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Abstract

In this paper, we deal with a class of one-dimensional reflected
backward stochastic differential equations with stochastic Lipschitz
coefficient. We derive the existence and uniqueness of the solutions
for those equations via Snell envelope and the fixed point theorem.
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1 Introduction

Nonlinear backward stochastic differential equations (BSDE in short) were
firstly introduced by Pardoux and Peng (1990). Since then, a lot of work have
been devoted to the study of BSDEs as well as to their applications. This
is due to the connections of BSDEs with mathematical finance ( see e.g. El
Karoui et al. (1997c)) as well as to stochastic optimal control (see e.g. Peng
(1993)) and stochastic games ( see e.g. Hamadène and Lepeltier (1995)). El
Karoui et al. (1997a) introduced the notion of one barrier reflected BSDE
(RBSDE in short), which is actually a backward equation but the solution
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is forced to stay above a given barrier. This type of BSDEs is motivated by
pricing American options (see El Karoui et al. (1997b)) and studying the
mixed game problems(see e.g. Cvitanic and Karatzas (1996), Hamadène and
Lepeltier (2000)).

The existence and uniqueness of solution of BSDE in Pardoux and Peng
(1990) and of RBSDE in El Karoui et al. (1997a) are both proved under the
Lipschitz assumption on the coefficient. However, the Lipschitz condition is
too restrictive to be assumed in many applications. For instance, the pricing
problem of an American claim is equivalent to solving the linear BSDE

dYt = [r(t)Yt + θ(t)Zt]dt+ ZtdBt, YT = ξ,

where r(t) is the interest rate and θ(t) is the risk premium vector. In general,
both of them may be unbounded, therefore Pardoux and Peng’s result may
be invalid. And so is it in the case of RBSDE.

Consequently, many papers have devoted to relax the Lipschitz condition
in both cases of BSDE and RBSDE (see e.g. Lepeltier and Martin (1997), El
Karoui and Huang (1997), Bender and Kohlmann (2000), Wang and Huang
(2009), Matoussi (1997), Lepeltier et al. (2005) and the references therein).
During them, El Karoui and Huang (1997) established a general result of
existence and uniqueness for BSDEs driven by a general cadlag martingale
with stochastic Lipschitz coefficient. Later, Bender and Kohlmann (2000)
showed the same result for BSDEs driven by a Brownian motion. Motivated
by the above works, the purpose of the present paper is to consider a class
of one-dimensional RBSDEs with stochastic Lipschitz coefficient. We try to
get the existence and uniqueness of solutions for those RBSDEs by means of
the Snell envelope and the fixed point theorem.

The rest of the paper is organized as follows. In Section 2, we introduce
some notations including some spaces. Section 3 is devoted to prove the
existence and uniqueness of solutions to RBSDEs with stochastic Lipschitz
coefficient.

2 Notations

Let (Bt)t≥0 be a d-dimensional standard Brownian motion defined on a prob-
ability space (Ω,F ,P). We denote (Ft)t≥0 the natural filtration of (Bt)t≥0,
augmented by all P-null sets of F . The Euclidean norm of a vector y ∈ Rn

will be defined by |y|.
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Let T > 0 be a given real number. Let’s introduce some spaces:

• L2 the space of FT -measurable random variables ξ such that

E[|ξ|2] < +∞.

• S2 the space of predictable processes {ψt : t ∈ [0, T ]} such that

E[ sup
0≤t≤T

|ψt|
2] < +∞.

• H2 the space of predictable processes {ψt : t ∈ [0, T ]} such that

E

∫ T

0

|ψt|
2dt < +∞.

Let β > 0 and (at)t≥0 be a nonnegative Ft-adapted process. Define

A(t) =

∫ t

0

a2(s)ds, 0 ≤ t ≤ T.

We further introduce the following spaces:

• L2(β, a) the space of FT -measurable random variables ξ such that

E[eβA(T )|ξ|2] < +∞.

• S2(β, a) the space of predictable processes {ψt : t ∈ [0, T ]} such that

E[eβA(T ) sup
0≤t≤T

|ψt|
2] < +∞.

• H2(β, a)the space of predictable processes {ψt : t ∈ [0, T ]} such that

E

∫ T

0

eβA(t)|ψt|
2dt < +∞.

In this paper, we consider the following RBSDE:
{
Yt = ξ +

∫ T

t
f(s, Ys, Zs)ds+KT −Kt −

∫ T

t
ZsdBs,

Yt ≥ St, 0 ≤ t ≤ T a.s. and
∫ T

0
(Yt − St)dKt = 0, a.s.

(1)

3



where the coefficient f : Ω× [0, T ]×R×Rd ×R → R satisfies the following
assumptions:
(H1) ∀t ∈ [0, T ], (yi, zi) ∈ R × Rd, i = 1, 2, there are two nonnegative Ft-
adapted processes µ(t) and γ(t) such that

|f(t, y1, z1) − f(t, y2, z2)| ≤ µ(t)|y1 − y2| + γ(t)|z1 − z2|; (2)

(H2) ∃ ǫ > 0 such that a2(t) := µ(t) + γ2(t) ≥ ǫ;
(H3) For all (y, z) ∈ R×Rd, the process f(·, ·, y, z) is progressively measur-

able and such that ∀t ∈ [0, T ],
f(t, 0, 0)

a ∈ H2(β, a).
Furthermore, we make the following assumptions:

(H4) The terminal value ξ ∈ L2(β, a);
(H5) The ”obstacle” {St, 0 ≤ t ≤ T} is a continuous progressively measur-
able real-valued process satisfying E[sup0≤t≤T e

2βA(t)(S+
t )2] <∞ and ST ≤ ξ

a.s.
We now give the definition of solution to RBSDE (1).

Definition 2.1 Let β > 0 and a a nonnegative Ft-adapted process. A so-
lution to RBSDE (1) is a triple (Y, Z,K) satisfying (1) such that (Y, Z) ∈
S2(β, a) × H2(β, a) and K ∈ S2 is continuous and increasing with K0 = 0.

3 Main results

3.1 A priori estimate

We first give a priori estimate of the solution of RBSDE (1).

Lemma 3.1 Let (Yt, Zt, Kt)0≤t≤T be a solution of RBSDE (1) with data
(ξ, f, T ). Then there exists a constant Cβ depending only on β such that

E

[
sup

0≤t≤T

|Yt|
2eβA(t) +

∫ T

0

eβA(s)|Zs|
2ds+

∫ T

0

eβA(s)a2(s)|Ys|
2ds+K2

T

]

≤ CβE

[
|ξ|2eβA(T ) +

∫ T

0

eβA(s) |f(s, 0, 0)|2

a2(s)
ds+ sup

0≤t≤T

e2βA(t)(S+
t )2

]
.
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Proof. Applying Itô’s formula to eβA(t)|Yt|
2, we have

eβA(t)|Yt|
2 +

∫ T

t

eβA(s)|Zs|
2ds+ β

∫ T

t

a2(s)eβA(s)|Ys|
2ds

= eβA(T )|ξ|2 + 2

∫ T

t

eβA(s)Ysf(s, Ys, Zs)ds+ 2

∫ T

t

eβA(s)YsdKs − 2

∫ T

t

eβA(s)YsZsdBs

≤ eβA(T )|ξ|2 +
β

2

∫ T

t

a2(s)eA(s)|Ys|
2ds+ 2

∫ T

t

eβA(s) 1

βa2(s)
|f(s, Ys, Zs)|

2ds

+2

∫ T

t

eβA(s)YsdKs − 2

∫ T

t

eβA(s)YsZsdBs

≤ eβA(T )|ξ|2 +
β

2

∫ T

t

a2(s)eA(s)|Ys|
2ds+

6

β
[

∫ T

t

eβA(s)a2(s)|Ys|
2ds+

∫ T

t

eβA(s)|Zs|
2ds]

+
6

β

∫ T

t

eβA(s) |f(s, 0, 0)|2

a2(s)
ds+ 2

∫ T

t

eβA(s)YsdKs − 2

∫ T

t

eβA(s)YsZsdBs.

Consequently,

eβA(t)|Yt|
2 + (1 −

6

β
)

∫ T

t

eβA(s)|Zs|
2ds+ (

β

2
−

6

β
)

∫ T

t

a2(s)eβA(s)|Ys|
2ds

≤ eβA(T )|ξ|2 +
6

β

∫ T

t

eβA(s) |f(s, 0, 0)|2

a2(s)
ds

+2

∫ T

t

eβA(s)SsdKs − 2

∫ T

t

eβA(s)YsZsdBs. (3)

where we have used the fact that dKs = I[Ys=Ss]dKs and the stochastic
Lipschitz property of f . For a sufficient large β > 0, taking expectation on
both sides above, we get

E[

∫ T

t

a2(s)eβA(s)|Ys|
2ds+

∫ T

t

eβA(s)|Zs|
2ds]

≤ cβE

[
eβA(T )|ξ|2 +

∫ T

t

eβA(s) |f(s, 0, 0)|2

a2(s)
ds+ 2

∫ T

t

eβA(s)S+
s dKs

]
. (4)
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Moreover, by the Burkholder-Davis-Gundy’s inequality, one can derive that

E[ sup
0≤t≤T

|

∫ T

t

eβA(s)YsZsdBs|]

≤ E[|

∫ T

0

eβA(s)YsZsdBs|] + E[ sup
0≤t≤T

|

∫ t

0

eβA(s)YsZsdBs|]

≤ 2cE

{[∫ T

0

e2βA(s)|Ys|
2|Zs|

2ds

] 1

2

}

≤ 2cE

[
( sup
0≤t≤T

eβA(t)|Yt|
2)

1

2 (

∫ T

0

eβA(s)|Zs|
2ds)

1

2

]

≤
1

2
E[( sup

0≤t≤T

eβA(t)|Yt|
2)] + 2c2E[

∫ T

0

eβA(s)|Zs|
2ds].

Combining this with (3) and (4), we have

E

[
sup

0≤t≤T

|Yt|
2eβA(t) +

∫ T

0

a2(s)eβA(s)|Ys|
2ds+

∫ T

0

eβA(s)|Zs|
2ds

]

≤ kβE

[
eβA(T )|ξ|2 +

∫ T

0

eβA(s) |f(s, 0, 0)|2

a2(s)
ds+ 2

∫ T

0

eβA(s)S+
s dKs

]
.(5)

We now give an estimate of K2
T . From the equation

KT = Y0 − ξ −

∫ T

0

f(s, Ys, Zs)ds+

∫ T

0

ZsdBs
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and (5), we have

E[K2
T ]

≤ dβE

[
sup

0≤t≤T

|Yt|
2eβA(t) + |ξ|2 +

∫ T

0

|Zs|
2ds

+

∫ T

0

a2(s)e−βA(s)ds

∫ T

0

eβA(s) |f(s, Ys, Zs)|
2

a2(s)
ds

]

≤ dβE

[
eβA(T )|ξ|2 +

∫ T

0

a2(s)eβA(s)|Ys|
2ds+

∫ T

0

eβA(s)|Zs|
2ds

+

∫ T

0

eβA(s) |f(s, 0, 0)|2

a2(s)
ds

]

≤ dβE

[
eβA(T )|ξ|2 +

∫ T

0

eβA(s) |f(s, 0, 0)|2

a2(s)
ds+ 2

∫ T

0

eβA(s)S+
s dKs

]

≤ dβE

[
eβA(T )|ξ|2 +

∫ T

0

eβA(s) |f(s, 0, 0)|2

a2(s)
ds+ sup

0≤t≤T

e2βA(t)(S+
t )2

]
+

1

2
E[K2

T ].

Hence,

E[K2
T ] ≤ dβE

[
eβA(T )|ξ|2 +

∫ T

0

eβA(s) |f(s, 0, 0)|2

a2(s)
ds+ sup

0≤t≤T

e2βA(t)(S+
t )2

]
, (6)

where we use the notation dβ for a constant depending only on β and whose
value could be changing from line to line. We get the desired result by
estimates (6) and (5). �

3.2 Existence and uniqueness of solution

We first consider the special case that is the coefficient does not depend on
(Y, Z), i.e. f(ω, t, y, z) ≡ g(ω, t). We have the following result.

Theorem 3.1 Let β > 0 large enough and a a nonnegative Ft-adapted pro-
cess. Assume

g
a ∈ H2(β, a) and (H4)-(H5) hold. Then RBSDE (1) with

data (ξ, g, S) has a solution.

Proof. For 0 ≤ t ≤ T , we define

Ỹt = ess sup
ν≥t

E[

∫ ν

0

g(s)ds+ SνI{ν<T} + ξI{ν=T}|Ft]
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where ν is a Ft-stopping time. The process Ỹt is called the Snell envelope of
the process which is inside ess sup.

By assumptions of the theorem, one can easily to check that ξ ∈ L2,
S+

t ∈ S2 and (
∫ t

0
|g(s)|ds)0≤t≤T ∈ L2. Indeed, for given β > 0, by Hölder

inequality, we have

E

[(∫ T

0

|g(s)|ds

)2
]

= E

[(∫ T

0

|
g(s)

a(s)
||a(s)|ds

)2
]

≤ E

[(∫ T

0

|
g(s)

a(s)
|2eβA(s)ds

)(∫ T

0

a(s)2e−βA(s)ds

)]

≤
1

β
E

[(∫ T

0

|
g(s)

a(s)
|2eβA(s)ds

)]
< +∞.

Consequently, by Doob-Meyer decomposition theorem in Dellacherie and
Meyer (1980), there exists an increasing continuous process (Kt)0≤t≤T which
belongs to S2 (K0 = 0) and a martingale Mt ∈ S2 such that

Ỹt = Mt −Kt. ∀t ∈ [0, T ]

Since Mt ∈ S2, there exists Zt ∈ H2 such that

Mt = M0 +

∫ t

0

ZsdBs. ∀t ∈ [0, T ]

Let Yt = Ỹt −
∫ t

0
f(s)ds, by Proposition 5.1 of El Karoui et al. (1997a), we

derive that the triple (Y, Z,K) verities

Yt = ξ +

∫ T

t

g(s)ds+KT −Kt −

∫ T

t

ZsdBs.

Moreover, Yt ≥ St and
∫ T

0
(Yt −St)dKt = 0. By Lemma 3.1, (Yt, Zt, Kt)0≤t≤T

is a solution of RBSDE (1). �

Furthermore, we have the following uniqueness result.

Proposition 3.1 With the same assumptions of Theorem 3.1, the RBSDE
(1) with data (ξ, g, S) has at most one solution.

Proof. Let (Y, Z,K) and (Y ′, Z ′, K ′) be two solutions of RBSDE (1). Let

∆Y = Y − Y ′, ∆Z = Z − Z ′, ∆K = K −K ′.
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For 0 ≤ t ≤ T , we have

∆Yt = ∆KT − ∆Kt −

∫ T

t

∆ZsdBs.

Applying Itô’s formula to eβA(t)|∆Yt|
2, we obtain

−E[eβA(t)|∆Yt|
2] = −2E[

∫ T

t

eβA(s)∆Ysd(∆Ks)] + E[

∫ T

t

eβA(s)|∆Zs|
2ds].

Noting that
∫ T

t
eβA(s)∆Ysd(∆Ks) ≤ 0, it follows that ∆Yt = ∆Zt = 0 and

then ∆Kt = 0, 0 ≤ t ≤ T a.s. �

We can now state and prove our main result.

Theorem 3.2 Assume (H1)-(H5) hold for a sufficient large β. Then RB-
SDE (1) with data (ξ, f, S) has a unique solution.

Proof. Let H(β, a) = S2(β, a)×H2(β, a). Given (U, V ) ∈ H(β, a), consider
the following RBSDE:

Yt = ξ +

∫ T

t

f(s, Us, Vs)ds+KT −Kt −

∫ T

t

ZsdBs. (7)

By Young’s inequality, we have

|f(t, Ut, Vt)|
2

a2(t)
≤ 3[a2(t)|Ut|

2 + |Vt|
2 +

|f(t, 0, 0)|2

a2(t)
],

it follows from (H3) and Theorem 3.1 that the RBSDE (7) has a unique
solution.

Define a mapping Φ from H(β, a) to itself. Let (U ′, V ′) be another element
in H(β, a), set

(Y, Z) = Φ(U, V ), (Y ′, Z ′) = Φ(U ′, V ′),

where (Y, Z,K) (resp. (Y ′, Z ′, K ′)) is the unique solution of the RBSDE
associated with data (ξ, f(t, Ut, Vt), S) (resp.(ξ, f(t, U ′

t , V
′
t ), S)).

Let

∆Y = Y − Y ′,∆Z = Z − Z ′,∆U = U − U ′,∆V = V − V ′,

∆fs = f(s, Us, Vs) − f(s, U ′
s, V

′
s ),∆K = K −K ′.
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For 0 ≤ t ≤ T , we have

∆Yt =

∫ T

t

∆fsds+ ∆KT − ∆Kt −

∫ T

t

∆ZsdBs

Applying Itô’s formula to eβA(t)|∆Yt|
2, using (H1) and the fact that dKs =

I[Ys=Ss]dKs and dK ′
s = I[Y ′

s
=Ss]dK

′
s, we get

eβA(t)|∆Yt|
2 + β

∫ T

t

a(s)2eβA(s)|∆Ys|
2ds+

∫ T

t

eβA(s)|∆Zs|
2ds

≤ 2

∫ T

t

eβA(s)∆Ys∆fsds+ 2

∫ T

t

eβA(s)∆Ysd(∆Ks) −

∫ T

t

2eβA(s)∆Ys∆ZsdBs

≤ 2

∫ T

t

eβA(s)∆Ys∆fsds−

∫ T

t

2eβA(s)∆Ys∆ZsdBs

≤
β

2

∫ T

t

a(s)2eβA(s)|∆Ys|
2ds+

6

β

∫ T

t

eβA(s)|(a(s)2|∆Us|
2 + |∆V |2)ds

−

∫ T

t

2eβA(s)∆Ys∆ZsdBs,

it follows that

E[

∫ T

t

a(s)2eβA(s)|∆Ys|
2ds] + E[

∫ T

t

eβA(s)|∆Zs|
2ds]

≤ (
12

β2
+

6

β
)

{
E[

∫ T

t

a(s)2eβA(s)|∆Us|
2] + E[

∫ T

t

eβA(s)|∆V |2ds]

}
.

For β > 0 large enough, one can easily to check that Φ is a contraction
mapping with the norm

‖(Y, Z)‖2
β = E

[∫ T

0

eβA(s)(a(s)2|Ys|
2 + |Zs|

2)ds

]
.

Thus, φ has a unique fixed point and the theorem is proved. �
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