quotient group G/HG. In that case, we have a a continuous linear

map

Lt̄ : Cb(R) → B(G/HG), Lt̄ f = fG. (30)

It is obvious, that

ker Lt̄ = {f(.) : f(.) ∈ Cb(R); f(t) = 0 for all t ∈ E(G)}. (31)

For the space R(R) let’s consider an inclusion map

I : R(R) → Cb(R). (32)

It is obvious, that

Im I = C0b(R). (33)

If the quotient group G/HG (discrete) is amenable then there is a right-invariant mean m on

the discrete group G/HG (see [21]), i.e. there is a continuous linear functional on the Banach

space B(G/HG) of bounded complex functions with the properties

m(F̄ (.)) = m(F (.)) (34)

m(F (.)) ≥ 0, F (.) ≥ 0, m(1) = 1, (35)

m(F̺(.)) = m(F (.)), F̺(ρ) = F (ρ̺) for all ̺, ρ ∈ G/HG. (36)

Then L∗
t̄m, I∗L∗

t̄m are positive (owing to the condition (35) ) continuous linear functionals

on the spaces Cb(R), R(R) respectively. Moreover, there is a condition L∗
t̄m 6= 0. The space,
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conjugate to the space Cb(R), is a space Mb(R) of regular bounded finitely additive charges on R.

The space, conjugate to the space R(R), is a space M(R) of regular bounded countably additive

charges on R, which are finite on compacts. In that case, there is a regular bounded finitely

additive Borel measure ν ∈ M
+
b (R) such that for any f(.) ∈ Cb(R) there is a representation

L∗
t̄m(f(.)) =

∫

R

f(t)dν(t). (37)

Since for any f(.) ∈ kerLt̄ the equality
∫

R

f(t)dµ(t) = 0 (38)

is fulfilled then for the support of the measure ν there is an inclusion condition

supp ν ⊆ E(G). (39)

Exactly the same there is a countably additive Borel measure µ ∈ M+(R), which is finite

on compacts, such that for any f(.) ∈ R(R) there is a representation

I∗L∗
t̄m(f(.)) =

∫

R

f(t)dµ(t). (40)

Since for any f(.) ∈ kerLt̄I the equality
∫

R

f(t)dµ(t) = 0 (41)

is fulfilled then for the support of the measure µ there is an inclusion condition

supp µ ⊆ E(G). (42)

3.2. On invariance of measures ν and µ.

In previous section 2.1 we constructed a bounded finitely additive Borel measure ν ∈ M
+
b (R)

and a countably additive Borel measure µ ∈ M+(R), which is finite on compacts. Let’s show

that the measures ν и µ are invariant, relatively to the group G.

For each function f(.) ∈ Cb(R) and an arbitrary element g ∈ G let’s define a shift map by

the rule: gf(t) = f(g−1(t)). A shift map on the space B(G/HG) was defined in (36).

Lemma 4. Let G ⊆ Homeo+(R) is a group with nonempty minimal set. It is given a point

t̄ ∈ Fix GS, in case of discrete minimal set, otherwise it is given a point t̄ ∈ E(G), in case of

nondiscrete minimal set. For any element g ∈ G, from the corresponding left coset [g] of the

group G by the subgroup HG, and for an arbitrary function f(.) ∈ Cb(R) there is a commute

rule

Lt̄ gf = (Lt̄ f)[g]. (43)

For any element g ∈ G, from the corresponding left coset [g] of the group G by the subgroup

HG, and for an arbitrary function f(.) ∈ R(R) there is also a commute rule

Lt̄ I gf = (Lt̄ I f)[g]. (44)
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Proof. For an arbitrary element g ∈ G and for an arbitrary function f(.) ∈ Cb(R) there are

relations: for any left coset [ḡ] of the group G by the subgroup HG

(Lt̄ gf)([ḡ]) = (gf)G([ḡ]) = gf(ḡ
−1(t̄)) = f(g−1ḡ−1(t̄)), (45)

(Lt̄ f)[g]([ḡ]) = (fG)[g]([ḡ]) = fG([ḡ][g]) = f(g−1ḡ−1(t̄)). (46)

Exactly the same for an arbitrary element g ∈ G and for an arbitrary function f(.) ∈ R(R)

there are relations: for any left coset [ḡ] of the group G by the subgroup HG

(Lt̄ I gf)([ḡ]) = f(g−1ḡ−1(t̄)), (47)

(Lt̄ I f)[g]([ḡ]) = f(g−1ḡ−1(t̄)). (48)

The right-hand sides of the formulas (45), (46) are equal. Similarly, the right-hand sides are

equal in the formulas (47), (48). Hence, the left sides are also equal

(Lt̄ gf)([ḡ]) = (Lt̄ f)[g]([ḡ]), f(.) ∈ Cb(R), (49)

(Lt̄ I gf)([ḡ]) = (Lt̄ I f)[g]([ḡ]), f(.) ∈ R(R). (50)

From these relations the lemma follows.

For each element g ∈ G and a measure ν ∈ M
+
b (R) let’s define a measure g∗ν by the following

rule
∫

R

f(t)dg∗ν(t) =

∫

R

gf(t)dν(t), f(.) ∈ Cb(R). (51)

It is obvious, that by such rule the group G induces a group G∗ of continuous linear operators in

the space Mb(R). The G∗ of continuous linear operators in the space Mb(R) we defined earlier

(§1 section 1.2).

Lemma 5. Let G ⊆ Homeo+(R) is a group with nonempty minimal set and with right-invariant

mean m on the quotient group G/HG. It is given a point t̄ ∈ Fix GS, in case of discrete minimal

set, otherwise it is given a point t̄ ∈ E(G), in case of nondiscrete minimal set. Then a bounded

finitely additive Borel measure ν ∈ M
+
b (R) and a countably additive Borel measure µ ∈ M+(R),

which is finite on compacts, induced by right-invariant mean m, are invariant, relatively to the

group G.

Proof. From the relations (43), (44) and from the conditions

m (Lt̄ f)[g] = m (Lt̄ f), m (Lt̄ I f)[g] = m (Lt̄ I f),

which follow from the definition of the right-invariant mean m, we get equalities

L∗
t̄ m (gf) = L∗

t̄ m (f), f(.) ∈ Cb(R), (52)

I∗L∗
t̄ m (gf) = I∗L∗

t̄ m (f), f(.) ∈ R(R). (53)
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Thus, the functional L∗
t̄ m is invariant, relatively to the action of the group G on the space

Cb(R), and the functional I∗L∗
t̄ m is invariant, relatively to the action of the group G on the

space R(R). The functional L∗
t̄ m ∈ C∗

b (R) induces a finitely additive Borel measure ν ∈ M
+
b (R),

which implements the integral representation in (37) for the functional L∗
t̄ m. The functional

I∗L∗
t̄
m ∈ R∗(R) induces a countably additive Borel measure µ ∈ M+

b (R), which implements

the integral representation in (40) for the functional I∗L∗
t̄ m. Then, from the equalities (52) и

(53), next equalities are follow
∫

R

gf(t)dν(t) =

∫

R

f(t)dν(t), f(.) ∈ Cb(R), (54)
∫

R

gf(t)dµ(t) =

∫

R

f(t)dµ(t), f(.) ∈ R(R). (55)

From the expressions (54) и (55), it follows that for any g∗ ∈ G∗ it is true that

g∗ ν = ν, (56)

g∗ µ = µ, (57)

i.e. the measures ν и µ are invariant, relatively to the group G.

3.3. The criterion of singularity of right-invariant mean on the quotient group

G/HG.

Let us remind that for any right-invariant mean m on the quotient group G/HG there is

the condition L∗
t̄ m 6= 0, i.e. an induced measure ν is always nontrivial.

Definition 7. Let G ⊆ Homeo+(R) is a group with nonempty minimal set and with right-

invariant mean m on the quotient group G/HG. The right-invariant mean m is called singular

if for any t̄ ( t̄ ∈ Fix GS, in case of discrete minimal set, otherwise t̄ ∈ E(G), in case of

nondiscrete minimal set) it is true that I∗L∗
t̄ m = 0. Otherwise, the right-invariant mean is

called nonsingular. �

Definition 8. Linear functional l ∈ C∗
b (Y) is called permanent if

l(f(.)) ≥ 0, f(.) ≥ 0, (58)

l(1) = 1, (59)

l(f(.)) = 0, f(.) ∈ Cb0(Y). (60)

�

Let’s formulate a criterion, for which every right-invariant mean on the quotient group

G/HG is singular.

Lemma 6. Let G ⊆ Homeo+(R) is a group with nonempty minimal set. Then every right-

invariant mean on the quotient group G/HG is singular if and only if G/HG 6=< e >.
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Proof. Let every right-invariant mean on the quotient group G/HG is singular. Let’s prove by

contradiction. We assume that G/HG =< e >. Then, by Remark 3, HG = GS and for the group

G there is an invariant Borel measure on the line, which is finite on compacts. In that case, by

Theorem 8, the condition Fix GS 6= ∅ is fair. Let’s choose a point t̄ ∈ Fix GS. The measure µ,

concentrated at the point t̄ with value µ(t̄) = 1, is an invariant measure for the group G. For

any right-invariant mean m on the quotient group G/HG the representation (40) is fair, which

implies that I∗L∗
t̄ m 6= 0. Contradiction. Hence, it is true that G/HG 6=< e >.

The converse. Let G/HG 6=< e >. Let’s prove by contradiction. We assume that there is a

right-invariant mean m, which is nonsingular, i.e. I∗L∗
t̄ m 6= 0 for some t̄, and µ ∈ M+(R) is

nontrivial countably additive Borel measure, which is finite on compacts, and for which there

is a representation (40). By Lemma 5, the measure µ is invariant ,relatively to the group G.

Then, by Theorem 8, there is a condition Fix GS 6= ∅ and, owing to the definition, there is an

equality HG = GS. In that case, from the condition G/HG 6=< e > it follows that G 6= GS.

Thus, in the group G there is a freely acting element g ∈ G\GS.

Without loss of generality, we assume that g(t) = t + 1. Since the measure µ is invariant,

relatively to the freely acting element g, then µ([0, 1]) 6= 0 and µ(R) = +∞. In that case, for

each function fN(.) ∈ R(R), N ∈ Z
+

fN(t) =



































0, t ∈ (−∞, −(N + 1)),

(N + 1) + t, t ∈ [−(N + 1), −N),

1, t ∈ [−N,N ],

(N + 1)− t, t ∈ (N, N + 1],

0, t ∈ (N + 1, +∞).

we have the estimate

I∗L∗
t̄ m (fN(.)) =

∫

R

fN (t)dµ(t) ≥ Nµ([0, 1]) , (61)

while for the right-invariant mean m we have that m(1) = 1. Contradiction. Thus there is not

such nontrivial measure µ, i.e. there is not nonsingular right-invariant mean m.

Consequence 1. Let G ⊆ Homeo+(R) is a group with nonempty minimal set. For any right-

invariant mean m on the quotient group G/HG and for any t̄ ( t̄ ∈ Fix GS, in case of discrete

minimal set, otherwise t̄ ∈ E(G), in case of nondiscrete minimal set) the linear functionals

m, L∗
t̄ m are permanent. �

§4. On the Stone-Čech compactification.

Further the group G ⊆ Homeo+(R) and the quotient group G/HG we will consider as

discrete groups. Here are some concepts and facts related to the Stone-Čech compactification

of a locally compact Hausdorff space.
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Let Y is a locally compact Hausdorff space. Earlier (see §3) we considered the spaces of

functions Cb(Y), C0b(Y). Through CY ⊆ Cb(Y) we denote a subset of bounded continuous

functions with values in the interval [0, 1]. Through [0, 1]CY we denote the complete direct

product with the Tikhonov topology. The elements of the space [0, 1]CY are infinite-dimensional

vectors {αϕ}ϕ∈CY
, where 0 ≤ αϕ ≤ 1, ϕ ∈ CY. It is obvious, that such space is Hausdorff and

compact. There is a canonical embedding

Φ : Y → [0, 1]CY, (62)

Φ(y) = {Φϕ(y)}ϕ∈CY
= {ϕ(y)}ϕ∈CY

, y ∈ Y. (63)

The closure of the image Φ(Y) (embedding) in the space [0, 1]CY is denoted by βY and it is

compact. The set βY\Y is called the remainder. The embedding Φ : Y → βY of the topological

space Y in the topological space βY is a homeomorphism, and the image Φ(Y) is open in βY.

Every bounded continuous function f(.) ∈ Cb(Y) on Y can be uniquely extended to a

bounded continuous function f̂(.) ∈ Cb(βY) on βY. Therefore, there is a natural isomorphism

Cb(Y) ∼= Cb(βY). By this isomorphism, between all positive functionals on Cb(Y) and all regular

countably additive finite Borel measures, defined on βY, there is a bijective correspondence.

Every positive functional l ∈ C∗
b (Y) corresponds to the measure ξ̂, which is such that for any

f(.) ∈ Cb(Y) there is an integral representation

l(f) =

∫

βY

f̂ dξ̂, (64)

where ˆf(.) is the extension of the continuous function f(.) on the Stone-Čech compactification

βY.

The measure ξ̂ induces a measure ξ on the initial space Y. Thus, the representation (66)

can be rewritten in the following form

l(f) =

∫

Y

f dξ +

∫

βY\Y

f̂ dξ̂. (65)

Proposition 2 ([22]). A positive linear functional l ∈ C∗
b (Y) is permanent if and only if the

measure ξ, which represents it, is a Borel probability measure and has support in the Stone-Čech

remainder βY\Y. �

Proposition 3 ([22]). Let T : Y → Y is such topological map of a locally compact (but

not compact) Hausdorff space Y into itself that Y\T (Y) lies in some compact set. Then its

continuous extension T̂ : βY → βY topologically maps βY\Y onto itself.

Let also T satisfies the following condition: every point y ∈ Y has such neighborhood U

that the sets U, T−1U, T−2U, ... are pairwise disjoint. Then T -invariant permanent functionals

l ∈ C∗
b (Y) are exactly determined by Borel measures defined on βY\Y, which are invariant

under the homeomorphism T̂βY\Y. The supports of these measures ξ are T̂ -invariant sets, i.e.

T̂ (supp ξ) = supp ξ. �
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§5. The map of transposition on the line, induced by a

special group of homeomorphisms of the line with two ge-

nerators.

Let’s show that a group with a freely acting element and without a projectively invariant

measure contains some special subgroup. Using such special subgroup, we will construct a map

of transposition on the line and an induced map of involution on Stone-Čech extension of a

canonical quotient group, which will be formed by this special group.

5.1. The construction of a special group of homeomorphisms of the line with

two generators.

Let’s formulate a lemma in which we describe the above-noted special group.

Lemma 7. Let G ⊆ Homeo+(R), there is a freely acting element ḡ ∈ G (Fix ḡ = ∅ ) and

for the group G there is not a projectively invariant measure. Then there is a subgroup Λ ⊆

G, Λ =< p, q >, in which the element p is freely acting, and points t0, t1 ∈ E(G), t0 < t1
with following properties:

q(t0) = t0, q(t1) = t1, q(t) > t, t ∈ (t0, t1); (66)

p(t) > t, t ∈ R, p(t0) ∈ (t0, t1). (67)

For the subgroup Λ there also is not a projectively invariant measure.

Proof. From the existence of a freely acting element and from Proposition 1, it follows that the

minimal set is nonempty. Since for the group G there is not a projectively invariant measure
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then, by Remark 4, the minimal set is nondiscrete. Moreover, by Theorem 21 and Lemma 3,

there is an element g̃ and a triple of points t̃1, t̃2, t̃3 with the following properties:

t̃1, t̃2, t̃3 ∈ E(G), t̃1 < t̃2 < t̃3, g̃(t̃1) = t̃1, g̃(t̃3) = t̃3, g̃(t) > t, t ∈ (t̃1, t̃3). (68)

For definiteness, we assume that ḡ(t) > t, t ∈ R. If ḡ(t̃1) ∈ (t̃1, t̃3) then the group Λ is

constructed. For this purpose it is enough to state p = ḡ, q = g̃, t0 = t̃1, t1 = t̃3.

Let the condition ḡ(t̃1) > t̃3 is satisfied. Further we should consider two cases.

(i) The first case: GS\GS
∞ 6= ∅. Let’s choose an element g ∈ GS\GS

∞. For the element g

one of the values tg, Tg is finite. For definiteness, we assume that the value Tg is finite and

g(t) > t, t ∈ (Tg,+∞). It is obvious, that the point Tg belongs to the minimal set, i.e.

Tg ∈ E(G). Since t̃2 ∈ E(G) ∩ (t̃1, t̃3) then, from the definition of the minimal set, it follows

that there is an element ξ ∈ G, for which the inclusion ξ(Tg) ∈ (t̃1, t̃3) is fair. Let’s consider an

element l = ξgξ−1. It is obvious, that l ∈ GS\GS
∞, Tl = ξ(Tg), l(t) > t, t ∈ (Tl,+∞).

Let’s form an element ĝ = lk g̃ l−k, k ∈ Z
+. It is obvious, that for the element ĝ the following

conditions are fulfilled

ĝ(lk(t̃1)) = lk(t̃1), ĝ(lk(t̃3)) = lk(t̃3), lk(t̃1) < Tl, ĝ(t) > t, t ∈ (lk(t̃1), l
k(t̃3)). (69)

By the choice of k ∈ Z
+ the value [lk(t̃3) − Tl] can be made arbitrarily large to satisfy the

condition ḡ(lk(t̃1)) ∈ (lk(t̃1), l
k(t̃3)).

28



It remains to state p = ḡ, q = ĝ, t0 = lk(t̃1), t1 = lk(t̃3).

(ii) The second case: GS\GS
∞ = ∅, (GS = GS

∞). For such group G the equality G = CG

takes place, i.e. the group consists of the union of the set GS
∞ and the set of all freely acting

elements. Moreover, for such group G the set GS
∞ doesn’t form a subgroup. Indeed, if the

condition GS
∞ =< GS

∞ > is satisfied then, in view of the existence of a freely acting element

ḡ ∈ G, the quotient group G/GS
∞ must be nontrivial. Then, by Theorem 9, for such group G

there is an invariant measure that contradicts to conditions of this Lemma. Hence, we have

that GS
∞ 6=< GS

∞ >. Then there are elements g, g1 ∈ GS
∞ such that the element ğ = gg1 is

freely acting. For definiteness, we assume that ğ(t) > t, t ∈ R. There is an interval [t0, t1], for

which the conditions g(t0) = t0, g(t1) = t1, g(t) > t, t ∈ (t0, t1) are satisfied. Moreover,

for such interval the condition ğ(t0) ∈ (t0, t1) is also fair. It remains to state p = ğ, q = g. The

group Λ is constructed.

Since p is a freely acting element then, by Proposition 1, the minimal set of the subgroup

Λ is nonempty. Obviously, for the group Λ the set ΛS doesn’t form a group, i.e. ΛS 6=< ΛS >.

Then, by Remark 3, for the group Λ there is not an invariant measure. In that case, by Theorem

8, it is true that Fix ΛS = ∅ and, owing to Theorem 2, the minimal set is nondiscrete. From the

condition p(t0) ∈ (t0, t1), it follows that E(Λ) ∩ (t0, t1) 6= ∅ and hence t0, t1 ∈ E(Λ). Therefore,

the element q in the subgroup Λ is not plane. Then, by Theorem 21 and Lemma 3, for the

subgroup Λ there is not a projectively invariant measure. Lemma is proved.

5.2. The construction of the map of transposition on the line and induced map of

involution in the Stone-Čech extension of the discrete quotient group Λ/HΛ.

Using special group Λ, let’s construct an important map of transposition on the line. Such
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map of transposition allows us to construct an induced map of involution in the Stone-Čech

extension of the discrete quotient group Λ/HΛ. Such constructions are necessary for studying

of a organization of a support of an invariant measure on the Stone-Čech extension, which is

present in the integral representation of a right-invariant mean on the discrete quotient group

Λ/HΛ. For brevity, let’s use the notation P = Λ/HΛ

Without loss of generality, we assume that in the group Λ the freely acting element p has

form p(t) = t + 1, t ∈ R. Using the generators p, q of the group Λ, let’s form an element

b = p−1qkp−1. For a sufficiently large k ∈ Z for the homeomorphism b it is true that

bp(t1) < qb(t1). (70)

Let’s fix such large k = k. Let’s define a map of transposition JR : R → R by the following

rule:

JR(t) =















qrbp−r(t), t ∈ [pr(t1), p
r+1(t1) ), r = 0, 1, ...,

prb−1q−r(t), t ∈ [qrb(t1), q
rbp(t1) ), r = 0, 1, ...,

t, t ∈ R\[∪∞
r=0[p

r(t1), p
r+1(t1) )

⋃

∪∞
r=0[q

rb(t1), q
rbp(t1) )].

(71)

It is obvious, that the map of transposition JR performs a transposition of each unit half-

interval [pr(t1), p
r+1(t1) ) r = 0, 1, ... with the half-interval [qrb(t1), q

rbp(t1)), which belongs to

the interval [t0, t1).

For the map JR it is true that J2
R
= I, where I is the identity map on R, and also the

commutation relation

JR(p(t)) = q(JR(t)), t ∈ [t1,+∞) (72)

is fair. If we fix a point t̄ ∈ E(Λ) then for any point t ∈ Λ(t̄) of the orbit its corresponding set

{[λ] : [λ] ∈ P, λ−1(t̄) = t} (73)
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by the right shift [λ̃−1] on the quotient group P ( P → P[λ̃−1] ) becomes the set

{[λ] : [λ] ∈ P, λ−1(t̄) = λ̃(t) } (74)

([λ] is a left coset of the group Λ by the subgroup HΛ ).

Therefore, the set

P( [t′, t′′) ) = {[λ] : [λ] ∈ P, λ−1(t̄) ∈ [t′, t′′), t′, t′′ ∈ E(Λ) } (75)

(P( [t′,+∞) ) = {[λ] : [λ] ∈ P, λ−1(t̄) ∈ [t′,+∞), t′ ∈ E(Λ) } ) (76)

by the right shift [λ̃−1] on the quotient group P becomes the set

P( [λ̃(t′), λ̃(t′′)) ) = {[λ] : [λ] ∈ P, λ−1(t̄) ∈ [λ̃(t′), λ̃(t′′)) } (77)

(P( [λ̃(t′),+∞) ) = {[λ] : [λ] ∈ P, λ−1(t̄) ∈ [λ̃(t′),+∞) } ). (78)

Let’s suppose that t̄ = t1. Then, owing to the discreteness of the topology on the quotient

group P, the map of transposition JR on R naturally induces a continuous map of transposition

JP : P → P on the quotient group P

JP([λ]) =























[λ][prb−1q−r], [λ] ∈ { [λ] : [λ] ∈ P, λ−1(t1) ∈ [pr(t1), p
r+1(t1) ) r = 0, 1, ...},

[λ][qrbp−r], [λ] ∈ { [λ] : [λ] ∈ P, λ−1(t1) ∈ [qrb(t1), q
rbp(t1) ), r = 0, 1, ...},

[λ], [λ] ∈ { [λ] : [λ] ∈ P, λ−1(t1) ∈ R\[∪∞
r=0[p

r(t1), p
r+1(t1) )

⋃

∪∞
r=0[q

rb(t1), q
rbp(t1) )] }.

(79)

For the map JP it is true that J2
P
= I, where I is the identity map on P, and also the commutation

relation

JP([λ][p
−1]) = JP([λ])[q

−1], [λ] ∈ { [λ] : [λ] ∈ P, λ−1(t1) ∈ [t1,+∞) } (80)

is fair. In turn, the continuous map of transposition JP induces a continuous map of involution

J : Cb(P) → Cb(P) (81)

by the following rule

(Jϕ)(.) = ϕ(JP(.)), ϕ(.) ∈ Cb(P). (82)

For the map J it is true that J 2 = I, where I is the identity map on Cb(P), and also the

commutation relation

(Jϕ)[p−1]([λ]) = (Jϕ[q−1])([λ]), [λ] ∈ { [λ] : [λ] ∈ P, λ−1(t1) ∈ [t1,+∞) } (83)

is fair. A restriction of the involution J on the subspace CP ⊆ Cb(P) we also denote as J .

Obviously, each function ϕ(.) ∈ CP generates a function Jϕ. Therefore, in the space [0, 1]CP

with each coordinate ϕ there is a coordinate Jϕ.
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The elements of the space [0, 1]CP we have previously denoted as an infinite-dimensional

vector {αϕ}ϕ∈CP
, 0 ≤ αϕ ≤ 1. Using the continuous map of involution J of the space CP, in

the space [0, 1]CP we can also define a continuous map of involution

JCP
: [0, 1]CP → [0, 1]CP (84)

by the following rule

JCP
({αϕ}ϕ∈CP

) = {ᾱϕ}ϕ∈CP
= {ᾱϕ = αJϕ}ϕ∈CP

.

For the map JCP
it is true that J2

CP
= I, where I is the identity map on [0, 1]CP .

Let’s consider the canonical embedding Φ : P → [0, 1]CP from (66), in which we suppose

that Y = P.

Lemma 8. Let Λ =< p, q > is a special group from Lemma 7 and P = Λ/HΛ. For the canonical

embedding Φ the following commutativity rule is satisfied

Φ(JP([λ])) = JCP
(Φ([λ])). (85)

Proof. By the definition, Φ(JP([λ])) = {ϕ(JP([λ])) }ϕ∈CP
. Owing to the definition of the map of

involution J , the equality {ϕ(JP([λ])) }ϕ∈CP
= {(Jϕ)([λ]) }ϕ∈CP

is fair and, from the definition

of the map of involution JCP
, it follows that {(Jϕ)([λ]) }ϕ∈CP

= JCP
(Φ([λ])). Then from the

obtained chain of equalities the statement of the lemma follows.

For any t ∈ [E(Λ) ∪+∞] let’s define a subset in the remainder βP\P

∆t =
⋂

t′<t

[Φ(P[t′, t)) ∩ (βP\P)]. (86)

Lemma 9. Let Λ =< p, q > is a special group from Lemma 7 and P = Λ/HΛ. Then the

following inclusion is fair

JCP
(∆+∞) ⊆ ∆t1 . (87)

Proof. From the definition of the maps of transposition JR, JP, it follows that for any k = 0, 1, ...

JP(P[p
k(t1),+∞)) ⊆ P( [qkJR(t1), t1)) (88)

and, respectively,

Φ( JP(P[p
k(t1),+∞))) ⊆ Φ(P( [qkJR(t1), t1))). (89)

Then, from the commutativity rule (85), it follows that

JCP
( Φ(P[pk(t1),+∞))) ⊆ Φ(P( [qkJR(t1), t1))). (90)
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Since

pk(t1) → +∞, qkJR(t1) → t1 for k → +∞ (91)

and since the equalities

∆+∞ =
+∞
⋂

k=0

[Φ(P[pk(t1),+∞)) ∩ (βP\P)], ∆t1 =
+∞
⋂

k=0

[Φ(P[qkJR(t1), t1)) ∩ (βP\P)] (92)

are fulfilled then the statement of the lemma immediately follows from the inclusion (90).

Using the concept of the maps of transposition and involution, let’s construct a series of

similar maps. For each k = 0, 1, ... let’s define a map of transposition JR,k : R → R by the

following rule:

JR,k(t) =















pkqrbp−r(t), t ∈ [p(k+r)(t1), p
(k+r+1)(t1) ), r = 0, 1, ...,

prb−1q−r(t), t ∈ [q(k+r)b(t1), q
(k+r)bp(t1) ), r = 0, 1, ...,

t, t ∈ R\[∪∞
r=0[p

(k+r)(t1), p
(k+r+1)(t1) )

⋃

∪∞
r=0[q

(k+r)b(t1), q
(k+r)bp(t1) )].

(93)

It is obvious, that the map of transposition JR,k performs a transposition of each unit half-

interval [p(k+r)(t1), p
(k+r+1)(t1) ) r = 0, 1, ... with the half-interval [q(k+r)b(t1), q

(k+r)bp(t1) ),

which belongs to the interval [pk(t0), p
k(t1) ) и JR,0 = JR.

For the map JR,k it is true that J2
R,k = I, where I is the identity map on R, and also the

commutation relation

JR,k(p(t)) = q(JR,k(t)), t ∈ [pk(t1),+∞) (94)

is fair.

Let’s suppose that t̄ = t1. Then the map of transposition JR,k, k = 0, 1, ... on R naturally

induces a continuous map of transposition JP,k : P → P on the quotient group P

JP,k([λ]) =























[λ][prb−1q−rp−k], [λ] ∈ { [λ] : [λ] ∈ P, λ−1(t1) ∈ [p(k+r)(t1), p
(k+r+1)(t1) ), r = 0, 1, ...},

[λ][qrbp−r], [λ] ∈ { [λ] : [λ] ∈ P, λ−1(t1) ∈ [q(k+r)b(t1), q
(k+r)bp(t1) ), r = 0, 1, ...},

[λ], [λ] ∈ { [λ] : [λ] ∈ P, λ−1(t1) ∈ R\[∪∞
r=0[p

(k+r)(t1), p
(k+r+1)(t1) )

⋃

∪∞
r=0[q

(k+r)b(t1), q
(k+r)bp(t1) )] }.

(95)

It is obvious, that JP,0 = JP. For the map JP,k it is true that J2
P,k = I, where I is the identity

map on P, and also the commutation relation

JP,k([λ][p
−1]) = JP,k([λ])[q

−1], [λ] ∈ { [λ] : [λ] ∈ P, λ−1(t1) ∈ [pk(t1),+∞) } (96)

is fair.
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In turn, the continuous map of transposition JP,k, k = 0, 1, ... induces a continuous map

of involution

Jk : Cb(P) → Cb(P) (97)

by the following rule

(Jkϕ)(.) = ϕ(JP,k(.)), ϕ(.) ∈ Cb(P). (98)

For the map Jk it is true that J 2
k = I, where I is the identity map on the space Cb(P), and

also the commutation relation

(Jkϕ)[p−1]([λ]) = (Jkϕ[q−1])([λ]), [λ] ∈ { [λ] : [λ] ∈ P, λ−1(t1) ∈ [pk(t1),+∞) } (99)

is fair. A restriction of the involution Jk on the subspace CP ⊆ Cb(P) we also denote as Jk.

Obviously, each function ϕ(.) ∈ CP generates a function Jkϕ. Therefore, in the space [0, 1]CP

with each coordinate ϕ there is a coordinate Jkϕ.

The elements of the space [0, 1]CP we have previously denoted as an infinite-dimensional

vector {αϕ}ϕ∈CP
, 0 ≤ αϕ ≤ 1. Using the map of involution Jk of the space CP, in the space

[0, 1]CP we can also define a continuous map of involution

JCP,k
: [0, 1]CP → [0, 1]CP (100)

by the following rule

JCP,k
({αϕ}ϕ∈CP

) = {ᾱϕ}ϕ∈CP
= {ᾱϕ = αJkϕ}ϕ∈CP

.

For the map JCP,k
it is true that J2

CP,k
= I, where I is the identity map on the space [0, 1]CP,k .

Let’s consider the canonical embedding Φ : P → [0, 1]CP from (66), in which we suppose

that Y = P. Let’s formulate an analog of Lemma 8.

Lemma 10. Let Λ =< p, q > is a special group from Lemma 7 and P = Λ/HΛ. For the

canonical embedding Φ the following commutativity rule is satisfied

Φ(JP,k([λ])) = JCP,k
(Φ([λ])), k = 0, 1, ... . (101)

Proof. By the definition, Φ(JP,k([λ])) = {ϕ(JP,k([λ])) }ϕ∈CP
. Owing to the definition of the map

of involution Jk, the equality {ϕ(JP,k([λ])) }ϕ∈CP
= {(Jkϕ)([λ]) }ϕ∈CP

is fair and ,from the

definition of the map of involution JCP,k
, it follows that {(Jkϕ)([λ]) }ϕ∈CP

= JCP,k
(Φ([λ])). Then

from the obtained chain of the equalities the statement of the lemma follows..

Let’s formulate an analog of Lemma 9.

Lemma 11. Let Λ =< p, q > is a special group from Lemma 7 and P = Λ/HΛ. Then the

following inclusions are fair

JCP,k
(∆+∞) ⊆ ∆pk(t1) k = 0, 1, ... . (102)
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Proof. From the definition of the maps of transposition JR,k, JP,k, it follows that for any r =

0, 1, ...

JP,k(P[p
(k+r)(t1),+∞)) ⊆ P( [q(k+r)JR,k(t1), t1)) (103)

and, respectively,

Φ( JP,k(P[p
(k+r)(t1),+∞))) ⊆ Φ(P( [q(k+r)JR,k(t1), t1))). (104)

Then, from the commutativity rule (101), it follows that

JCP,k
( Φ(P[p(k+r)(t1),+∞))) ⊆ Φ(P( [q(k+r)JR,k(t1), t1))). (105)

Since

p(k+r)(t1) → +∞, q(k+r)JR,k(t1) → t1 for r → +∞ (106)

and since the equalities

∆+∞ =
+∞
⋂

r=0

[Φ(P[p(k+r)(t1),+∞)) ∩ (βP\P)], ∆pk(t1) =
+∞
⋂

r=0

[Φ(P[q(k+r)JR,k(t1), t1)) ∩ (βP\P)],

(107)

are fulfilled then the statement of the lemma immediately follows from the inclusion (105).

In the space [0, 1]CP let’s define a continuous map P by the following rule

P({αϕ}ϕ∈CP
) = {ᾱϕ}ϕ∈CP

= {ᾱϕ = αϕ[p−1]
}ϕ∈CP

.

Lemma 12. Let Λ =< p, q > is a special group from Lemma 7 and P = Λ/HΛ. Then the

following commutativity rule is satisfied

Φ([λ][p−1]) = PΦ([λ]). (108)

A restriction of the map P on the Stone-Čech extension βP is a continuous extension of the

right shift [p−1] on the group P.

Proof. Indeed, for any [λ] ∈ P there ia a chain of equalities

Φ([λ][p−1]) = {ϕ([λ][p−1])}ϕ∈CP
= {ϕ[p−1]}ϕ∈CP

= PΦ([λ]) , (109)

which implies the equality (108). Since each right shift on the group P is a homeomorphism of

the discrete space P then the last statement of the lemma follows from the continuity of the

map P and from the equality (108).
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Let’s remember that, by the definition, the set P( [pk(t1),+∞) ) has the following represen-

tation

P( [pk(t1),+∞) ) = {[λ] : [λ] ∈ P, λ−1(t1) ∈ [pk(t1),+∞) }.

Lemma 13. Let Λ =< p, q > is a special group from Lemma 7 and P = Λ/HΛ. Then for each

fixed k = 0, 1, ... there is the following commutativity rule:

JR,k(t) = pk(JR(t)), t ∈ [pk(t1),+∞); (110)

JP,k([λ]) = JP([λ])[p
−k], (Jkϕ)([λ]) = (Jϕ[p−k])([λ]), (JCP,k

(Φ([λ])) = JCP
Pk(Φ([λ])), (111)

[λ] ∈ P( [pk(t1),+∞) ). (112)

Proof. The first two commutativity relations directly follow from the definitions of considered

maps. The third commutativity relation follows from the next chain of equalities

(Jkϕ)([λ]) = ϕ(JP,k([λ])) = ϕ(JP([λ][p
−k])) = ϕ[p−k](JP([λ])) = (Jϕ[p−k])([λ]), (113)

where at the third step we use the second commutativity relation. It remains to show the last

commutativity relation. From the commutativity relation (101) and from the definition of the

embedding Φ, it follows that

Φ(JP,k([λ])) = JCP,k
(Φ([λ])) = {ϕ(JP,k([λ])) }ϕ∈CP

. (114)

Owing to the definition of the map Jk and to the third commutativity relation, we obtain that

{ϕ(JP,k([λ])) }ϕ∈CP
= {(Jkϕ)([λ]) }ϕ∈CP

= {(Jϕ[p−k])([λ]) }ϕ∈CP
. (115)

Finally, from the definitions of the maps JCP
, P and the embedding Φ, we obtain the following

chain of equalities

{(Jϕ[p−k])([λ]) }ϕ∈CP
= JCP

( {ϕ[p−k])([λ]) }ϕ∈CP
) = JCP

Pk( {ϕ([λ]) }ϕ∈CP
) = JCP

Pk( {Φ([λ]) ) ,

(116)

which implies the last commutativity relation.

Let’s formulate a result, which clarifies Lemma 11.

Proposition 4. Let Λ =< p, q > is a special group from Lemma 7 and P = Λ/HΛ. Then there

is an inclusion

JCP
Pk(∆+∞) ⊆ ∆pk(t1) k = 0, 1, ... . (117)

Proof. Since the inclusion ∆+∞ ⊆ Φ(P(pk(t1),+∞))) takes place then, owing to the last

commutativity relation from Lemma 13, there is an equality

JCP,k
(∆+∞) = JCP

Pk(∆+∞) k = 0, 1, ... . (118)

Then the statement of the lemma follows from the corresponding inclusion from Lemma 11.
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Let’s formulate some facts about a structure of the set ∆+∞ from the Stone-Čech remainder

βP\P.

Proposition 5. Let Λ =< p, q > is a special group from Lemma 7 and P = Λ/HΛ. In the

set ∆+∞, which belongs to the Stone-Čech remainder βP\P, there is not any subset, which is

invariant, relatively to the map P.

Proof. Let’s prove by contradiction. Let there is a subset B ⊆ ∆+∞, for the condition P(B) = B

is satisfied. Then from the inclusion (117) it follows that for any k = 0, 1, ... the inclusion

JCP
(B) ⊆ ∆pk(t1) (119)

is fair. Since pk(t1) → +∞ for k → +∞ then it follows that

JCP
(B) ⊆ ∆+∞. (120)

On the other hand, for any t ∈ E(t1) there is a continuous function ϕ on P of the form

ϕ([λ]) =

{

0, λ−1(t1) ∈ (−∞, t],

1, λ−1(t1) ∈ (t,+∞).
(121)

From the existence of such function it follows that ∆t ∩ ∆+∞ = ∅, which contradicts to the

conditions (119), (120). Consequently, there is not a subset B ⊆ ∆+∞, which is invariant,

relatively to the map P.

§6. The classification theorem for groups of homeomorphisms

of the line.

For arbitrary groups of homeomorphisms of the line, let’s formulate a new criterion of the

existence of a projectively invariant measure in terms of amenability. Such criterion is central

to the classification scheme for groups of homeomorphisms of the line. In the next section, as

a consequence from this criterion, the nonamenability of Thompson’s group F will be proved.

Theorem А. Let G ⊆ Homeo+(R) is a group with nonempty minimal set and G/HG 6=< e >.

Then there is a projectively invariant measure if and only if the quotient group G/HG is

amenable and there is a freely acting element ḡ ∈ G.

Proof.

Necessity. Let there is a projectively invariant measure.

(i) The first case. For the group G there is an invariant measure. By Remark 3, for such group

it is true that HG = GS, which implies the condition GS =< GS >. Then, by Theorem 1, the

quotient group G/HG is commutative and thus it is amenable. Since G/HG = G/ < GS >

, G/HG 6=< e > then it follows that there is a freely acting element ḡ ∈ G.
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(ii) The second case. For the group G there is not an invariant measure. By Remark 5, for such

group it is true that HG = GS
∞ and the quotient groups G/CG, CG/G

S
∞ are commutative. In

that case, the quotient group G/HG is a solvable group and thus it is amenable. By the same

Remark 5, it follows that the quotient group CG/G
S
∞ is not trivial, which implies the existence

of a freely acting element ḡ ∈ CG.

Sufficiency. Let the quotient group G/HG is amenable and there is a freely acting element

ḡ ∈ G. Let’s prove by contradiction. We suppose that for the group G there is not a projectively

invariant measure. By Lemma 7, in the group G there is a special subgroup Λ with two

generators Λ =< p, q >, for which there also is not a projectively invariant measure.

Step 1. The proof of the amenability of the quotient group Λ/HΛ.

Since p̂ ∈ Λ is a freely acting element, then, by Proposition 1, the minimal set of the group

Λ is also nonempty. Owing to the absence of an invariant measure, from Theorem 8 it follows

that Fix ΛS = ∅. Then, by Theorem 2, the minimal set of the group Λ is nondiscrete. From

the nondiscreteness of the minimal set E(Λ) and from Theorem 3 it follows that E(Λ) ⊆ E(G).

Let’s note that the subgroup D = HG ∩ Λ is normal in Λ and contains in normal subgroup

HΛ. Then the isomorphism (Λ/D)/(HΛ/D) ∼= Λ/HΛ is fair. Obviously, the quotient groups

Λ/D, (HΛ/D) are naturally embedded into the quotient group G/HG. In that case, from the

amenability of the quotient group G/HG it follows the amenability of the quotient group Λ/HΛ.

Step 2. The representation of the right-invariant mean m on the quotient group Λ/HΛ.

Since the quotient group Λ/HΛ is amenable then there is a right-invariant mean m on

it. Owing to the absence of a projectively invariant measure for the group Λ, it follows that

Λ/HΛ 6=< e >. Then, by Lemma 6, the right-invariant mean m is singular. It means that for

each given point t̄ ∈ E(Λ) there is an equality

m(FI) = 0 (122)

for any characteristic function

FI([λ]) =

{

1, λ−1(t̄) ∈ I,

0, λ−1(t̄) /∈ I

on the quotient group Λ/HΛ, where [λ] is a left coset of the group Λ by the subgroup HΛ, and

I ⊂ R is an arbitrary finite interval.

The right-invariant mean is uniquely represented as a convex combination

m = αm− + (1− α)m+, 0 ≤ α ≤ 1 (123)

of two right-invariant means m−, m+, which are uniquely characterized by the following pro-

perties

m−(F+) = 0, m−(F−) = m(F−), m+(F−) = 0, m+(F+) = m(F+) , (124)

where relations (124) must be satisfied for each of the bounded continuous functions F−, F+ ∈

Cb(Λ/HΛ) such that

F+([λ]) = 0, if λ−1(t̄) ∈ (−∞, 0); F−([λ]) = 0, if λ−1(t̄) ∈ (0,∞). (125)
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Further research will be carried out for the right-invariant mean m+ (if α 6= 1). Similarly, we can

carry out a research for the right-invariant mean m− (if α 6= 0). In the previous paragraph we

mentioned that, for brevity, we will use the notation P = Λ/HΛ, where the group P is considered

as a discrete group. Obviously, from the singularity of the right-invariant mean m it follows

the singularity of the right-invariant mean m+ and, by Consequence 1, it is also permanent.

Then, by Proposition 2 and representation (65), there is a Borel probability measure ξ̂+ with a

support on the remainder βP\P such that for any bounded (continuous) function F (.) ∈ Cb(P)

there is a representation

m+(F ) =

∫

βP\P

F̂ dξ̂+, (126)

where ˆF (.) is an extension of the continuous function F (.) on the Stone-Čech extension βP.

Step 3. The proof of the absence of the measure ξ̂+.

Let the measure ξ̂+ exists. Since each right shift on the group P is a homeomorphism of the

discrete space P then it is a topological map. Moreover, the right shift, as a topological map

of the space P, satisfies the conditions of Proposition 3. Hence the measure ξ̂+, corresponding

to the right-invariant mean m+ on P, is invariant, relatively to the extension of the right shift

on the Stone-Čech extension βP, and a support supp ξ+ is also invariant, relatively to the

extension of the right shift on the Stone-Čech extension βP. In particular, this holds for the

right shift [p−1] on the group P. Therefore, the support of the measure ξ̂+ is invariant relatively

to the map P, i.e. P(supp ξ̂+) = supp ξ̂+. In previous step we have already mentioned that the

right-invariant mean m+ is singular. From the singularity of m+ it follows that for the support

of the measure ξ̂+ the inclusion supp ξ̂+ ⊆ ∆+∞ is fulfilled. Obtained inclusion contradicts

Proposition 5. Consequently, there is not such measure ξ̂+.

Step 4. The proof of the absence of the measure ξ̂−.

Let’s define a map θ : R → R in form of θ(t) = −t, t ∈ R. Together with the group

Λ let’s consider a group Λ′ = θΛθ−1. It is also a group with two generators Λ′ =< p′, q′ >,

p′ = θp−1θ−1, q′ = θq−1θ−1. The element p′ is also freely acting and elements p′, q′ satisfy the

conditions

q′(t
′

0) = t
′

0, q′(t
′

1) = t
′

1, q′(t) > t, t ∈ (t
′

0, t
′

1), t
′

0 = θ(t1), t
′

1 = θ(t0), (127)

p′(t) > t, t ∈ R, p′(t
′

0) ∈ (t
′

0, t
′

1). (128)

Thus, the group Λ′ satisfies the same conditions as the group Λ (Lemma 7). Their minimal

sets are related by the condition θ(E(Λ)) = E(Λ′). Invariant mean m on the group Λ goes

to the invariant mean m′ on the group Λ′ such that m′ = (1 − α)m′
− + αm′

+, where m′
− =

m+, m′
+ = m−. The measures ξ̂′− ξ̂′+, corresponding to the invariant mean m′, are such that

ξ̂′− = ξ̂+, ξ̂′+ = ξ̂−. Owing to the step 3, the measure ξ̂′+, which is equal to the measure ξ̂−,

also doesn’t exist.

Step 5. Completion of the proof of the theorem.

The absence of the measures ξ̂−, ξ̂+ contradicts the condition of amenability of the quotient

group Λ/HΛ, and, accordingly, the condition of amenability of the quotient group G/HG.
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Contradiction was obtained by assuming that there is not a projectively invariant measure

for the group G. Therefore, for the group G there is a projectively invariant measure. Theorem

is proved.

Let’s give an equivalent reformulation for the criterion from Theorem A. This criterion is

an elaboration of the criterion from Theorem 18 for a wider class of groups. The criterion from

Theorem 18 was formulated for groups, which contain a subgroup with invariant measure and

with a freely acting element, and a new one is formulated for groups, which contain only a

freely acting element. Expansion of the class of groups requires some weakening of conditions of

the criterion. In this case the condition of the existence of a free subgroup with two generators

in canonical quotient group in Theorem 18 is replaced by the condition of nonamenability.

This criterion is an elaboration of previously obtained criterion to a wider class of groups.

Expansion of the class of groups requires some weakening of conditions of the criterion. In this

case the condition of the existence of a free subgroup with two generators is replaced by the

condition of nonamenability.

Theorem B. Let G ⊆ Homeo+(R) and there is a freely acting element ḡ ∈ G. Then either

the quotient group G/HG is not amenable or for the group G there is a projectively invariant

measure. Specified alternative is strict and so it does not allow the simultaneous fulfillment of

the conditions.

Proof. Let’s show that Theorem B follows from Theorem A. Indeed, if in the group G there is

a freely acting element then for such group the condition G/HG 6=< e > is fulfilled. Let the

quotient group G/HG is amenable. Then, by Theorem A, for the group G there is a projectively

invariant measure.

The converse. Let’s show that Theorem A follows from Theorem B.

Necessity. Let for the group G there is a projectively invariant measure. Let’s consider two

cases.

(i) The first case. For the group G there is an invariant measure. Then, by the definition, it

is true that HG = GS and, obviously, GS =< GS >. Since, by the condition of Theorem A,

G/HG 6=< e > then we obtain that G/ < GS > 6=< e >. Then in the group G there is a

freely acting element. Moreover, by Theorem 1, the quotient group G/ < GS >= G/HG > is

commutative and, thus, it is amenable.

(ii) The second case. For the group G there is not an invariant measure. Then, owing to Theorem

15, for the group G the condition CG 6= GS
+∞ is satisfied and, therefore, in the group G there is

a freely acting element. And finally, by Remark 5, the quotient group G/HG is a solvable group

of solvability length not greater than 2.

Sufficiency. Let in the group G there is a freely acting element and the quotient group G/HG is

amenable. Then, by Theorem A, for the group G there is a projectively invariant measure.

Let’s give a reformulation of Theorem B, using only combinatorial characteristics.
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Theorem B*. Let G ⊆ Homeo+(R) and there is a freely acting element ḡ ∈ G. Then either

the quotient group G/HG is not amenable or the quotient group G/HG is a solvable group of

solvability length not greater than 2. Specified alternative is strict and so it does not allow the

simultaneous fulfillment of the conditions.

Proof. In the proof of Theorem B we noted that for the group with invariant measure the

quotient group G/HG is commutative. If there is a projectively invariant measure, but there is

not an invariant measure, then, by Remark 5, the quotient group G/HG is a solvable group of

solvability length not greater than 2. From these facts the statement of Theorem B* follows.

The alternative, formulated in Theorem B*, allows a restatement, remaining in terms of

combinatorial characteristics.

Theorem B**. Let G ⊆ Homeo+(R) is a group with nonempty minimal set. Then either

the quotient group G/HG is a solvable group of solvability length not greater than 2 or at least

one of the following conditions is satisfied: the quotient group G/HG is not amenable; there is

not a freely acting element ḡ ∈ G. Specified alternative is strict and so it does not allow the

simultaneous fulfillment of the conditions.

Proof. Let’s show that Theorem B** follows from Theorem B*. Let the quotient group G/HG

is not a solvable group of solvability length not greater than 2. Let’s suppose that the quotient

group G/HG is amenable and there is a freely acting element ḡ ∈ G. Then, by Theorem B*,

for such group the quotient group G/HG is a solvable group of solvability length not greater

than 2. Contradiction. Consequently, for the group G at least one of the following conditions is

satisfied: the quotient group G/HG is not amenable; there is not a freely acting element ḡ ∈ G.

The converse. Let’s show that Theorem B* follows from Theorem B**. Let the quotient

group G/HG is not a solvable group of solvability length not greater than 2. Since, by the

conditions of Theorem B*, there is a freely acting element then, by Theorem B**, the quotient

G/HG is not amenable.

We can formulate an indication of nonamenability of the quotient group G/HG in terms of

commutator [G/HG, G/HG].

Theorem C. Let G ⊆ Homeo+(R), for which there is a freely acting element ḡ ∈ G. If

G/HG = [G/HG, G/HG] then the quotient group G/HG is not amenable.

Proof. Indeed, let’s assume that the quotient group G/HG is amenable. Then, by Theorem

B*, the quotient group G/HG is a solvable group of solvability length not greater than 2 that

contradicts the condition G/HG = [G/HG, G/HG]. Consequently, the quotient group G/HG is

not amenable.

Consequence 2. Let G ⊆ Homeo+(R), for which there is a freely acting element ḡ ∈ G. If

G = [G, G] then the quotient group G/HG is not amenable.
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Proof. Indeed, from the condition G = [G, G] it follows G/HG = [G/HG, G/HG]. Then the

nonamenability of the quotient group G/HG follows from Theorem C.

§7. Nonamenability of Thompson’s group F .

Due to the Day’s problem [18], a question about existence of finitely presented and finitely

generated nonamenable group, which doesn’t contain a free subgroup with two generators,

became actual. Thompson’s group F is a potential candidate for being such group:

F is a set of piecewise-linear homeomorphisms of [ 0, 1] which are differentiable except at

finitely many points, each of these points is a dyadic rational number and, on the intervals

of differentiability, the derivatives are powers of 2.

Brin and Squier [20] showed that the group F is not simple and it doesn’t contain a free

subgroup with two generators.

F is isomorphic to the group with two generators and two relations [19]

F =< A,B : [AB−1,A−1BA], [AB−1,A−2BA2] > .

F can be realized as a group of homeomorphisms of the line with two generators having the

following form:

The main result of this paper is represented in the next theorem.

Theorem D. Thompson’s group F is not amenable.

Proof. Let’s denote through ā, b̄ the restrictions of homeomorphisms a, b on the ray (0,+∞).

It’s obvious that F is isomorphic to the group F̄ =< ā, b̄ >.

Let’s define a mapping η : (0, +∞) → R, where
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η(t) =















−
1

t
, τ ∈ (0, 1]

t− 2, τ ∈ (1, +∞],

which defines the following homeomorphisms of the line α = ηaη−1, β = ηbη−1. The homeo-

morphisms α, β have next representations

α(τ) =



































τ

2
, τ ∈ (−∞, −2]

−
2

τ
− 2, τ ∈ (−2, −1]

τ + 1, τ ∈ (−1, +∞),

β(τ) =







τ, τ ∈ (−∞, −1]

2τ + 1, τ ∈ (−1, 0]

τ + 1, τ ∈ (0, +∞),

and their graphs have the form
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It’s obvious that the group F̄ is isomorphic to the group F =< α, β >.

The element α is freely acting. Owing to Proposition 1, for the group F the minimal set is

nonempty. Moreover, it is not difficult to see that the orbit of the point t = 1 is dense in the

interval [−1, 0]. Then, by Theorem 2, the minimal set of the group F coincides with whole line.

In that case, for the group F there is an equality HF =< e > and, accordingly, it is true that

F/HF = F .

Let’s show that for the group F there is not both an invariant measure and a projectively

invariant measure. Indeed, from the graphs of the elements β, β−1α it follows that they belong

to the set of stabilizers FS and Fix < β >= (−∞,−1], F ix < β−1α >= [0,+∞). In that

case, FixFS = ∅, and, by Theorem 8, for the group F there is not an invariant measure.

It is easy to see that β ∈ FS
∖

CF , but at the same tβ = −∞, Tβ = −1, which contradicts

the condition 2) of Theorem 14. Therefore, for the group F there also is not a projectively

invariant measure.

At this rate, owing to Theorem B, the group F is not amenable. Consequently, Thompson’s

group F , which is isomorphic to the group F , also is not amenable.
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Let’s provide an example, which demonstrates the importance of the existence of a freely

acting element in the alternative of Theorem B. Here are the most important properties of the

group F , which is isomorphic to Thompson’s group F :

F =< FS >, F 6= FS; E(F) = R; HF =< e >; Fix FS = ∅, (129)

and also for the group F there is not a projectively invariant measure.

The following example was pointed out to the author by Prof. Matt Brin during the

correspondence.

Example. Brin’s group B.

Let’s describe the generators of Brin’s group B =< g1, g2 >

g1(t) =



































t, t ∈ (−∞, −1),

2t + 1, t ∈ [−1, −1
2
],

t + 1
2
, t ∈ (−1

2
, 0), g2(t) = 4t.

1
2
t+ 1

2
, t ∈ [0, 1],

t, t ∈ (1, +∞),

(130)

The graphs of homeomorphisms g1, g2 are shown in next Figure.
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It’s not difficult to see, that for the group B there are following relations

B = BS; E(B) = R; HB =< e >; Fix BS = ∅. (131)

In particular, from the condition Fix BS = ∅ it follows that for Brin’s group B there is not

an invariant measure. Also for the group B the condition 2) from Theorem 14 is not satisfied.

Therefore, there also is not a projectively invariant measure.

We see that, according to many of the listed basic properties, Thompson’s group F and

Brin’s group B are similar. However, it is known that group B is amenable. This example of

Brin’s group B shows that the condition of the existence of a freely acting element, i.e. the

condition F 6= FS, in alternative of Theorem B is unavoidable (precise).

Author is grateful to all participants of the seminar "Dynamical systems and ergodic

theory"and to seminar’s heads D.V.Anosov, A.M.Stepin and R.I.Grigorchuk for the helpful

advices and attention to the work.

Author is also grateful to Prof. Matt Brin for the discussion and for the provided example,

what was important in working on an updated version of this article.
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