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Abstract. Let A be a graded algebra. In this paper we develop a generalized

Koszul theory by assuming that A0 is self-injective instead of semisimple and
generalize many classical results. The application of this generalized theory to

directed categories and finite EI categories is described.

1. Introduction

The work described in this paper originated in the exploration of homological
properties of finite EI categories. We want to apply Koszul theory, which has been
proved to be very useful in the representation theory of algebras, to study the Ext
groups of representations of finite EI categories. Examples of such applications
can be found in [19] and [21], where Koszul theory has been applied to incidence
algebras of posets. In general this theory applies to graded algebras, and we do
not assume that the degree 0 part of the algebra is semisimple, unlike the classical
Koszul theory described in [4] [9] [10] [15]. This generalization is necessary so that
we can apply the theory to finite EI categories.

There do already exist several generalized Koszul theories where the degree 0
part A0 of a graded algebra A is not required to be semisimple, see [11] [13] [14]
and [21]. Each Koszul algebra A defined by Woodcock in [21] is supposed to sat-
isfy that A is both a left projective A0-module and a right projective A0-module.
This requirement is too strong for us. Indeed, even the category algebra kE of a
standardly stratified finite EI category E (studied in [20]) does not satisfy this re-
quirement: kE is a left projective kE0-module but in general not a right projective
kE0-module. In Madsen’s paper [14], A0 is supposed to have finite global dimen-
sion. But for a finite EI category E , this happens in our context if and only if kE0
is semisimple. The theory developed by Green, Reiten and Solberg in [11] works
in a very general framework, but some efforts are required to fill the gap between
their theory and our applications.

Thus we want to develop a generalized Koszul theory which can inherit many
useful results of the classical theory, and can be applied to structures with nice
properties such as finite EI categories. Let A be a graded k-algebra with A0 being
self-injective instead of being semisimple. Then we define generalized linear modules
(or Koszul modules), Koszul algebras in a similar way to the classical case. That is,
a graded A-module M is Koszul if M has a linear projective resolution, and A is a
Koszul algebra if A0 viewed as a graded A-module is Koszul. We also define quasi-
Koszul modules and quasi-Koszul algebras: M is quasi-Koszul if the Ext∗A(A0, A0)-
module Ext∗A(M,A0) is generated in degree 0, and A is a quasi-Koszul algebra if
A0 is a quasi-Koszul A-module. It turns out that this generalization works nicely
for our goal. Many classical results described in [4] [9] [10] and [15] generalize to
our context. In particular, we obtain the Koszul duality both on the category of
linear modules and on the derived category.

The author wants to express great appreciation to his thesis advisor, Professor Peter Webb,
for the proposal to develop a generalized Koszul theory, and the invaluable suggestions and con-
tributions provided in numerous discussions.
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We then focus on the applications of this generalized Koszul theory. First we
define directed categories. A directed category C is a k-linear category equipped
with a partial order 6 on Ob C such that for each pair of objects x, y ∈ Ob C,
the space of morphisms C(x, y) is non-zero only if x 6 y. Directed categories
include the k-linearizations of finite EI categories as special examples. This partial
order determines a canonical pre-order 4 on the isomorphism classes of simple
representations. Following the technique in [20], we develop a stratification theory
for directed categories, describe the structures of standard modules and characterize
every directed category C standardly stratified with respect to the canonical pre-
order:

Theorem 1.1. Let C be a directed category with respect to a partial order 6. Then
C is standardly stratified for the canonical pre-order 4 if and only if the morphism
space C(x, y) is a projective C(y, y)-module for every pair of objects x, y ∈ Ob C.

By the correspondence between graded k-linear categories and graded algebras
described in [16], we can view a directed category as a directed algebra and vice-
versa. Therefore, all of our results on graded algebras can be applied to graded
directed categories. In particular, the following theorem relates Koszul theory to
stratification theory:

Theorem 1.2. Let C be a graded directed category with C0 =
⊕

x∈Ob C C(x, x) being
a self-injective algebra . Then:

(1) C is standardly stratified with respect to the canonical pre-order 4 if and
only if C is a projective C0-module.

(2) C is a Koszul category if and only if C is a quasi-Koszul category standardly
stratified for 4.

(3) If C is standardly stratified for 4, then a graded C-module M generated in
degree 0 is linear if and only if it is a quasi-Koszul C-module and a projective
C0-module.

Applying the homological dual functor E = Ext∗C(−, C0) to a graded directed
category C, we construct the Yoneda category E(C0) = Ext∗C(C0, C0). We prove that
if C is a Koszul directed category with C0 being self-injective, then E(C0) is also a
Koszul directed category.

We acquire a very nice correspondence between the classical Koszul theory and
our generalized Koszul theory for directed categories.

Theorem 1.3. Let C be a graded directed category with C0 being a self-injective al-
gebra. Define D to be the subcategory of C obtained by replacing each endomorphism
ring by k · 1, the span of the identity endomorphism. Then:

(1) C is a Koszul category in our sense if and only if C is standardly stratified
for the canonical pre-order 4 and D is a Koszul category in the classical
sense.

(2) If C is a Koszul category, then a graded C-module M is linear if and only
if M is a projective C0-module, and M ↓CD is a linear D-module.

Finite EI categories have nice combinatorial properties. These properties can be
used to define length gradings on the sets of morphisms. We discuss the possibility
to put such a grading on an arbitrary finite EI category, and prove the following
result for finite free EI categories (defined in [12]):

Theorem 1.4. Let E be a finite free EI category. Then the following are equivalent:

(1) pd kE0 <∞;
(2) pd kE0 6 1;
(3) E is standardly stratified in a sense defined in [20];
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(4) kE is a Koszul algebra.

Moreover, kE is a quasi-Koszul algebra if and only if ExtikE(kE0, kE0) = 0 for each
i > 2.

We then give a sufficient condition for the category algebra of a finite EI category
E to be quasi-Koszul. An object x ∈ Ob E is called left regular if for every morphism
α : z → x, the stabilizer of α in AutE(y) has order invertible in k. Similarly we
define right regular objects. Then:

Theorem 1.5. Let E be a finite free EI category. If every object in E is either left
regular or right regular, then kE is a quasi-Koszul algebra.

Motivated by the fact that the Yoneda category E(C0) of a directed Koszul
category C is still a directed Koszul category, and hence is standardly stratified,
we ask whether the Koszul dual algebra Γ = Ext∗A(A0, A0) of a graded algebra A
standardly stratified for a partial order 6 is still standardly stratified for 6 (or 6op).
This question has only been studied for the case that A0 is semisimple, see [1] [2] [8]
[17] and [18]. By assuming that A0 is a self-injective algebra, and supposing that
all standard modules are concentrated in degree 0 and linear, we get a sufficient
condition for Γ to be standardly stratified with respect to 6op.

The layout of this paper is as follows. The generalized Koszul theory is developed
in the first three sections. In Section 2 we define Koszul modules and quasi-Koszul
modules, which generalize linear modules and Koszul modules in the classical the-
ory, and describe their basic properties. Since Koszul modules and quasi-Koszul
modules do not coincide in our context, we also give a relation between these two
concepts. Koszul algebras are studied in Section 3. The Koszul dualities are proved
in Section 4. Most results in these three sections are generalized from works in [4]
[9] [10] [15]. Some results can be deduced from the paper [11] of Green, Reiten and
Solberg, who worked in a more general context, but we present full arguments for
the sake of completeness.

The last three sections are on the application of the general theory developed
before. Directed categories are defined in Section 5. Their stratification properties
and Koszul properties are discussed in details in this section as well. The main
content of Section 6 to apply the Koszul theory and stratification theory to finite
EI categories, which have nice combinatorial structures. In Section 7 we modify
the technique of [1] to study standardly stratified algebras with linear standard
modules.

Here are the notation and conventions we use in this paper. All algebras are
k-algebras with k being algebraically closed. All modules are finitely generated left
modules. Let A be a graded algebra. A graded A-module M is said to be locally
finite if dimkMi <∞ for each degree i ∈ Z. By A-mod and A-gmod we denote the
category of all finitely generated A-modules and the category of all locally finite
graded A-modules. Let M and N be two A-modules. By HomA(M,N) we denote
the space of module homomorphisms from M to N . If furthermore M and N are
graded, we use homA(M,N) to denote all graded module homomorphisms from M
to N , i.e., the homomorphisms ϕ ∈ HomA(M,N) such that ϕ(Mi) ⊆ Ni for all
i ∈ Z. When ϕ is said to be a homomorphism between two graded modules, it is
supposed to be a graded homomorphism. If M is a graded A-module, its s-th shift
M [s] is defined in the following way: M [s]i = Mi−s for all i ∈ Z. IfM is generated in
degree s, then

⊕
i>s+1Mi is a graded submodule of M , and Ms

∼= M/
⊕

i>s+1Mi

as vector spaces. We then view Ms as an A-module by identifying it with this
quotient module. We also regard the zero module 0 as a projective module since
with this convention the expressions of many results can be simplified.
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2. Generalized Koszul Modules

Throughout this section A is a non-negatively graded and locally finite associa-
tive k-algebra with identity 1 generated in degrees 0 and 1, i.e., A =

⊕∞
i=0Ai such

that Ai · Aj = Ai+j for all i, j > 0; each Ai is finite-dimensional. We also suppose
that A0 is a self-injective algebra, i.e., every projective A0-module is injective as
well. Define J =

⊕∞
i=1Ai, which is a two-sided ideal of A. An A-module M is

called graded if M =
⊕

i∈ZMi such that Ai ·Mj ⊆ Mi+j . We say M is generated
in degree s if M = A ·Ms. It is clear that M is generated in degree s if and only if
JM ∼=

⊕
i>s+1Mi, which is equivalent to J lM ∼=

⊕
i>s+lMi for all l > 1.

Most results in this section are generalized from [9] [10] and [15]. We suggest
that the reader refer to these papers.

We collect some preliminary results in the following lemma.

Lemma 2.1. Let A be as above and M be a locally finite graded A-module. Then:

(1) J =
⊕

i>1Ai is contained in the graded radical of A;

(2) M has a graded projective cover;
(3) the graded syzygy ΩM is also locally finite.

Proof. By definition, the graded radical gradA is the intersection of all maximal
proper graded submodules of A. Let L $ A be a maximal proper graded submodule.
Then L0 is a proper subspace of A0. We claim that Ai = Li for all i > 1. Otherwise,
we can define L̃ ⊆ A in the following way: L̃0 = L0 and L̃i = Ai for i > 1.
Then L $ L̃ $ A, so L is not a maximal proper graded submodule of A. This
contradiction tells us that Li = Ai for all i > 1. Therefore, J ⊆ gradA, and the
first statement is proved.

We use the following fact to prove the second statement: every primitive idem-
potent of A0 (as an algebra) can be lifted to a primitive idempotent of A. Conse-
quently, a projective A0-module concentrated in some degree d can be lifted to a
graded projective A-module generated in degree d.

Define M̄ = M/JM , which is also a locally finite graded A-module. Write M̄ =⊕
i>0 M̄i. Then each M̄i is a finite-dimensional graded A-module since JM̄ = 0 and

A0M̄i = M̄i for all i > 0. Therefore, there is a decomposition of M̄ in which each
indecomposable summand (which must be of finite dimension) is concentrated in a
certain degree. Moreover, for each i ∈ Z, there are only finitely many summands
which are concentrated in degree i.

Take L to be such an indecomposable summand and without loss of generality
suppose that it is concentrated in degree 0. As an A0-module, L is finitely generated
and has a finitely generated projective cover P0. By the lifting property, P0 can
be lifted to a finitely generated (hence locally finite) graded projective module P
generated in degree 0.

We claim that P is a graded projective cover of L. Indeed, there is a graded
surjective homomorphism ϕ : P → L by mapping P0 onto L = L0 and JP to
0. Furthermore, this surjection is minimal. That is, if Q is a proper summand
of P , then the induced map ϕ′ : Q → L is not surjective. Otherwise, the proper
submodule Q0 $ P0 can be mapped onto L0. But this contradicts the fact that P0

is a projective cover of L as an A0-module. In conclusion, we proved that P is a
graded projective cover of L.

Take the direct sum of these projective covers P when L ranges over all inde-
composable summands of M̄ . In this way we obtain a graded projective cover P̃
of M̄ . We claim that P̃ is also a graded projective cover of M . On one hand,
the surjection p : P̃ → M̄ can be factored through the quotient homomorphism
q : M → M̄ and induces a graded homomorphism p′ : P̃ → M such that p = qp′,
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as showed in the following diagram:

M

q

��
P

p′
>>~~~~~~~~ p // M̄

.

Define M ′ to be the image of p′. Viewed as vector spaces, M̄ = M/JM ⊆M ′ and
M = M̄ + JM . Therefore, M = JM + M ′ as graded A-modules. By the graded
Nakayama’s lemma and the first statement, we deduce that M ′ = M , and hence p′

is a surjection. On the other hand, if there is a proper summand Q̃ $ P̃ such that
the induced map

Q̃
ι // P̃

p′ // M

is a graded surjection, where ι is the inclusion, then the map ιp′q = ιp is a graded
surjection from Q̃ to M̄ = M/JM . This contradicts the fact that P̃ is a graded

projective cover of M̄ . In conclusion, P̃ is a graded projective cover of M , and the
second statement is proved.

Now we turn to the third statement. By the above proof, the graded projective
cover P̃ of M can be written as a direct sum

⊕
i>0 P

i of graded projective modules,

where P i is generated in degree i. For each fixed degree i > 0, there are only finitely
many indecomposable summands L of M̄ which are concentrated in degree i, and
the graded projective cover of each L is finitely generated. Consequently, P i as the
direct sum of graded projective covers of those L concentrated in degree i is finitely
generated, and hence locally finite.

For a fixed n > 0, we have P̃n =
⊕

i>0 P
i
n =

⊕
06i6n P

i
n. Since each P i is

locally finite, dimk P
i
n < ∞. Therefore, dimk P̃n < ∞, and P̃ is locally finite as

well. As a submodule (up to isomorphism) of P̃ , the graded syzygy ΩM is also
locally finite. �

The results in the previous lemma will be used frequently in the rest of this
paper without being mentioned.

Lemma 2.2. Let 0→ L→M → N → 0 be an exact sequence of graded A-modules.
Then:

(1) If M is generated in degree s, so is N .
(2) If L and N are generated in degree s, so is M .
(3) If M is generated in degree s, then L is generated in degree s if and only if

JM ∩ L = JL.

Proof. (1): This is obvious.
(2): Let P and Q be graded projective covers of L and N respectively. Then

P and Q, and hence P ⊕ Q are generated in degree s. In particular, each graded
projective cover of M , which is isomorphic to a direct summand of P ⊕ Q, is
generated in degree s. Thus M is also generated in degree s.

(3): We always have JL ⊆ JM ∩L. Let x ∈ L∩ JM be a homogeneous element
of degree i. Since M is generated in degree s, we have i > s+ 1. If L is generated
in degree s, then x ∈ J i−sL ⊆ JL. Thus L ∩ JM ⊆ JL, so JL = L ∩ JM .
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Conversely, the identity JL = L ∩ JM gives us the following commutative dia-
gram where all rows and columns are exact:

0

��

0

��

0

��
0 // JL //

��

JM //

��

JN //

��

0

0 // L //

��

M //

��

N //

��

0

0 // L/JL //

��

M/JM //

��

N/JN //

��

0

0 0 0

Consider the bottom sequence. Notice that (M/JM) ∼= Ms is concentrated
in degree s. Thus L/JL is also concentrated in degree s, i.e., L/JL ∼= Ls. Let
I = A · Ls. Then L ⊆ I + JL ⊆ L, so I + JL = L. Notice that J is contained
in the graded Jacobson radical of A. Therefore, by the graded Nakayama lemma,
I = A · Ls = L, so L is generated in degree s. �

Corollary 2.3. Suppose that each graded A-module in the short exact sequence
0→ L→M → N → 0 is generated in degree 0. Then J iM ∩L = J iL for all i > 0.

Proof. Since all modules L, M and N are generated in degree 0, all JsL, JsM and
JsN are generated in degree s for s > 0. The exactness of the above sequence
implies JL = L ∩ JM , which in turns gives the exactness of 0 → JL → JM →
JN → 0. By the above lemma, J2M ∩ JL = J2L and this implies the exactness of
0→ J2L→ J2M → J2N → 0. The conclusion follows from induction. �

Now we introduce generalized linear modules (or called Koszul modules).

Definition 2.4. A graded A-module M generated in degree 0 is called a linear
module (or a Koszul module) if it has a (minimal) projective resolution

. . . // Pn // Pn−1 // . . . // P 1 // P 0 // M // 0

such that P i is generated in degree i for all i > 0.

A direct consequence of this definition and the previous lemma is:

Corollary 2.5. Let M be a linear module. Then Ωi(M)/JΩi(M) ∼= Ωi(M)i is a
projective A0-module for each i > 0, or equivalently, Ωi(M) ⊆ JP i−1 where P i−1

is a graded projective cover of Ωi−1(M), where Ω is the Heller operator.

Proof. Since M is linear, Ωi(M) is generated in degree i, and Ωi(M)/JΩi(M) ∼=
Ωi(M)i. Moreover, all Ωi(M)[−i] are linear A-modules as well. By induction, it
is sufficient to prove ΩM ⊆ JP 0. But this is obvious since ΩM is generated in
degree 1. From the following commutative diagram we deduce that ΩM ⊆ JP 0 if
and only if the bottom sequence is exact, or equivalently M/JM ∼= P 0/JP 0 ∼= P 0

0
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is a projective A0-module.

0 // ΩM // JP 0

��

// JM

��

// 0

0 // ΩM //

��

P 0 //

��

M //

��

0

0 // 0 // P 0/JP 0 // M/JM // 0

�

There are several characterizations of linear modules.

Proposition 2.6. Let M be a graded A-module generated in degree 0. Then the
following are equivalent:

(1) M is linear.
(2) The syzygy Ωi(M) is generated in degree i for every i > 0.
(3) For all i > 0, Ωi(M) ⊆ JP i−1 and Ωi(M) ∩ J2P i−1 = JΩi(M), where

P i−1 is a graded projective cover of Ωi−1(M).
(4) Ωi(M) ⊆ JP i−1 and Ωi(M) ∩ Js+1P i−1 = JsΩi(M) for all i > 0, s > 0.

Proof. The equivalence of (1) and (2) is clear. It is also obvious that (3) is the
special case of (4) for s = 1. Now we show (1) implies (4). Indeed, if M is a
linear module, then both JP 0 and ΩM are generated in degree 1 and ΩM ⊆ JP 0.
Therefore we have the following exact sequence

0 //ΩM //JP 0 //JM //0

in which all modules are generated in degree 1. By Corollary 2.5 Js+1P 0 ∩ ΩM =
JsΩM for all s > 0. Notice that all syzygies of M are also linear with suitable
grade shifts. Replacing M by Ωi(M)[−i] and using induction we get (4).

Finally we show (3) implies (2) to finish the proof. Since ΩM ⊆ JP 0 we still
have the above exact sequence. Notice that both JM and JP 0 are generated in
degree 1 and J2P 0 ∩ΩM = JΩM , by Lemma 2.2, ΩM is generated in degree 1 as
well. Now the induction procedure gives us the required conclusion. �

The condition that Ωi(M) ⊆ JP i−1 (or equivalently, Ωi(M)/JΩi(M) ∼= Ωi(M)i
is a projective A0-module) in (3) of the previous proposition is necessary, as shown
by the following example:

Example 2.7. Let G be a finite cyclic group of prime order p and k be an alge-
braically closed field of characteristic p. Let the group algebra kG be concentrated
on degree 0, so J = 0. Consider the trivial kG-module k. Obviously, k is not a
linear module. But since J = 0, the condition JΩi(k) = J2P i−1 ∩ Ωi(k) holds
trivially.

Remark 2.8. We do not use the property that A0 is a self-injective algebra up to
now. Therefore, all results described before still hold for a non-negatively graded,
locally finite graded algebra A with A0 being an arbitrary finite-dimensional algebra.

Proposition 2.9. Let 0→ L→ M → N → 0 be a short exact sequence of graded
A-modules such that L is a linear A-module. Then M is linear if and only if N is
linear.

Proof. We verify the conclusion by using statement (2) in the last proposition. That
is, given that Ωi(L) is generated in degree i for each i ≥ 0, we want to show that
Ωi(M) is generated in degree i if and only if so is Ωi(N).
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Consider the given exact sequence. By Lemma 2.2, M is generated in degree 0
if and only if N is generated in degree 0. Therefore we have the following diagram
in which all rows and columns are exact:

0

��

0

��

0

��
0 // ΩL //

��

M ′ //

��

ΩN //

��

0

0 // P //

��

P ⊕Q //

��

Q //

��

0

0 // L //

��

M //

��

N //

��

0

0 0 0

(2.1)

where P and Q are graded projective covers of L and N respectively. In general
P ⊕Q is not a graded projective cover of M , and hence M ′ � ΩM . However, under
the hypothesis of this proposition we claim that P ⊕Q is indeed a graded projective
cover of M and M ′ ∼= ΩM . To see this, we point out that the given exact sequence
induces a short exact sequence of A0-modules:

0 // L0
// M0

// N0
// 0.

Observe that L0 = Ω0(L)0 is projective (by Corollary 2.5) and hence injective
(since A0 is self-injective) as an A0-module. Therefore, the above sequence splits,

and M0
∼= L0 ⊕ N0. On one hand, a graded projective cover P̃ of M should be

isomorphic to a direct summand of P ⊕ Q. On the other hand, since P̃ induces a
projective cover P̃0 of M0

∼= L0 ⊕N0, P̃ should contain a summand isomorphic to
Q⊕ P . This forces P̃ ∼= P ⊕Q, and our claim is proved.

Now let us consider the top row of diagram 2.1. Since M ′ ∼= ΩM , and ΩL is
generated in degree 1, ΩM is generated in degree 1 if and only if ΩN is gener-
ated in degree 1 by Lemma 2.2. Replace L, M and N by (ΩL)[−1], (ΩM)[−1]
and (ΩN)[−1] (all of which are linear) respectively in the short exact sequence.
Repeating the above procedure and using the fact that the Heller operator Ω and
the grade shift functor [−] commute, we conclude that Ω2(M)[−1] is generated in
degree 1 if and only if Ω2(N)[−1] is generated in degree 1, i.e., Ω2(M) is generated
in degree 2 if and only if Ω2(N) is generated in degree 2. By induction, M is linear
if and only if N is linear. �

The condition that L is linear in this proposition is necessary. Indeed, quotient
modules of a linear module might not be linear.

Lemma 2.10. Let M be a graded A-module generated in degree s. If Ms is a
projective A0-module, then ExtiA(M,A0) ∼= Exti−1

A (ΩM,A0) for all i > 1.

Proof. It is true for i > 1. When i = 1, consider the following exact sequence:

0→ HomA(M,A0)→ HomA(P,A0)→ HomA(ΩM,A0)→ Ext1
A(M,A0)→ 0.

As a graded projective cover of M , P is also generated in degree s. Since Ms is a
projective A0-module, Ps ∼= Ms. So

HomA(M,A0) ∼= HomA0
(Ms, A0) ∼= HomA0

(Ps, A0) ∼= HomA(P,A0).

Thus HomA(ΩM,A0) ∼= Ext1
A(M,A0). �
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Proposition 2.11. Let 0 → L → M → N → 0 be an exact sequence of linear
modules. Then it induces the following short exact sequence:

0 // Ext∗A(N,A0) // Ext∗A(M,A0) // Ext∗A(L,A0) // 0.

Proof. As in the proof of Proposition 2.9, the above exact sequence gives exact
sequences 0 → Ωi(L) → Ωi(M) → Ωi(N) → 0, i > 0. For a fixed i, the sequence
0 → Ωi(L)i → Ωi(M)i → Ωi(N)i → 0 splits since all terms are projective A0-
modules by Corollary 2.5. Applying the exact functor HomA0

(−, A0) we get an
exact sequence

0→ HomA0
(Ωi(N)i, A0)→ HomA0

(Ωi(M)i, A0)→ HomA0
(Ωi(L)i, A0)→ 0

which is isomorphic to

0→ HomA(Ωi(N), A0)→ HomA(Ωi(M), A0)→ HomA(Ωi(L), A0)→ 0

since all modules are generated in degree i. By Lemma 1.9, it is isomorphic to

0 // ExtiA(N,A0) // ExtiA(M,A0) // ExtiA(L,A0) // 0.

Putting them together we have:

0 // Ext∗A(N,A0) // Ext∗A(M,A0) // Ext∗A(L,A0) // 0.

�

If a graded A-module M is linear, so are all syzygies Ωi(M)[−i], i > 0. The next
example shows that the linear property of M in general does not imply the linear
property of J iM [−i]:

Example 2.12. Let E be a finite EI category with two objects x and y such that:
AutE(x) = 〈g〉 ∼= AutE(y) = 〈h〉 are cyclic groups of order 2; HomE(x, y) has one
element α on which both AutE(x) and AutE(y) act trivially; and HomE(y, x) = ∅.
Let k be an algebraically closed field of characteristic 2. We put the following grade
on the category algebra A = kE: A0 is spanned by {g, 1x, h, 1y} and A1 is spanned
by α. Consider the projective kE-module Px = kE1x. Obviously, Px is linear, but
JPx ∼= ky is not linear.

However, for some special cases, we can get a conclusion as follows.

Proposition 2.13. Suppose that A0 is a linear A-module. If M is a linear A-
module, then J iM [−i] and M0 are also linear A-modules. In particular, M is
projective viewed as an A0-module (or equivalently, Mi is a projective A0-module
for every i > 0).

Proof. Without loss of generality we assume that M is indecomposable. Since M
is linear, M0 is a projective A0-module and is contained in add(A0), the category
of all A-modules each of which is isomorphic to a direct summand of A⊕m0 for some
m > 0. But A0 is linear, so is M0.

Notice that M and M0 have the same graded projective cover (up to isomor-
phism) as A-modules. Thus we have the following commutative diagram:

0 // ΩM //

��

Ω(M0) //

��

JM // 0

0 // P 0 id //

��

P 0 //

��

0

0 // JM // M // M0
// 0
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Consider the top sequence. The modules M and M0 are linear, so are ΩM [−1] and
Ω(M0)[−1]. Therefore, JM [−1] is also linear by Proposition 2.9. Now replacing M
by JM [−1] and using recursion, we conclude that J iM [−i] is a linear A-module
for every i > 0. This proves the first statement.

Since J iM [−i] is a linear A-module, (J iM [−i])0
∼= (J iM)i ∼= Mi is a projective

A0-module for each i > 0 by Corollary 2.5. Since M =
⊕

i>0Mi as an A0-module,
we deduce that M is a projective A0-module if and only if Mi is a projective A0-
module for every i > 0. �

The following lemma is very useful.

Lemma 2.14. Let M be a non-negatively graded A-module and suppose that A is
a projective A0-module. Then the following are equivalent:

(1) all Ωi(M)j are projective A0-modules, i, j > 0;
(2) all Ωi(M)i are projective A0-modules, i > 0;
(3) all Mi are projective A0-modules, i > 0.

Proof. It is clear that (1) implies (2).
(3) implies (1): Suppose that Mi is a projective A0-module for all i > 0. Let P

be a graded projective cover of M . The surjective homomorphism ϕ : P →M gives
a surjective homomorphism ϕj : Pj → Mj with kernel (ΩM)j . By the hypothesis,
Pj and Mj are projective A0-modules for all j > 0. Then Pj ∼= Mj ⊕ (ΩM)j , so
all (ΩM)j are projective A0-modules for j > 0. Replacing M by ΩM and using
recursion, we conclude that all Ωi(M)j are projective A0-modules for i, j > 0. In
particular, all Ωi(M)i are projective A0-modules.

(2) implies (3): Conversely, suppose that Ωi(M)i is a projective A0-modules for
every i > 0. We use contradiction to show that all Mi are projective A0-modules.
If this not the case, we can find the minimal number n > 0 such that Mn is not a
projective A0-module. As above, consider ϕn : Pn → Mn with kernel (ΩM)n. We
claim that this kernel is not a projective A0-module. Indeed, if it is a projective
A0-module, then it is injective as well, so Pn ∼= (ΩM)n⊕Mn. Consequently, Mn is
isomorphic to a summand of the projective A0-module Pn and must be a projective
A0-module, too. This is impossible. Therefore, (ΩM)n is not a projective A0-
module. Now replacing M by ΩM and using induction, we deduce that Ωn(M)n
is not a projective A0-module. This contradicts our assumption. Therefore, all Mi

are projective A0-modules. �

Now we define quasi-Koszul modules over the graded algebra A.

Definition 2.15. A non-negatively graded A-module M is called quasi-Koszul if

Ext1A(A0, A0) · ExtiA(M,A0) = Exti+1
A (M,A0)

for all i ≥ 0. The algebra A is called a quasi-Koszul algebra if A0 as an A-module
is quasi-Koszul.

A graded A-module M is quasi-Koszul if and only if as a graded Ext∗A(A0, A0)-
module Ext∗A(M,A0) is generated in degree 0. The graded algebra A is a quasi-
Koszul algebra if and only if the cohomology ring Ext∗A(A0, A0) is generated in
degree 0 and degree 1.

The quasi-Koszul property is preserved by the Heller operator. Explicitly, if M
is a quasi-Koszul A-module with M0 being a projective A0-module, then its syzygy
ΩM is also quasi-Koszul. This is because for each i > 1, we have:

ExtiA(ΩM,A0) ∼= Exti+1
A (M,A0)

= Ext1
A(A0, A0) · ExtiA(M,A0)

= Ext1
A(A0, A0) · Exti−1

A (ΩM,A0).
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The identity ExtiA(M,A0) ∼= Exti−1
A (ΩM,A0) is proved in Lemma 2.10.

If A0 is a semisimple k-algebra, quasi-Koszul modules generated in degree 0
coincide with linear modules. This is not true if A0 is only self-injective. Actually,
by the following theorem, every Koszul module is quasi-Koszul, but the converse
does not hold in general. For example, let kG be the group algebra of a finite group
concentrated in degree 0. The reader can check that every kG-module generated
in degree 0 is quasi-Koszul, but only the projective kG-modules are Koszul. If |G|
is not invertible in k, then all non-projective kG-modules generated in degree 0 are
quasi-Koszul but not Koszul.

The following theorem gives us a close relation between quasi-Koszul modules
and Koszul modules.

Theorem 2.16. A graded A-module M generated in degree 0 is Koszul if and only
if it is quasi-Koszul and Ωi(M)i is a projective A0-module for every i > 0.

The following lemma will be used in the proof of this theorem.

Lemma 2.17. Let M be a graded A-module generated in degree 0 with M0 being
a projective A0-module. Then ΩM is generated in degree 1 if and only if every A-
module homomorphism ΩM → A0 extends to an A-module homomorphism JP →
A0, where P is a graded projective cover of M .

Proof. The short exact sequence 0 → ΩM → P → M → 0 induces an exact
sequence 0→ (ΩM)1 → P1 →M1 → 0. Applying the exact functor HomA0

(−, A0)
we get another exact sequence

0→ HomA0(M1, A0)→ HomA0(P1, A0)→ HomA0((ΩM)1, A0)→ 0.

Since M0 is a projective A0-module, M0
∼= P0, so (ΩM)0 = 0. Therefore, ΩM is

generated in degree 1 if and only if ΩM/J(ΩM) ∼= (ΩM)1, if and only if the above
sequence is isomorphic to

0→ HomA0
(M1, A0)→ HomA0

(P1, A0)→ HomA0
(ΩM/JΩM,A0)→ 0.

Here we use the fact that A0 is self-injective and the functor HomA0
(−, A0) is a

dual functor. But the above sequence is isomorphic to

0 // HomA(JM,A0) // HomA(JP,A0) // HomA(ΩM,A0) // 0

since JM and JP are generated in degree 1. Therefore, ΩM is generated in degree
1 if and only if every (non-graded) A-module homomorphism ΩM → A0 extends
to a (non-graded) A-module homomorphism JP → A0. �

Now let us prove the theorem.

Proof. The only if part. Let M be a Koszul A-module. Without loss of generality
we can suppose that M is indecomposable. Notice that all syzygies Ωi(M)[−i] are
also Koszul. Therefore, Ωi(M)i ∼= (Ωi(M)[−i])0 is a projective A0-module for all
i > 0.

Now we show that M is quasi-Koszul, i.e.,

Exti+1
A (M,A0) = Ext1

A(A0, A0) · ExtiA(M,A0)

for all i > 0. By Lemma 2.10, we have Exti+1
A (M,A0) ∼= Ext1

A(Ωi(M), A0) and

ExtiA(M,A0) ∼= HomA(Ωi(M), A0). Therefore, it suffices to show Ext1
A(M,A0) =

Ext1
A(A0, A0) ·HomA(M,A0) since the conclusion follows immediately if we replace

M by (ΩM)[−1] recursively.
To prove this identity, we first identify Ext1

A(M,A0) with HomA(ΩM,A0) by
Lemma 2.10. Take an element x ∈ Ext1

A(M,A0) and let g : ΩM → A0 be the
corresponding homomorphism. Since M is linear, M0 is a projective A0-module,
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and ΩM is generated in degree 1. Thus by the previous lemma, g extends to JP 0,
and hence there is a homomorphism g̃ : JP 0 → A0 such that g = g̃ι, where P 0 is a
graded projective cover of M and ι : ΩM → JP 0 is the inclusion.

ΩM
ι //

g

��

JP 0

g̃||xxxxxxxx

A0

We have the following commutative diagram:

0 // ΩM

ι

��

// P 0 // M

p

��

// 0

0 // JP 0 // P 0 // P 0
0

// 0

where the map p is defined to be the projection of M onto M0
∼= P 0

0 .
The map g̃ : JP 0 → A0 gives a push-out of the bottom sequence. Consequently,

we have the following commutative diagram:

0 // ΩM

ι

��

// P 0 // M

p

��

// 0

0 // JP 0 //

g̃

��

P 0

��

// P 0
0

// 0

0 // A0
// E // P 0

0
// 0.

Since P0 ∈ add(A0), we can find some m such P0 can be embedded into A⊕m0 .

Thus the bottom sequence y ∈ Ext1
A(P0, A0) ⊆

⊕m
i=1 Ext1

A(A0, A0) and we can

write y = y1 + . . .+ ym where yi ∈ Ext1
A(A0, A0) is represented by the sequence

0 // A0
// Ei // A0

// 0 .

Composed with the inclusion ε : P0 → A⊕m0 , the map ε ◦ p = (p1, . . . , pm) where
each component pi is defined in an obvious way. Consider the pull-backs:

0 // A0
// Fi //

��

M //

pi

��

0

0 // A0
// Ei // A0

// 0.

Let xi be the top sequence. Then x =
∑m
i=1 xi =

∑m
i=1 yipi ∈ Ext1

A(A0, A0) ·
HomA(M,A0) and hence Ext1

A(M,A0) ⊆ Ext1
A(A0, A0) ·HomA(M,A0). The other

inclusion is obvious.

The if part. By Proposition 2.6, it suffices to show that Ωi(M) is generated in
degree i, i > 0. But we observe that if M is quasi-Koszul and Ωi(M)i are projective
A0-modules for all i > 0, then each Ωi(M) has these properties as well. Thus we
only need to show that ΩM is generated in degree 1 since the conclusion follows if
we replace M by ΩM recursively. By the previous lemma, it suffices to show that
each (non-graded) A-module homomorphism g : ΩM → A0 extends to JP 0.
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The map g gives a push-out x ∈ Ext1
A(M,A0) as follows:

0 // ΩM

g

��

// P 0

��

// M // 0

0 // A0
// E // M // 0

Since M is quasi-Koszul, x is contained in Ext1
A(A0, A0) · HomA(M,A0). Thus

x =
∑
i yihi with yi ∈ Ext1

A(A0, A0) and hi ∈ HomA(M,A0), and each yihi gives
the following commutative diagram, where the bottom sequence corresponds to yi:

0 // A0
// Ei

��

// M

hi

��

// 0

0 // A0
// Fi // A0

// 0

(2.2)

By the natural isomorphism Ext1
A(M,A0) ∼= HomA(ΩM,A0) (see Lemma 2.10),

each yihi corresponds an A-homomorphism gi : ΩM → A0 such that the following
diagram commutes:

0 // ΩM

gi

��

// P 0

��

// M // 0

0 // A0
// Ei // M // 0

(2.3)

Diagrams 2.2 and 2.3 give us:

0 // ΩM
ι // JP 0

j̃

��

// JM

j

��

// 0

0 // ΩM //

gi

��

P 0

h̃i
��

// M //

hi

��

0

0 // A0
ρ // Fi // A0

// 0

Since JM is sent to 0 by hij, there is a homomorphism ϕi from JP0 to the first
term A0 of the bottom sequence such that ρϕi = h̃ij̃. Then gi factors through ϕi,
i.e., gi = ϕiι. Since g =

∑
i gi, we know that g extends to JP 0. This finishes the

proof. �

An easy corollary of the above theorem is:

Corollary 2.18. Suppose that A is projective viewed as an A0-module. Then a
graded A-module M is linear if and only if it is quasi-Koszul as an A-module and
projective as an A0-module (or equivalently all Mi are projective A0-modules).

Proof. By Lemma 2.14, all Ωi(M)i are projective A0-modules for i > 0 if and only
if Ms is a projective A0-module for every s > 0. The conclusion follows from the
previous theorem. �

In particular, if A0 is is a linear A-module, then by letting M = A in Proposition
2.13, we deduce that all Ai are projective A0-modules for i > 0.

3. Generalized Koszul Algebras

In this section we generalize to our context some useful results on classical
Koszul algebras which appear in [4]. As before, throughout this section A is a
non-negatively graded, locally finite associative k-algebra with A0 being a self-
injective algebra. For two graded A-modules M and N , we use HomA(M,N) and
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homA(M,N) to denote the space of all module homomorphisms and the space of
graded module homomorphisms respectively. The derived functors Ext and ext
correspond to Hom and hom respectively.

Recall that A a quasi-Koszul algebra if A0 is quasi-Koszul as an A-module. In
particular, if A0 is a linear A-module, then A is a quasi-Koszul algebra.

Theorem 3.1. The graded algebra A is quasi-Koszul if and only if the opposite
algebra Aop is quasi-Koszul.

Proof. Since the quasi-Koszul property is invariant under the Morita equivalence,
without loss of generality we can suppose that A is a basic algebra. Therefore,
A0 is also a basic algebra. Let M and N be two graded A-modules. We claim
ExtiA(M,N) ∼= ExtiAop(DN,DM) for all i > 0, where D is the duality functor
Homk(−, k). Indeed, Let

. . . // P 2 // P 1 // P 0 // M // 0

be a projective resolution of M . Applying the functor HomA(−, N) we get the
following chain complex C∗:

0 // HomA(P 0, N) // HomA(P 1, N) // . . . .

Using the natural isomorphism HomA(P i, N) ∼= HomAop(DN,DP i), we get another
chain complex E∗ isomorphic to the above one:

0 // HomAop(DN,DP 0) // HomAop(DN,DP 1) // . . . .

Notice that all DP i are injective Aop-modules. Thus

ExtiA(M,N) ∼= Hi(C∗) ∼= Hi(E∗) ∼= ExtiAop(DN,DM)

which is exactly our claim.
Now let M = N = A0. Then ExtiA(A0, A0) ∼= ExtiAop(DA0, DA0). Since A0 is

self-injective and basic, it is a Frobenius algebra. Therefore, DA0 is isomorphic to
Aop0 as a left Aop0 -module (and hence as a left Aop-module). Consequently, A0 is a
quasi-Koszul A-module if and only if Aop0 is a quasi-Koszul Aop-module. �

However, if A0 is a linear A-module, Aop0 need not be a linear Aop-module, as
shown by the following example.

Example 3.2. Let E be a finite EI category with two objects x and y such that:
AutC(x) = 〈g〉 is a cyclic group of order 2; AutC(y) is a trivial group; HomE(x, y) =
{α} (thus α ◦ g = α) and HomE(y, x) = ∅. Let k be an algebraically closed field of
characteristic 2. The category algebra A = kE is of dimension 4. Let A0 be the space
spanned by 1x, g and 1y, and let A1 be the one-dimensional space spanned by α. The
reader can check that A0 is a linear A-module. The opposite algebra Aop = kEop
can also be graded in a similar way, but Aop0 is not a linear Aop-module. However,
we will show in Section 6 that Aop is a quasi-Koszul algebra.

Proposition 3.3. The graded algebra A is Koszul if and only if Ωi(A0)i are pro-
jective A0-modules for all i > 0, and whenever extiA(A0, A0[n]) 6= 0 we have n = i.

Proof. If A is a Koszul algebra, then A0 is a linear A-module, and by Corollary
2.5 all Ωi(A0)i are projective A0-modules. Moreover, there is a linear projective
resolution

. . . // P 2 // P 1 // P 0 // A0
// 0

with P i being generated in degree i. Applying homA(−, A0[n]) we find that all terms
in this complex except homA(Pn, A0[n]) are 0. Consequently, extiA(A0, A[n]) 6= 0
unless i = n.
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Conversely, suppose that Ωi(A0)i is a projective A0-module for each i > 0 and
extiA(A0, A0[n]) = 0 unless n = i, we want to show that Ωi(A0) is generated in
degree i by induction. Obviously, Ω0(A0) = A0 is generated in degree 0. Suppose
that Ωj(A0) is generated in degree j for 0 6 j 6 i. Now consider Ωi+1(A0). By
applying the graded version of Lemma 2.10 recursively, we have

homA(Ωi+1(A0), A0[n]) = exti+1
A (A0, A0[n]).

The right-hand side is 0 unless n = i+ 1, so Ωi+1(A0) is generated in degree i+ 1.
By induction we are done. �

The reader can check that the conclusion of this proposition is also true for linear
modules. i.e., M is a linear A-module if and only if extiA(M,A0[n]) 6= 0 implies
n = i.

We can define a tensor algebra T (A) generated by A1, which is a (A0, A0)-
bimodule. Explicitly,

T (A) = A0 ⊕A1 ⊕ (A1 ⊗A1)⊕ (A1 ⊗A1 ⊗A1)⊕ . . . ,
where all tensors are over A0 and we use ⊗ rather than ⊗A0

to simplify the notation.
This tensor algebra has a natural grading. Clearly, A is a quotient algebra of T (A).
Let I be the kernel of the quotient map q : T (A)→ A. We say that A is a quadratic
algebra if the ideal I has a set of generators contained in A1 ⊗A1.

Theorem 3.4. If A is a Koszul algebra, then it is a quadratic algebra.

Proof. This proof is a modification of the proofs of Theorem 2.3.2 and Corollary
2.3.3 in [4]. First, consider the exact sequence

0 // W // A⊗A1
// A // A0

// 0

where W is the kernel of the multiplication. Clearly, Ω(A0) ∼= J =
⊕

i>1Ai. Since

the image of (A⊗A1)1 = A0⊗A1 under the multiplication is exactly A1 = Ω(A0)1,
A ⊗ A1 is a projective cover of Ω(A0) and Ω2(A0) = W ⊆ J ⊗ A1. Therefore,
W is generated in degree 2, and hence W/JW ∼= W2 is concentrated in degree 2.
Observe that A is a quotient algebra of T (A) with kernel I. Let Rn be the kernel
of the quotient map A⊗n1 → An.

If A is not quadratic, we can find some x ∈ Rn with n > 2 such that x is not
contained in the two-sided ideal generated by

∑n−1
i=2 Ri. Consider the following

composite of maps:

A⊗n1 = A⊗n−1
1 ⊗A1

p // An−1 ⊗A1
m // An .

Clearly p(x) ∈W since m(p(x)) = 0. We show p(x) /∈ JW by contradiction.
Indeed, if p(x) ∈ JW , then p(x) ∈ A1W since JW ∼=

⊕
i>3Wi = A1W (notice

that W is generated in degree 2). Therefore, we can express p(x) as a linear
combination of vectors of the form λ ·w with λ ∈ A1 and w ∈W . But W ⊆ J⊗A1,
so each w can be expressed as

∑
i w
′
i ⊗ λ′i with w′i ∈ An−2, λ′i ∈ A1 such that∑s

i=1 w
′
i · λ′i = 0 by the definition of W .

Since there is a surjective product map ϕ : A⊗n−2
1 � An−2, we can choose a

pre-image v1
i ⊗ . . .⊗ v

n−2
i ∈ ϕ−1(w′i) for each i and define

w̃ =

s∑
i=1

v1
i ⊗ . . .⊗ vn−2

i ⊗ λ′i

which is contained in Rn−1 clearly. Observe that p(λ ⊗ w̃) = λ · w. Since p(x)
is a linear combination of vectors of the form λ · w, by the above process we can
get some y which is a linear combination of vectors of the form λ ⊗ w̃ such that
p(y) = p(x). Clearly, p(x− y) = 0 and y ∈ A1 ⊗Rn−1.
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Consider the following short exact sequence

0 // Rn−1
// A⊗n−1

1
// An−1

// 0.

Since A0 is a linear A-module, so is J [−1] = Ω(A0)[−1]. Therefore, by Corollary
2.5, A1

∼= J [−1]0 is a projective A0-module. Therefore, the following sequence is
also exact:

0 // Rn−1 ⊗A1
// A⊗n1

p // An−1 ⊗A1
// 0.

Thus x− y ∈ Rn−1⊗A1 since p(x− y) = 0. It follows x ∈ A1⊗Rn−1 +Rn−1⊗A1,
which contradicts our choice of x.

We proved x /∈ JW . Then p(x) ∈ W/JW ∼= W2 is of degree 2. But this is
impossible since p as a graded homomorphism sends x ∈ Rn with n > 2 to an
element of degree n. �

We can define the Koszul complex for A in a similar way to the classical situation.
Let A ∼= T (A)/(R) be quadratic with R ⊆ A1 ⊗ A1 being a set of relations.

Define Pnn =
⋂n−2
i=0 A

⊗i
1 ⊗ R ⊗ A

⊗n−i−2
1 ⊆ A⊗n1 . In particular, P 0

0 = A0, P 1
1 = A1

and P 2
2 = R. Let Pn = A ⊗ Pnn such that A0 ⊗ Pnn ∼= Pnn is in degree n. Define

dn : Pn → Pn−1 to be the restriction of A⊗A⊗n1 → A⊗A⊗n−1
1 by a⊗v1⊗. . .⊗vn 7→

av1 ⊗ v2 ⊗ . . .⊗ vn. The reader can check dn−1dn = 0 for n > 1. Therefore we get
the following Koszul complex K∗:

. . . // P 3 d3 // A⊗R d2 // A⊗A1
d1 // A // 0.

Theorem 3.5. Let A ∼= T (A)/(R) be a quadratic algebra. Then A is a Koszul
algebra if and only if the Koszul complex is a projective resolution of A0.

Proof. One direction is trivial. Now suppose that A0 is a linear A-module. The
Koszul complex K∗ of A has the following properties:
(1). Let Zn be the kernel of dn : Pn → Pn−1. The restricted map dnn :

Pnn = A0 ⊗
( n−2⋂
i=0

A⊗i1 ⊗R⊗A
⊗n−i−2
1

)
→ Pn−1

n = A1 ⊗ (

n−3⋂
i=0

A⊗i1 ⊗R⊗A
⊗n−i−3
1 )

is injective. Therefore Zni = 0 for every i 6 n.
(2). Znn+1, the kernel of the map dn+1

n :

Pnn+1 = A1⊗
( n−2⋂
i=0

A⊗i1 ⊗R⊗A
⊗n−i−2
1

)
→ Pn−1

n+1 = A2⊗
( n−3⋂
i=0

A⊗i1 ⊗R⊗A
⊗n−i−3
1

)
is

A1 ⊗
( n−2⋂
i=0

A⊗i1 ⊗R⊗A
⊗n−i−2
1

)
∩ (R⊗A⊗n−1

1 ) =

n−1⋂
i=0

A⊗i1 ⊗R⊗A
⊗n−i−1
1

which is exactly Pn+1
n+1 (or dn+1

n+1(Pn+1
n+1 ) since dn+1

n+1 is injective by the last property).
We claim that each Pn = A⊗Pnn is a projective A-module. Clearly, it is enough

to show that each Pnn = Zn−1
n is a projective A0-module. We prove the following

stronger conclusion. That is, Zni are projective A0-modules for i ∈ Z and n > 0.
We use induction on n.

Since A0 is a linear A-module, by Proposition 2.13, Ai are projective A0-modules
for all i > 0. The conclusion is true for Z0 ∼= J since J0 = 0 and Jm = Am for
m > 1. Suppose that it is true for l 6 n. That is, all Zli are projective A0-modules
for l 6 n and i ∈ Z. Consider l = n + 1. By the second property described
above, Pn+1

n+1 = Znn+1, which is a projective A0-module by the induction hypothesis.
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Therefore, Pn+1 = A⊗ Pn+1
n+1 is a projective A-module, so Pn+1

i are all projective
A0-modules for i ∈ Z. But the following short exact sequence of A0-modules splits

0 // Zn+1
i

// Pn+1
i

// Zni // 0

since Zni is a projective A0-module by the induction hypothesis. Now as a direct
summand of Pn+1

i which is a projective A0-module, Zn+1
i is a projective A0-module

as well. Our claim is proved by induction.
We claim that this complex is acyclic. First, the sequence

P 1 = A⊗A1
// P 0 = A⊗A0

// A0
// 0

is right exact. By induction on n > 1

extn+1
A (A0, A0[m]) = coker

(
homA(Pn, A0[m])→ homA(Zn, A0[m])

)
.

By Property (1), Znm = 0 if m < n + 1. If m > n + 1, homA(Pn, A0[m]) = 0
since Pn is generated in degree n, so extn+1

A (A0, A0[m]) = homA(Zn, A0[m]) by the
above identity. But the left-hand side of this identity is non-zero only if m = n+ 1
since A0 is linear. Therefore, homA(Zn, A0[m]) = 0 for m > n + 1. Consequently,
Zn is generated in degree n + 1. By property (2), Znn+1 = dn+1

n+1(Pn+1
n+1 ), so Zn =

dn+1(Pn+1) since both modules are generated in degree n+1. Therefore, the Koszul
complex is acyclic, and hence is a projective resolution of A0. �

4. Generalized Koszul Duality

In this section we prove the Koszul duality. As before, A is a non-negatively
graded, locally finite algebra with A0 being a self-injective algebra. Define Γ =
Ext∗A(A0, A0) which has a natural grading. Notice that Γ0

∼= Aop0 is also a self-
injective algebra. Let M be a graded A-module. Then Ext∗A(M,A0) is a graded
Γ-module. Thus we can define a functor E = Ext∗A(−, A0) from A-gmod to Γ-gmod.

Theorem 4.1. If A is a Koszul algebra, then E = Ext∗A(−, A0) gives a duality
between the category of linear A-modules and the category of linear Γ-modules.
That is, if M is a linear A-module, then E(M) is a linear Γ-module, and EΓEM =
Ext∗Γ(EM,Γ0) ∼= M .

Proof. Since M and A0 both are linear, by Proposition 2.13 M0 and JM [−1] are lin-
ear, where J =

⊕
i>1Ai. Furthermore, we have the following short exact sequence

of linear modules:

0 // ΩM [−1] // Ω(M0)[−1] // JM [−1] // 0.

As in the proof of Proposition 2.9, this sequence induces exact sequences recursively
(see diagram 2.1):

0 // Ωi(M)[−i] // Ωi(M0)[−i] // Ωi−1(JM [−1])[1− i] // 0,

and gives exact sequences of A0-modules:

0 // Ωi(M)i // Ωi(M0)i // Ωi−1(JM [−1])i−1
// 0.

Applying the exact functor HomA0(−, A0) and using the following isomorphism for
a graded A-module N generated in degree i

HomA(N,A0) ∼= HomA(Ni, A0) ∼= HomA0
(Ni, A0, )

we get:

0→ HomA(Ωi−1(JM [−1]), A0)→ HomA(Ωi(M0), A0)→ HomA(ΩiM,A0)→ 0.
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By Lemma 2.10, this sequence is isomorphic to

0→ Exti−1
A (JM [−1], A0)→ ExtiA(M0, A0)→ ExtiA(M,A0)→ 0.

Now let the index i vary and put these sequences together. We have:

0 // E(JM [−1])[1] // E(M0) // EM // 0.

Let us focus on this sequence. We claim Ω(EM) ∼= E(JM [−1])[1]. Indeed, since
M0 is a projective A0-module and the functor E is additive, E(M0) is a projective
Γ-module. Since JM [−1] is Koszul, JM [−1] is quasi-Koszul and hence E(JM [−1])
as a Γ-module is generated in degree 0. Thus E(JM [−1])[1] is generated in degree 1,
and E(M0) is minimal. This proves the claim. Consequently, Ω(EM) is generated
in degree 1 as a Γ-module. Moreover, replacing M by JM [−1] (which is also linear)
and using the claimed identity, we have

Ω2(EM) = Ω(E(JM [−1])[1]) = Ω(E(JM [−1])[1] = E(J2M [−2])[2],

which is generated in degree 2. By recursion, we know that Ωi(EM) ∼= E(J iM [−i])[i]
is generated in degree i for all i > 0. Thus EM is a linear Γ-module. In particular
for M = A,

EA = Ext∗A(A,A0) = HomA(A,A0) = Γ0

is a linear Γ-module.
Since Ωi(EM) is generated in degree i and

Ωi(EM)i ∼= E(J iM [−i])[i]i ∼= E(J iM [−i])0

= HomA(J iM [−i], A0) ∼= HomA(Mi, A0),

we have

HomΓ(Ωi(EM),Γ0) ∼= HomΓ0
(Ωi(EM)i,Γ0)

∼= HomΓ0(HomA(Mi, A0),Γ0)

∼= HomΓ0
(HomA0

(Mi, A0),Γ0)
∼= Mi.

The last isomorphism holds because A0 is self-injective and Γ0
∼= Aop0 .

We have proved that EM is a linear Γ-module. Therefore, (Ωi(EM))i is a projec-
tive Γ0-module for every i > 0. Applying Lemma 2.10 recursively, ExtiΓ(EM,Γ0) ∼=
HomΓ(Ωi(EM),Γ0) ∼= Mi for every i > 0. Adding them together, EΓE(M) ∼=⊕∞

i=0Mi
∼= M .

Now we have EΓ(E(A)) = EΓ(Γ0) ∼= A. Moreover, Γ is a graded algebra with
Γ0
∼= Aop0 being self-injective as an algebra and linear as a Γ-module. Using this

duality, we can exchange A and Γ in the above reasoning and get EEΓ(N) ∼= N
for an arbitrary linear Γ-module N . Thus E induces an equivalence between these
two categories. �

Remark 4.2. We can also use homA(−, A0) to define the functor E on the category
of linear A-modules, namely E :=

⊕
i>0 extiA(−, A0[i]). Indeed, for a linear A-

module M , we have:

Ext∗A(M,A0) =
⊕
i>0

ExtiA(M,A0)

=
⊕
i>0

⊕
j∈Z

extiA(M,A0[j])

=
⊕
i>0

extiA(M,A0[i])

since extiA(M,A0[j]) = 0 for i 6= j, see the paragraph after Proposition 3.3.
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Now we want to study the Koszul duality on the level of derived categories. We
introduce the following notation: let Db

grA be the bounded derived category of A-
gmod, and define T to be the category formed by objects T [i] where T ranges over
indecomposable summand of A0 and i ∈ Z.

Lemma 4.3. Let A be a locally finite graded algebra with A0 being a self-injective
algebra and a linear A-module. Let Γ = Ext∗A(A0, A0). Then we have:

(1) If pdAA0 <∞, then dimk Γ <∞.
(2) If the global dimension gldimA <∞, then gldimA0 <∞, pdAA0 <∞;
(3) Conversely, if gldimA0 <∞, pdAA0 <∞, and dimk A <∞, then gldimA <
∞.

Proof. Notice that Γi = ExtiA(A0, A0) = 0 for all i > m+ 1. If 0 6 i 6 m, then

Γi = ExtiA(A0, A0) ∼= HomA(Ωi(A0), A0)

which is finite-dimensional since Ωi(A0) is a finitely generated A-module and A is
locally finite. Therefore, dimk Γ <∞. This proves the first statement.

If gldimA = m < ∞, clearly pdAA0 6 m. Take an arbitrary A0-module M .
Viewed as a A-module concentrated in degree 0, A has a projective resolution

0 // Pm // Pn−1 // . . . // P 0 // M // 0,

which induces

0 // Pm0 // Pn−1
0

// . . . // P 0
0

// M0
// 0.

This is a projective resolution of the A0-module M = M0. Therefore, pdA0
M 6 m.

So gldimA0 6 m, and (2) is proved.
Conversely, assume that pdAA0 < ∞, gldimA0 < ∞ and dimk A < ∞. To

prove gldimA < ∞, it suffices to show pdA S < ∞ for each simple A-module S
since every A-module has a composition series of finite length. Clearly, S is still
simple viewed as a A0-module. Therefore, there exists a number m > 0 such that
Ωm+1
A0

(S) = 0 but ΩmA0
(S) is a non-zero projective A0-module. Consider the exact

sequence of A0-modules:

0 // ΩmA0
(S) // P // Ωm−1

A0
(S) // 0.

Each module appearing in this sequence can be viewed as an A-module concentrated
in degree 0. Notice that the first two terms are projective A0-modules and hence
have finite projective dimensions as A-modules. Therefore, pdA Ωm−1

A0
(S) <∞. By

induction, pdA S <∞. �

Theorem 4.4. Suppose that A is a Koszul algebra such that gldimA0, pdAA0,
gldim Γ0 and pdΓ Γ0 are all finite. Then Db

grA
∼= Db

grΓ
op as triangulated categories.

Proof. By the above lemma, both A and Γ are finite-dimensional algebras. There-
fore, gldimA and gldim Γ are also finite. Consequently, the category T generates
Db
grA as a triangulated category, and the category of all indecomposable graded

projective Γ-modules generates Db
grΓ. Now the conclusion can be deduced from

Theorem 4.3.4 in [14] by letting T = A0. We remind the reader that functor GA0 in
[14] is Ext∗A(A0,−) instead of E = Ext∗A(−, A0) used by us throughout this paper,
and the algebra Γ in his paper is set to be Ext∗A(A0, A0)op. �
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5. Application to Directed Categories

In this section we will apply the general theory to a type of structures called
directed categories, for which there exist very nice relations between stratification
theory and Koszul theory and a nice correspondence between our generalized Koszul
theory and the classical theory. All categories C we consider in this section are
locally finite k-linear categories with finitely many objects, that is, for x, y ∈ Ob C,
the set of morphisms C(x, y) is a finite-dimensional k-vector space. To simplify the
technical part, we suppose furthermore that C is skeletal, i.e., x ∼= y implies x = y
for x, y ∈ Ob C.

Definition 5.1. A locally finite k-linear category C is a directed category if there
is a partial order 6 on Ob C such that C(x, y) 6= 0 only if x 6 y.

Correspondingly, we define directed algebras.

Definition 5.2. A finite-dimensional algebra A is called a directed algebra with
respect to a partially ordered set of orthogonal idempotents {ei;6}ni=1 if

∑n
i=1 ei = 1

and HomA(Aei, Aej) ∼= eiAej 6= 0 implies ej 6 ei.

Notice that in the above definition we do not require the idempotents ei to be
primitive. Clearly, every algebra A is always directed with respect to the trivial set
{1}.

There is a bijective correspondence between directed categories and directed
algebras. Let A be a directed algebra with respect to a poset of orthogonal idem-
potents ({ei}ni=1,6). Then we can construct a directed category A in the follow-
ing way: ObA = {ei}ni=1 with the same partial order, and A(ei, ej) = ejAei ∼=
HomA(Aej , Aei). The reader can check that A is indeed a directed category. We
call A the associated category of A.

Conversely, given a directed category A with the poset (ObA,6), we obtain an
algebra A which is directed with respect to the poset of orthogonal idempotents
({1x}x∈Ob A,6), namely, 1x 6 1y if and only if x 6 y. As a k-vector space,
A =

⊕
x,y∈Ob AA(x, y). For two morphisms α : x→ y and β : z → w, the product

β · α = 0 if y 6= z, otherwise it is the composite morphism βα. Since every vector
in A is a linear combination of morphisms in A, the multiplication of morphisms
can be extended linearly to a well defined product in A. The reader can check that
the algebra A we get in this way is indeed a directed algebra, which is called the
associated algebra of A.

It is well known that A-mod is equivalent to the category of finite-dimensional
k-linear representations of A. If one of A and A is graded, then the other one can be
graded as well. Moreover, A-gmod is equivalent to the category of finite-dimensional
graded k-linear representations of A. For more details, see [16]. Because of these
facts, we may view a directed category A as a directed algebra with respect to the
set of idempotents {1x | x ∈ ObA} and abuse notation and terminologies. For
example, we may say idempotents in A, ideals of A and so on. We hope this would
not cause confusions to the reader and point out that all results in previous sections
can be applied to directed categories.

Directed categories generalize k-linearizations of finite EI categories. Explicitly,
let E be a skeletal finite EI category. Consider the category algebra kE with a set
of idempotents {1x}x∈Ob E on which there is a partial order ≤ such that 1x ≤ 1y
if and only if E(x, y) 6= ∅. Then the category algebra kE is directed with respect

to this poset of idempotents, so we can construct a direct category Ẽ by the above
correspondence. Actually, Ẽ is precisely the k-linearization of E .

Let C be a directed category. A C-module (or a representation of C) is defined to
be a k-linear functor from C to the category of finite-dimensional k-vector spaces.
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The morphism space of C can be decomposed as the direct sum of C1x with x
ranging over all objects, where by C1x we denote the vector space formed by all
morphisms with source x. Therefore, each C1x is a projective C-module, and every
indecomposable projective C-module is isomorphic to a direct summand of a certain
C1x. The isomorphism classes of simple C(x, x)-modules with x varying within Ob C
give rise to isomorphism classes of simple C-modules. Explicitly, let V be a simple
C(x, x)-module for some object x, we can construct a simple C-module S: S(x) = V
and S(y) = 0 for y 6= x. These results are well known for finite EI categories, see
[20].

Our next task is to translate some results on finite EI categories in Section 2 of
[20] to directed categories. First, we want to show that every directed category is
stratified with respect to the given partial order.

Proposition 5.3. Let D and E be full subcategories of a directed category C such
that ObD ∪ Ob E = Ob C, ObD ∩ Ob E = ∅, and C(x, y) = 0 for x ∈ ObD and
y ∈ Ob E. Let e =

∑
x∈Ob D 1x and I = CeC. Then I is a stratified ideal of C.

Proof. The proof is similar to that of Proposition 2.2 in [20]. Clearly I is idempo-
tent. Notice that Ce is the space spanned by all morphisms with sources contained
in ObD and eCe is the space spanned by all morphisms with both sources and
targets contained in ObD. Since C(x, y) = 0 for x ∈ ObD and y ∈ Ob E , these two
spaces coincide, i.e., Ce = eCe. In particular, Ce is projective eCe-module, here eCe
is an algebra for which the associated directed category is precisely D. Therefore,
ToreCen (Ce, eC) = 0 for n > 1. Furthermore,

Ce⊗eCe eC = eCe⊗eCe eC ∼= eC.

We claim eC = CeC. Clearly, eC ⊆ CeC. On the other hand, since we just proved
Ce = eCe, we have CeC = eCeC ⊆ eC. Therefore, eC = CeC as we claimed. In
conclusion, I is indeed a stratified ideal of C. �

Corollary 5.4. Every directed category C is stratified with respect to the give partial
order on Ob C.

Proof. The partial order 6 on Ob C gives a filtration on Ob C in the following way:
let S1 be a set containing a maximal object in Ob C, S2 is formed by adding a
maximal object in Ob C \ S1 into S1, S3 is formed by adding a maximal object in
Ob C \ S2 into S2, and so on. Consider the full subcategories Di formed by Si and
let ei =

∑
x∈Si 1x. Then the ideals CeiC give a stratification of C by the previous

proposition. �

Now we want to describe standard modules and give a characterization of stan-
dardly stratified directed categories with respect to a particular pre-order. Before
doing that, we need to define this pre-order on a complete set of primitive idempo-
tents of C (or precisely, primitive idempotents of the assciated algebra). For every
object x, C(x, x) = 1xC1x is a finite-dimensional k-algebra, so we can choose a com-
plete set of orthogonal primitive idempotents Ex = {eλ}λ∈Λx with

∑
λ∈Λx

eλ = 1x.

In this way we get a complete set of orthogonal primitive idempotents
⊔
x∈Ob C Ex.

The partial order 6 on Ob C can be applied to define a pre-ordered set (Λ,�) to
index all these primitive idempotents, namely for eλ ∈ Ex and eµ ∈ Ey, eλ � eµ if
and only if x 6 y. We can check that � is indeed a pre-order. We denote eλ ≺ eµ
if eλ � eµ but eµ � eλ for λ, µ ∈ Λ. Notice that indecomposable summands of C
(viewed as an algebra) can be indexed by these primitive idempotents in a obvious
way, namely Pλ = Ceλ. Therefore, the pre-ordered set (Λ,�) can also be used to
index all indecomposable summands of C.
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We define standard C-modules in the following way:

∆λ = Pλ/
∑

µ�λ, µ∈Λ

trPµ(Pλ),

where trPµ(Pλ) is the trace of Pµ in Pλ. The following proposition gives a descrip-
tion of standard C-modules with respect to the above pre-order.

Proposition 5.5. The standard C-module ∆λ is only supported on x with value
∆λ(x) ∼= 1xCeλ, where x ∈ Ob C and eλ ∈ Ex.

Proof. Let us first analyze the structure of Pλ = Ceλ. Since eλ ∈ Ex, Pλ is a direct
summand of C1x. The value of C1x on an arbitrary object y is 1yC1x, the space of all
morphisms from x to y. Therefore, the value of Pλ on y is 1yCeλ. By our definition
of the partial order on Ob C, if x 
 y, then there is no nontrivial morphisms from
x to y. Therefore, 1yC1x and hence 1yCeλ are 0. We deduce immediately that ∆λ

is only supported on objects y satisfying x 6 y.
Let y be an object such that y > x. Then every eµ ∈ Ey satisfies eµ � eλ.

Since
∑
eµ∈Ey eµ = 1y, by taking the sum we find that trC1y (Pλ) is contained in∑

µ�λ, µ∈Λ trPµ(Pλ). The value on y of trC1y (C1x) is 1yC1x. Since Pλ = Ceλ is a

direct summand of C1x, the value on y of trC1y (Pλ) is 1yCeλ. Consequently, the
value of

∑
µ�λ, µ∈Λ trPµ(Pλ) on y contains 1yCeλ, which equals the value of Pλ on

y. Therefore, the value of
∑
µ�λ, µ∈Λ trPµ(Pλ) on y is precisely 1yCeλ, so the value

of ∆λ on y is 0.
We have proved that ∆λ is only supported on x. Clearly, its value on x is

1xCeλ. �

This proposition tells us that standard modules are exactly indecomposable di-
rect summands of

⊕
x∈Ob C C(x, x) (viewed as a C-module by identifying it with the

quotient module
⊕

x,y∈Ob C C(x, y)/
⊕

x 6=y C(x, y)).

Definition 5.6. A directed category C is said to be standardly stratified if every
(indecomposable) projective module Pλ has a ∆-filtration by standard modules.

To simplify the expression, we stick to the following convention frow now on:

Convention: When we say a directed category is standardly stratified, we al-
ways refer to the preorder � induced by the given partial order 6 on the set of
objects.

This definition is very simple compared to the definition of standardly stratified
algebras (for example, the definition in [6]). However, from the previous proposition
we find that every standard module ∆λ of C satisfies the following condition: if Sµ
and Sν are two different composition factors of ∆λ, then both Sµ � Sν and Sν � Sµ
(but in general Sµ � Sν). Moreover, If Sµ is a composition factor of the kernel Kλ of
the surjection Pλ → ∆λ, then Sµ � Sλ since Kλ is only supported on objects y > x,
here x is the object where Sλ is supported. Therefore, if C satisfies the requirement
in the above definition, then the associated algebra is standardly stratified as well.

The next theorem characterizes standardly stratified directed categories.

Theorem 5.7. Let C be a directed category. Then C is standardly stratified if and
only if the morphism space C(x, y) is a projective C(y, y)-module for every pair of
objects x, y ∈ Ob C. Moreover, if C is standardly stratified, then

⊕
x∈ObC C(x, x) as

a C-module has finite projective dimension.

Proof. Suppose that C is standardly stratified and take two arbitrary objects x and y
in C. Since 0 is regarded as a projective module, we can assume C(x, y) 6= 0 and want
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to show that it is a projective C(y, y)-module. Consider the projective C-module
C1x, which has a filtration with factors standard modules. Since each standard
module is only supported on one object, the value of C1x on y is exactly the sum of
these standard modules with non-zero values on y. This sum is direct since standard
modules supported on y are non-comparable with respect to the pre-order and
therefore there is no extension between them (or because by the previous proposition
each of these standard modules is projective viewed as a C(y, y)-module). Therefore,
the value of C1x on y is a projective C(y, y)-module. But the value of C1x on y is
precisely C(x, y), so the only if part is proved.

Conversely, let Pλ = Ceλ be an indecomposable projective C-module. Its value
on an arbitrary object y is 1yCeλ ∼= 1yC1x which is either 0 or isomorphic to a
direct summand of C(x, y). If C(x, y) is a projective C(y, y)-module, then the value
of Pλ on y is a projective C(y, y)-module as well. This value can be expressed
as a direct sum of standard modules supported on y since standard modules are
exactly indecomposable direct summands of

⊕
x∈Ob C C(x, x). Therefore we can get

a filtration of Pλ by standard modules.
It is well known that the projective dimension of a standard module is finite if

the algebra is standardly stratified. Since
⊕

x∈ObC C(x, x) as a C-module is a direct
sum of standard modules, the last statement follows from this fact immediately. �

If the directed category C is standardly stratified, then all standard modules
have finite projective dimensions. But the converse is not true in general. However,
we will prove later that for a finite EI category, all standard modules have finite
projective dimension if and only if this category is standardly stratified with respect
to the canonical pre-order.

From now on we suppose that C is a graded category, that is, there is a grading
on the morphisms in C such that Ci · Cj ⊆ Ci+j , where we denote the subspace
spanned by all morphisms with grade i by Ci. Furthermore, C is supposed to satisfy
the following condition: Ci · Cj = Ci+j . Every vector in Ci is a linear combination
of morphisms with degree i. Clearly, Ci =

⊕
x,y∈Ob C C(x, y)i. We always suppose

Ci = 0 for i < 0 and C0 =
⊕

x∈Ob C C(x, x). This is equivalent to saying that C0 is
the direct sum of all standard C-modules by Proposition 5.5.

Given a graded directed category C, we can apply the functor E = Ext∗C(−, C0)
to construct the Yoneda category E(C0): ObE(C0) = Ob C and E(C0)(x, y)n =
ExtnC(C(x, x), C(y, y)). This is precisely the categorical version of Yoneda algebras.
By the correspondence between graded algebras and graded categories, we can de-
fine Koszul categories, quasi-Koszul categories, quadratic categories, Koszul mod-
ules, quasi-Koszul modules for graded categories as well. We do not repeat these
definitions here but emphasize that all results described in the previous sections
can be applied to graded categories.

A corollary of Theorem 5.7 and Corollary 2.18 relates stratification theory to
Koszul theory in the context of directed categories.

Theorem 5.8. Let C be a graded directed category with C0 =
⊕

x∈Ob C C(x, x) being
a self-injective algebra . Then:

(1) C is standardly stratified if and only if C is a projective C0-module.
(2) C is a Koszul category if and only if C is standardly stratified and quasi-

Koszul.
(3) If C is standardly stratified, then a graded C-module M generated in degree

0 is Koszul if and only if it is a quasi-Koszul C-module and a projective
C0-module.

Proof. Take an arbitrary pair of objects x, y ∈ Ob C. If C is standardly stratified,
then C(x, y) is either 0 (a zero projective module) or a projective C(y, y)-module by
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the previous theorem. Notice that each C(x, y)i is a C(y, y)-module since C(y, y) ⊆
C0, and we have the decomposition C(x, y) =

⊕
i>0 C(x, y)i. Therefore, C(x, y)i is

a projective C(y, y)-module, and hence a projective C0-module since only the block
C(y, y) of C0 acts on C(x, y)i nontrivially. In conclusion, Ci =

⊕
x,y∈Ob C C(x, y)i is a

projective C0-module. Conversely, if Ci are projective C0-modules for all i > 0, then
each C(x, y)i, and hence C(x, y) are projective C(y, y)-modules, so C is standardly
stratified again by the previous theorem. The first statement is proved.

If C is Koszul, then it is quasi-Koszul. Moreover, each Ci is a projective C0
module, see the last paragraph of Section 2. Therefore, C is a projective C0-module,
and hence is standardly stratified. Conversely, if C is standardly stratified and
quasi-Koszul, then C is a projective C0-module, so C0 is linear by Corollary 2.18,
and hence C is Koszul. This proves the statement.

The last part is an immediate result of Corollary 2.18. �

To each graded category C we can associate an associated quiver Q in the fol-
lowing way: the vertices of Q are exactly the objects in C; if C(x, y)1 6= 0, then
we put an arrow from x to y with x, y ranging over all objects in C. Clearly, the
associated quiver of C is completely determined by C0 and C1. There is no loop in
Q since C(x, x)1 = 0 for each x ∈ Ob C.

Proposition 5.9. Let C be a graded category with C0 =
⊕

x∈Ob C C(x, x) and Q be
its associated quiver. Then C is a directed category if and only if Q is an acyclic
quiver.

Proof. Assume that C is directed. By the definition, there is a partial order 6 on
Ob C such that C(x, y) 6= 0 only if x 6 y for x, y ∈ Ob C. In particular, C(x, y)1 6= 0
only if x < y. Therefore, an arrow x → y exists in Q only if x < y. If there is an
oriented cycle

x1 → x2 → . . .→ xn → x1

in Q, then x1 < x2 < . . . < xn < x1, which is impossible. Hence Q must be acyclic.
Conversely, if Q is acyclic, we then define x 6 y if and only if there is a directed

path (including trivial path with the same source and target) from x to y in Q for
x, y ∈ Ob C. This gives rise to a well defined partial order on Ob C. We claim that
C is a directed category with respect to this partial order, i.e., C(x, y) 6= 0 implies
x 6 y. Since it holds trivially for x = y, we assume that x 6= y. Take a morphism
0 6= α ∈ C(x, y) with a degree n (this is possible since C(x, y) is a non-zero graded
space). Since Cn = C1 ·. . .·C1, we can express α as a linear combination of composite
morphisms

x = x0
α1 // x1

α2 // . . . αn // xn = y

with each αi ∈ C1 and all xi being distinct (since endomorphisms in C are contained
in C0). Therefore, there is a nontrivial directed path

x = x0 → x1 → x2 → . . .→ xn = y

in Q, and we have x < x1 < x2 < . . . < y, which proves our claim. �

Let C be a graded directed category. We define the free cover Ĉ of C by using
the associated quiver Q. Explicitly, Ĉ has the same objects and endomorphisms as
C. For each pair of objects x 6= y we construct Ĉ(x, y) as follows. let Γx,y be the

set of all paths from x to y in Q. In the case that Γx,y = ∅ we let Ĉ(x, y) = 0.
Otherwise, take an arbitrary path γ ∈ Γx,y pictured as below

x→ x1 → x2 → . . .→ xn−1 → y,

and define (x, y)γ to be

C(xn−1, y)1 ⊗C(xn−1,xn−1) C(xn−2, xn−1)1 ⊗C(xn−2,xn−2) . . .⊗C(x1,x1) C(x, x1)1.
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Finally, we define

Ĉ(x, y) =
⊕
γ∈Γx,y

(x, y)γ .

It is clear that Ĉ is also a graded category with Ĉ0 = C0 and Ĉ1 = C1. Therefore, Ĉ
has the same associated quiver as that of C and is also a directed category by the
above lemma. Actually, if two grade categories C and D have the same degree 0
and degree 1 components, then one is a directed category if and only if so is the
other.

Theorem 5.10. Let C be a directed Koszul category with C0 being a self-injective
algebra, then the Yoneda category E = E(C0) is also directed and Koszul.

Proof. Applying the Koszul duality (Theorem 4.1) we know that E is a Koszul
category. What we need to show is that E is a directed category as well. Since C
is standardly stratified, pdC C0 <∞. Therefore, all morphisms in E spans a finite-
dimensional space by Lemma 4.3. In particular, for x, y ∈ Ob E , dimk E(x, y) <∞.
Therefore, E is a locally finite k-linear category.

Let 6 be the partial order on Ob C with respect to which C is directed. This
partial order gives a partial order on Ob E as well because Ob E = Ob C. We claim
that E is directed with respect to this partially ordered set, i.e., if x � y are two
distinct objects in E , then E(x, y) = 0.

Since E is the Yoneda category of C, E(x, y) = 1yE1x ∼= Ext∗C(C01x, C01y). But
C is a Koszul category, so it is standardly stratified by the second statement of
Theorem 5.8. Therefore, Ci are projective C0-modules for all i > 0 by the first
part of this theorem. By Lemma 2.14, all Ωi(C01x)i are projective C0-modules. By
Lemma 2.10, we have

E(x, y)i ∼= ExtiC(C01x, C01y) ∼= HomC(Ω
i(C01x), C01y).

Observe that C01y is only supported on the object y and y � x. If we can prove
the statement that each Ωi(C01x) is only supported on objects z with z > x, then
our claim is proved.

Clearly, Ω0(C01x) = C01x = C(x, x) is only supported on x, so the statement is
true for i = 0. Now suppose that Ωn(C01x) is only supported on objects z > x and
consider Ωn+1(C01x). Let S be the set of objects z such that the value 1zΩ

n(C01x)
of Ωn(C01x) on z is non-zero. Then we can find a short exact sequence:

0 // N //
⊕

z∈S(C1z)mz
p // Ωn(C01x) // 0

such that the map p gives a surjection pz : (1zC1z)mz → 1zΩ
n(C01x) for z ∈ S.

Thus p is a surjection and Ωn+1(C01x) is a direct summand of N . Notice that all
C1z are supported only on objects w > z, and z > x by the induction hypothesis.
Therefore, the submodule Ωn+1(C01x) ⊆ N ⊆

⊕
z∈S(C1z)mz is only supported on

objects w > x. Our statement is proved by induction. This finishes the proof. �

Let A be the category of directed Koszul categories C with C0 =
⊕

x∈Ob C C(x, x)
being self-injective algebras. This theorem tells us that the homological dual func-
tor E is also a dual functor from A to itself. For a fixed category C ∈ ObA, since
standard modules of C are exactly indecomposable summands of C0, E interchanges
standard (indecomposable projective, resp.) C-modules and indecomposable pro-
jective (standard, resp.) E(C0)-modules bijectively.

The condition that C0 is exactly the space spanned by endomorphisms in C is cru-
cial since it implies that standard modules are precisely indecomposable summands
of C0. The following example tells us that without this assumption, the Yoneda
category E(C0) might not be directed even if C is a Koszul directed category.
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Example 5.11. Let C be the following category. Put an order x < y on the objects
and the following grading on morphisms: C0 = 〈1x, 1y, β〉, C1 = 〈α〉.

x
α

**

β

44 y.

This category is directed obviously. It is standardly stratified (actually hereditary)
with ∆x

∼= kx and ∆y
∼= ky. By the exact sequence

0 // ky[1] // C // C0 // 0,

C0 is a linear module. But ∆x⊕∆y � C0. Furthermore, ∆x⊕∆y is not linear since
from the short exact sequence

0 // ky[1]⊕ ky // C // ∆x ⊕∆y // 0

we find that Ω(∆x ⊕∆y) is not generated in degree 1.
By computation we get the Yoneda category D = E(C0) pictured as below, with

relation α · β = 0.

x
α

** y.
β

jj

This is not a directed category with respect to the order x < y. However, we check:
Py = ∆′y = D01y and ∆′x = kx ∼= Px/Py. Therefore, ∆′x ⊕ ∆′y

∼= D0, and D is
standardly stratified. The exact sequence

0 // Py[1] // D // D0
// 0

tells us that D0 is a linear D-module. Therefore, D is standardly stratified and
Koszul, but not directed.

The k-linearization of a finite EI category is a directed category by definition.
However, this theorem does not hold in the context of finite EI categories. That is,
if E is a Koszul finite EI category, E(kE0) might not to be the category algebra of
a finite EI category, as illustrated in the next example:

Example 5.12. Let E be the following finite EI category with three objects whose
endomorphism groups are all trivial. Put a grading on E with E0 = {1x, 1y, 1z},
E1 = {α, β} and E2 = {βα}. Then (kE0) ∼= kE/(βα) is not the category algebra of
a finite EI category.

x
α // y

β // z

There is a close relation between the classical Koszul theory and our general-
ized Koszul theory in the context of graded directed categories. Let C be a graded
directed category. We then define a subcategory D of C by replacing all endo-
morphism rings in C by k · 1, the span of the identity endomorphism. Explicitly,
ObD = Ob C; for x, y ∈ ObD, D(x, y) = k〈1x〉 if x = y and D(x, y) = C(x, y)
otherwise. Clearly, D is also a graded directed category with Di = Ci for every
i > 1. Observe that the degree 0 component D0 is semisimple.

Theorem 5.13. Let C be a graded directed Koszul category and define the subcat-
egory D as above. If M is a linear C-module, then M ↓CD is a linear D-module. In
particular, D is a Koszul category in the classical sense.
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Proof. We prove the conclusion by induction on the size of Ob C. If the size of
Ob C is 1, the conclusion holds trivially. Now suppose that the conclusion is true
for categories with at most n objects and let C be a graded directed category with
n+ 1 objects. Take x to be a minimal object in C and define Cx (Dx, resp.) to be
the full subcategory of C (D, resp.) formed by removing x from it. Clearly Cx and
Dx have n objects.

The following fact, which is well known in the context of finite EI categories (see
[22]), is essential in the proof.

Fact: Every graded Cx-module N can be viewed as a C-module with N(x) = 0 by
induction. Conversely, every graded C-module M with M(x) = 0 can also be viewed
as a Cx-module by restriction. Furthermore, if M(x) = 0, then Ωi(M)(x) = 0 for
all i > 0. The above induction and restriction preserves projective modules: a
projective Cx-module is still projective when viewed as a C-module; conversely, a
projective C-module P with P (x) = 0 is still projective viewed as a Cx-module.
Therefore, a graded C-module M with M(x) = 0 is linear if and only if it is linear
as a Cx-module. All these results hold for the pair (D,Dx) similarly.

By this fact, we only need to handle linear C-modules M with M(x) 6= 0. Indeed,
if M(x) = 0, then M is also linear regarded as a Cx-module. By the induction

hypothesis, M ↓CxDx is a linear Dx-module. By the above fact, M ↓CD is a linear
D-module. Thus the conclusion is true for linear C-modules M with M(x) = 0.

Firstly we consider the special case M = C01x = C(x, x) which is concentrated
on x when viewed as a C-module. It is clear that

Ω(C01x) ↓CD= Ω(D01x)

as vector spaces since for each pair u 6= v ∈ Ob C, C(u, v) = D(u, v), and

C01x ↓CD∼= (D01x)m ∼= kmx ,

where m = dimk C(x, x). Since C01x is a linear C-module, Ω(C01x)[−1] is a lin-
ear C-module supported on Ob Cx. By the induction hypothesis, Ω(D01x)[−1] =
Ω(C01x) ↓CD [−1] is a linear Dx-module, and hence a linear D-module. Therefore,
D01x, and hence C01x ↓CD∼= (D01x)m are linear D-modules. In the case that y 6= x,
D01y is a direct summand of C01y ↓CD. It is linear viewed as a Dx-module by the
induction hypothesis, and hence is a linear D-module. Consequently, D0 is a linear
D-module, so D is a Koszul category in the classical sense.

Now let M be an arbitrary linear C-module with M(x) 6= 0. Consider the exact
sequence

(5.1) 0 // ΩM ↓CD // P ↓CD
p // M ↓CD // 0

induced by

0 // ΩM // P
p // M // 0.

The structures of C and D give the following exact sequence:

0 // DD // DC //
⊕

x∈Ob C k
mx
x

// 0

where kx ∼= D01x and mx = dimk C(x, x) − 1. Since P ↓CD∈ add(DC), the above
sequence gives us a corresponding sequence for P ↓CD:

(5.2) 0 // P ′
ι // P ↓CD // T // 0,

here P ′ is a projective D-module and T ∈ add(D0). Both of them are generated in
degree 0.
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Putting sequences 5.1 and 5.2 together we get

0 // Ω(M ′) //

ϕ

��

P ′
p◦ι //

ι

��

M ′

��

// 0

0 // Ω(M) ↓CD // P ↓CD
p //

��

M ↓CD //

��

0

T // M ↓CD /M ′

where M ′ = (p ◦ ι)(P ′). Notice that p and ι both are injective restricted to degree
0 components. Therefore p ◦ ι is also injective restricted to the degree 0 compo-
nent of P ′ (actually it is an isomorphism restricted to the degree 0 component).
Consequently, P ′ is a projective cover of M ′ and the kernel of p◦ ι is indeed Ω(M ′).

We claim that ϕ is an isomorphism and hence Ω(M ′) ∼= (ΩM) ↓CD. It suffices to
show T ∼= M ↓CD /M ′ by the snake lemma. First, since T is concentrated in degree
0 in sequence 5.2, (P ↓CD)i = P ′i and

M ′i = (p ◦ ι)(P ′i ) = p((P ↓CD)i) = (M ↓CD)i, i > 0.

Therefore, M ↓CD /M ′ is concentrated in degree 0. Furthermore, since M is linear,
(P ↓CD)0 = P0 = M0 = (M ↓CD)0, and P ′0 = M ′0 because p ◦ ι restricted to P ′0 is an
isomorphism as well. We deduce that

T ∼= (P ↓CD)0/P
′
0
∼= (M ↓CD)0/M

′
0 = M ↓CD /M ′,

exactly as we claimed.
Now consider the rightmost column of the above diagram. Clearly, the bottom

term M ↓CD /M ′ ∼= T ∈ add(D0) is linear since we just proved that D0 is linear. The
C-module (ΩM)[−1] is linear since M is supposed to be linear. Moreover, because x
is minimal and M is generated in degree 0, M(x) ⊆M0 and hence (ΩM)[−1](x) =
(ΩM)(x) = 0. Therefore, (ΩM)[−1] is a linear C-module supported on Ob Cx, so it
is also a linear Cx-module. By the induction hypothesis, (ΩM ′)[−1] ∼= (ΩM)[−1] ↓CD
is linear viewed as a Dx-module, and hence linear as a D-module. Thus the top term
M ′ is a linear D-module since as a homomorphic image of P ′ (which is generated
in degree 0) it is generated in degree 0 as well. By Proposition 2.9, M ↓CD is also a
linear D-module since D0 is semisimple by our construction. The conclusion follows
from induction. �

The converse of the above theorem is also true.

Theorem 5.14. Let C be a graded directed category and construct the subcategory
D as before. Suppose that D is Koszul in the classical sense. Let M be a graded
C-module generated in degree 0 such that Ωi(M)i are projective C0-modules for all
i > 0. Then M is a linear C-module whenever M ↓CD is a linear D-module.

Proof. We use the similar technique to prove the conclusion. Notice that we always
assume that C0 =

⊕
x∈Ob C C(x, x). If C has only one object, then linear modules

are exactly projective modules generated in degree 0 and the conclusion holds.
Suppose that it is true for categories with at most n objects. Let C be a category
of n + 1 objects and take a minimal object x. Define Cx and Dx as before. As in
the proof of last theorem, a graded C-module M with M(x) = 0 is linear if and
only if it is linear viewed as a Cx-module by restriction. and the same result holds
for the pair (D,Dx). In particular, Dx is a Koszul category. Therefore, we only
need to show that an arbitrary graded C-module M which is generated in degree
0 and satisfies the following conditions is linear: Ωi(M)i is a projective C0-module
for each i > 0; M(x) 6= 0; and M ↓CD is a linear D-module.
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Let M be such a C-module and consider the commutative diagram:

(5.3) K

��

K

��

// 0

��
0 // Ω(M ↓CD)

��

// P //

ϕ

��

M ↓CD // 0

0 // (ΩM) ↓CD // P̃ ↓CD // M ↓CD // 0

where P and P̃ are projective covers of M ↓CD and M respectively. Since M0 is a

projective C0-module, P0 = M0 = (M ↓CD)0 = (P̃ ↓CD)0 as vector spaces, and the
induced map ϕ restricted to P0 is an isomorphism. Therefore ϕ is surjective since
both P and P̃ ↓CD are generated in degree 0. Let K be the kernel of ϕ.

We have the following exact sequence similar to sequence 5.2:

0 // P ′ // P̃ ↓CD
p̃ // T // 0,

where P ′ is a projective D-module such that P ′i = (P̃ ↓CD)i for every i > 1, and
T ∈ add(D0).

Let P ′′ be a projective cover of T (as a D-module). Then we obtain:

(5.4) K

��

K

��
0 // P ′

α

// P
p //

ϕ

��

P ′′

p′′

��

// 0

0 // P ′ // P̃ ↓CD
p̃ // T // 0

.

We give some explanations here. Since P is a projective D-module and the map
p′′ is surjective, the map p̃ ◦ ϕ factors through p′′ and gives a map p : P → P ′′.
Restricted to degree 0 components, p′′ and ϕ (see diagram 5.3) are isomorphisms
and p̃ is surjective. Thus p restricted to the degree 0 components is also surjective.
But P ′′ is generated in degree 0, so p is surjective. Since P0 = (P̃ ↓CD)0 and
P ′′0 = T0 = T , α restricted to the degree 0 components is an isomorphism, and
hence an isomorphism of projective kD-modules (notice that the middle row splits
since P ′′ is a projective D-module, so the kernel should be a projective D-module
generated in degree 0). By the snake Lemma, the kernel of p′′ is also K up to
isomorphism.

Let J =
⊕

i>1Di. Since D0 is supposed to be a linear D-module, J [−1] ∼=
Ω(D0)[−1] is a linear D-module, too. Consider the leftmost column in diagram 5.3.
The top term K[−1] is a linear D-module since K ∼= P ′′/T ∼= P ′′/P ′′0 ∈ add(J).
The middle term Ω(M ↓CD)[−1] is linear as well since M ↓CD is supposed to be linear.
By Proposition 2.9, the bottom term (ΩM)[−1] ↓CD must be linear.

Since M is generated in degree 0 and x is a minimal object, M(x) ⊆ M0, so
M(x) = (M ↓CD)(x) ⊆ (M ↓CD)0 as vector spaces. Similarly, P (x) ⊆ P0 and
P (x) ∼= (M ↓CD)(x), so Ω(M ↓CD)(x) = 0. Consequently, (ΩM)[−1] is supported on
Ob Cx by observing the leftmost column of diagram 5.3. Moreover, we can show as
in the proof of Theorem 5.10 that all of its syzygies are supported on Ob Cx, and
Ωi((ΩM)[−1])i = Ωi+1(M)i+1 are projective (Cx)0-modules. Therefore, applying
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the induction hypothesis to (ΩM)[−1] supported on Ob Cx and (ΩM)[−1] ↓CD sup-
ported on ObDx, we conclude that (ΩM)[−1] is a linear Cx-module, and hence a
linear C-module. Clearly, M is a linear C-module since it is generated in degree 0.
The conclusion follows from induction. �

Remark 5.15. We remind the reader that in the previous two theorems we do not
require C0 =

⊕
x∈Ob C C(x, x) to be a self-injective algebra. By our construction,

D0
∼=
⊕

x∈Ob D kx is a semisimple algebra.

Assuming that C0 is self-injective, we get the following nice correspondence.

Theorem 5.16. Let C be a graded directed category with C0 being a self-injective
algebra and construct D as before. Then:

(1) C is a Koszul category in our sense if and only if C is standardly stratified
and D is a Koszul category in the classical sense.

(2) If C is a Koszul category, then a graded C-module M generated in degree 0
is linear if and only if M ↓CD is a linear D-module and M is a projective
C0-module.

Proof. If C is Koszul in our sense, then it is standardly stratified by (2) of Theorem
5.8, and D is Koszul in the classical sense by Theorem 5.13. Conversely, if D is
Koszul in the classical sense, then C0 ↓CD∈ add(D0) is a linear D-module. If C is
furthermore standardly stratified, then it is a projective C0-module by Theorem 5.8.
Therefore, all Ωi(C0)i are projective C0-modules according to Lemma 2.14. Thus
C0 is a linear C-module by Theorem 5.14, and hence C is a Koszul category. This
proves the first statement.

Now suppose that C is Koszul. Then C is a projective C0-module. If M is a
linear C-module, M ↓CD is a linear D-module by Theorem 5.13. Furthermore, M
is a projective C0-module by Corollary 2.18. Conversely, if M is a projective C0-
module and M ↓CD is a linear D-module, then by Lemma 2.14 Ωi(M)i are projective
C0-modules for all i > 0. By Theorem 5.14 M is a linear C-module. �

6. Finite EI Categories

When applying the generalized Koszul theory to a directed category C in the pre-
vious section, we take for granted that there is already a grading on the morphisms
in C such that the degree 0 component is formed precisely by endomorphisms in C.
But in practice it is very hard to find such a grading for C. Actually, we do not
even know the existence of such gradings in general. In this section we will focus on
finite EI categories, whose k-linearizations form a type of directed categories with
combinatorial properties. These properties can be used to define a length grading
on the set of morphisms and completely determine whether an arbitrary finite EI
category can be graded by this length grading.

In this section we only consider skeletal and connected finite EI categories E ,
i.e., for every pair x, y ∈ Ob E , there is a chain of objects x0 = x, x1, x2, . . . , xn = y
such that either E(xi, xi+1) 6= ∅ or E(xi+1, xi) 6= ∅ for every 0 6 i 6 n− 1.

First we introduce some results from [12]. A morphism α in E is called un-
factorizable if α is not an automorphism, and whenever there is a decomposition
α = α1 ◦ α2, either α1 or α2 is an automorphism. The composite morphism of
an unfactorizable morphism and an automorphism is still unfactorizable. There-
fore, all unfactorizable morphisms from an object x to another object y form an
(AutE(y),AutE(x)) bi-set. Every non-isomorphism can be expressed as a composite
of unfactorizable morphisms. This decomposition is not unique in general. We say
a finite EI category E satisfies the Unique Factorization Property (UFP) if whenever
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a non-isomorphism α has two decompositions into unfactorizable morphisms:

x = x0
α1 // x1

α2 // . . . αm // xm = y

x = x0
β1 // y1

β2 // . . . βn // yn = y

then m = n, xi = yi, and there are hi ∈ AutE(xi) such that the following diagram
commutes, 1 6 i 6 n− 1:

x0
α1 //

id

x1
α2 //

h1

��

. . . α... //

h...

��

xn−1
αn //

hn−1

��

xn

id

x0
β1 // x1

β2 // . . . β... // xn−1
βn // xn

Finite EI categories with this property are called finite free EI categories by us.
For every finite EI category E there is a unique (up to isomorphism) finite free EI

category Ê (called the free EI cover) and a covering functor F̂ : Ê → E such that F̂ is
the identity map restricted to objects, isomorphisms and unfactorizable morphisms.
The functor F̂ induces a surjective algebra homomorphism ϕ : kÊ → kE . Therefore,
kE ∼= kÊ/I, where I is the kernel of ϕ. We have the following description of I:

Lemma 6.1. The kÊ-ideal I as a vector space is spanned by elements of the form

α̂− β̂, where α̂ and β̂ are morphisms in Ê with F̂ (α̂) = F̂ (β̂).

Proof. Let U be the vector space spanned by elements α̂ − β̂ such that F̂ (α̂) =

F̂ (β̂). Clearly, U ⊆ I and we want to show the other inclusion. Let x ∈ U .
By the definition of category algebras, x can be expresses uniquely as

∑n
i=1 λiαi

where αi are pairwise different morphisms in Ê and λi ∈ k. Then ϕ(
∑n
i=1 λiαi) =∑n

i=1 λiF̂ (αi) = 0. Those F̂ (αi) are probably not pairwise different in E . By
changing the indices if necessary, we can write the set {αi}ni=1 as a disjoint union of
l subsets: {α1, . . . , αs1}, {αs1+1, . . . , αs2} and so on, until {αsl−1+1, . . . , αsl} such

that two morphisms have the same image under F̂ if and only if they are in the
same set.

Now we have:

ϕ(x) = (λ1 + . . .+ λs1)F̂ (αs1) + . . .+ (λsl−1+1 + . . .+ λsl)F̂ (αsl) = 0.

Therefore,

λ1 + . . .+ λs1 = . . . = λsl−1+1 + . . .+ λsl = 0,

and hence

x = [λ2(α2 − α1) + . . .+ λs1(αs1 − α1)] + . . .

+ [λsl−1+2(αsl−1+2 − αsl−1+1) + . . .+ λsl(αsl − αsl−1+1)]

is contained in U . �

If E is a finite free EI category, we can put a length grading on its morphisms
as follows: automorphisms and unfactorizable morphisms are given grades 0 and
1 respectively; if α is a factorizable morphism, then it can be expressed (probably
not unique) as a composite αnαn−1 . . . α2α1 with all αi being unfactorizable and we
assign α grade n. This grading is well defined by the Unique Factorization Property
of finite free EI categories. It is clear that this length grading cannot be applied to
an arbitrary finite EI category. We say a finite EI category can be graded if this
length grading is well defined on it. The following proposition gives us criterions
to determine whether an arbitrary finite EI category can be graded.
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Proposition 6.2. Let E be a finite EI category. Then the following are equivalent:

(1) E is a graded finite EI category.
(2) For each factorizable morphism α in E, whenever it has two factorizations

α1◦ . . .◦αm and β1◦. . .◦βn into unfactorizable morphisms, we have m = n.
(3) Let Ê be the free EI cover of E and F̂ : Ê → E be the covering functor. If

two morphisms α̂ and β̂ in Ê have the same image under F̂ , then they have
the same length in Ê.

Proof. It is easy to see that if condition (2) holds, our grading works for E , and
hence (1) is true. Otherwise, if a factorizable morphism α has two decompositions
αn ◦ . . . ◦ α1 and βm ◦ . . . ◦ β1 with m 6= n, then α should be assigned a grade n
by the first decomposition, and a grade m by the second decomposition. Thus our
grading cannot be applied to E . This proves the equivalence of (1) and (2).

Now let α be an arbitrary morphism in E which has two different decompositions
αn ◦ . . . ◦α1 and βm ◦ . . . ◦ β1 into unfactorizable morphisms. Since Ê is the free EI
cover of E , these unfactorizable morphisms are also unfactorizable morphisms in Ê .

Let α̂ and β̂ be the composite morphisms of these αi’s and βi’s in Ê respectively.

Thus α̂− β̂ is contained in U since they have the same image α under F̂ . If (3) is

true, then m = n since α̂ and β̂ have lengths m and n respectively. Therefore (3)
implies (2). We can check that (2) implies (3) in a similar way. �

The following two lemmas are from [12].

Lemma 6.3. Let E be a finite free EI category and α : x→ y be an unfactorizable
morphism. Define H = AutE(y) and H0 = StabH(α). If |H0| is invertible in k,
then the cyclic module kEα is projective.

Proof. This is Lemma 5.2 of [12], where we assumed that the automorphism groups
of all objects are invertible in k but only used the fact that |H0| is invertible in
k. Here we give a sketch of the proof. Let e = 1

|H0|
∑
h∈H0

h. Then e is well

defined since |H0| is invertible in k, and is an idempotent in kE . Now define a
map ϕ : kEe → kEα by sending re to rα for r ∈ kE . We can check that ϕ is an
kE-module isomorphism. Thus kEα is projective. See [12] for a detailed proof. �

Lemma 6.4. Let E be a finite free EI category and α : x → y and α′ : x′ → y′ be
two distinct unfactorizable morphisms in E. Then kEα∩ kEα′ = 0 or kEα = kEα′.

Proof. This is Lemma 5.1 of [12]. We give a sketch of the proof. Notice that kEα
is spanned by all morphisms of the form βα with β : y → z being a morphism
starting at y. Similarly, kEα′ is spanned by all morphisms of the form β′α′ with
β′ : y′ → z′ being a morphism starting at y′. If x 6= x′ or y 6= y′, then by the
Unique Factorization Property of finite free EI categories we conclude that the set
Eα ∩ Eα′ = ∅, and the conclusion follows. If x = x′ and y = y′, then the set Eα
coincides with the set Eα′ if and only if there is an automorphism h ∈ AutE(y)
such that hα = α′ again by the UFP. Otherwise, we must have Eα ∩ Eα′ = ∅. The
conclusion follows from this observation. �

Remark 6.5. The reader can check that the conclusion of Lemma 6.3 is true for
any non-isomorphisms α in E by using the UFP. Moreover, a direct check shows
that it is also true for automorphisms. Similarly, we can also prove that Lemma
6.4 still holds if we assume that α and α′ are two morphisms with the same target
and source.

Theorem 5.8 has a corresponding version for finite EI categories.



A GENERALIZED KOSZUL THEORY AND ITS APPLICATION 33

Proposition 6.6. Let E be a graded finite EI category. Then kE is a Koszul algebra
if and only if kE is a quasi-Koszul algebra and E is a standardly stratified category
(in a sense defined in [20]) with respect to the canonical partial order on Ob E.

Proof. By the decompositions

kE0 =
⊕

x∈Ob E

kAutE(x), kEi =
⊕

x 6=y∈Ob E

kE(x, y)i, i > 0

we conclude that all kEi are projective kE0-modules if and only if kE(x, y)i are
projective kAutE(y)-modules for all i > 0, x, y ∈ Ob E . Notice that kE(x, y)i
is spanned by morphisms from x to y with length i, and these morphisms form
several orbits under the action of AutE(y). Suppose that there are n distinct orbits
and take a representative αj from each orbit. Then we have a decomposition
kE(x, y)i ∼=

⊕n
j=1 kAutE(y)αj . Thus kE(x, y)i is a projective kAutE(y)-module if

and only if each kAutE(y)αj is a projective kAutE(y)-module, and if and only if
the stabilizer of αj in AutE(y) has an order invertible in k. This happens if and
only if E is standardly stratified by Theorem 2.5 in [20]. In conclusion, all kEi are
projective kE0-modules if and only if E is standardly stratified in a sense defined in
[20].

Notice that kE0 is the direct sum of several group algebras, and hence is self-
injective. If kE is Koszul, then it is quasi-Koszul by Theorem 2.17. Moreover, all
kEi are projective kE0-modules (see the last paragraph of Section 2). Therefore, E
is standardly stratified.

Conversely, if kE is standardly stratified, then all kEi are projective kE0-modules.
By Corollary 2.18, kE0 is a linear kE-module if kE is quasi-Koszul. �

In the first paragraph of the above proof we have showed that a graded finite EI
category E is standardly stratified in the sense of [20] if and only if its k-linearization
as a graded directed category is standardly stratified in our sense. Actually this
is still true for an arbitrary finite EI category by comparing Theorem 5.7 in this
paper and Theorem 2.5 in [20]. This is not surprising since the k-linearization of E
is precisely the associated category of the algebra kE .

Proposition 6.7. Let E be a finite EI category which might not be graded. Then E
is standardly stratified if and only if M =

⊕
x∈Ob E AutE(x) viewed as a kE-module

has finite projective dimension.

Proof. Consider the k-linearization of E , which is a directed category. By Theorem
5.8 and the remark we made in the paragraph before this proposition, we conclude
that pdM <∞.

Conversely, suppose that E is not standardly stratified. Then there is a non-
isomorphism γ : t → y such that the order of Hγ is not invertible in the field
k by Theorem 2.5 in [20], where H = AutE(y) and Hγ = StabH(γ). For this
object y, define S to be the set of objects w such that there is a non-isomorphism
β : w → y satisfying that |Hβ | is not invertible in k. This set S is nonempty since
t ∈ S. It is a poset equipped with the partial order inherited from the canonical
partial order on Ob E . Take a fixed object z which is maximal in this set and define
I>z = {x ∈ Ob E | x > z}.

By our definition, for an arbitrary object x ∈ I>z and a non-isomorphism α :
x → y (if it exists), the group Hα 6 H has an order invertible in k. Therefore,
the kH-module kHα is projective. Since the value of kE1x on y is 0 or is spanned
by all non-isomorphisms from x to y, and these non-isomorphisms form a disjoint
union of H-orbits, we conclude that the value of kE1x on y is a projective kH-
module (notice that we always view 0 as a zero projective module). With the same
reasoning, we know that the value of kE1z on y is not a projective kH-module.
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Consider the kE-module L = kAutE(z). We claim that pdL = ∞. If this is
true, then pdM = ∞ since L is a direct summand of M . We prove this claim by
showing the following statement: for each i > 1, every projective cover of Ωi(L)
is supported on I>z; the value Ωi(L)(y) of Ω(L) on y is non-zero and is not a
projective kH-module. Clearly, Ω(L) is spanned by all non-isomorphisms starting
from z and is supported on I>z; Ω(L)(y), spanned by all non-isomorphisms from z
to y, is non-zero. Moreover, Ω(L)(y) coincides with the value of kE1z on y and is
not a projective kH-module. Therefore our statement is true for i = 1.

Suppose that this statement is true for n, and let P be a projective cover of
Ωn(L). The exact sequence

0 // Ωn+1(L) // P // Ωn(L) // 0

gives rise to an exact sequence

0 // Ωn+1(L)(y) // P (y) // Ωn(L)(y) // 0.

Let us focus on the above sequences. Since Ωn(L) is supported on I>z, so are P
and Ωn+1(L). By the induction hypothesis Ωn(L)(y) 6= 0, Thus P (y) 6= 0. But P
is supported on I>z, so P ∈ add(

⊕
x∈I>z kE1x). Notice that the value of each kE1x

on y is zero or a nontrivial projective kH-module. Therefore, P (y) is a projective
kH-module. Again by the induction hypothesis, Ωn(L)(y) is not a projective kH-
module, so Ωn(L)(y) � P (y), and Ωn+1(L)(y) is non-zero. It cannot be a projective
kH-module. Otherwise, Ωn+1(L)(y) is also an injective kH-module and hence the
above sequence splits, so Ωn(L)(y) as a summand of P (y) is a projective kH-module,
too. But this contradicts the induction hypothesis.

We proved the induction hypothesis for Ωn+1(L). Thus our statement and claim
are proved. Consequently, pdM =∞. �

Now we can prove:

Theorem 6.8. Let E be a finite free EI category. Then the following are equivalent:

(1) pd kE0 6 1;
(2) kE is a Koszul algebra;
(3) E is standardly stratified;
(4) pd kE0 <∞.

Proof. It is clear that pd kE0 = 0 if and only if E is a finite EI category with a single
object since we only consider connected categories. In this situation, kE = kE0,
J = 0, and all statements are trivially true. Thus without loss of generality we
suppose that pd kE0 6= 0.

Observe that pd kE0 = 1 if and only if Ω(kE0) = J =
⊕

i>1 kEi is projective.
Since J is spanned by all non-isomorphisms in E and each non-isomorphism can
be written as a composition of unfactorizable morphisms, it is generated in degree
1. Thus kE0 is a linear kE-module, and (1) implies (2). By Proposition 6.6, (2)
implies (3). The statements (3) and (4) are equivalent by Proposition 6.7.

Now we prove that (3) implies (1). If E is standardly stratified, then for every
morphism α : x → y in E , the order of StabH(α) is invertible in k, where H =
AutE(y). By Lemma 6.4, J is a direct sum of some kE-modules kEαi’s with each
αi being unfactorizable. By Lemma 6.3, each kEαi is projective. Therefore, J is
also projective, i.e., pd kE0 = 1. �

This theorem and Theorem 5.13 give us a way to construct Koszul algebras in the
classical sense. Indeed, let E be a standardly stratified finite free EI category and
define D to be the subcategory formed by removing all non-identity automorphisms.
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Then by Theorem 5.13 kD is a Koszul algebra in the classical sense since kE0 is a
linear kE-module in the generalized sense by the previous theorem.

Let us get more information about the projective resolutions of kE0 for arbitrary
finite free EI categories. In general, Ω(kE0) ∼= J =

⊕
i>1 kEi is not projective, but

it is still a direct sum of some kE-modules kEα’s with each α being unfactorizable
by Lemma 6.4. Thus the projective resolutions of kE0 is completely determined by
the projective resolutions of those kEα’s.

Lemma 6.9. Let E be a finite free EI category and α : x → y be an unfac-
torizable morphism. Grade the kE-module kEα by putting α in degree 1, namely,
(kEα)1 = kAutE(y)α. Then Ω(kEα) is 0 or is generated in degree 1, and Ω(kEα)1 =
Ω(kEα)(y), the value of Ω(kEα) on y.

Proof. Let H = AutE(y) and H0 = StabH(α). If |H0| is invertible in k, then
by Lemma 6.3, kEα is a projective kE-module, so Ωi(kEα) = 0 for all i > 1, in
particular Ω(kEα) = 0. The conclusion is trivially true. Thus we only need to deal
with the case that |H0| is not invertible.

Consider the projective presentation

0 // N // kE1y[1]
p // kEα // 0

where p maps 1y to α. Since Ω(kEα) is isomorphic to a direct summand of N , it is
enough to show that N is generated in degree 1, and N1 = N(y).

Notice that kE1y is spanned by all morphisms in E with source y, and kEα is
spanned by all morphisms in E of the form βα where β is a morphism in E with
source y. We claim that N is spanned by vectors of the form β1−β2 with β1α = β2α,
where β1 and β2 are two morphisms with source y.

Clearly, every such difference is contained in N . Conversely, let v ∈ N . Then v
can be written as

∑n
i=1 λiβi with λi ∈ k and βi being pairwise different morphisms

with source y. By the definition of p,
∑n
i=1 λiβiα = 0. Those βiα might not

be pairwise different in E . Now we apply the same technique used in the proof of
Lemma 6.1. By changing the indices if necessary, we can group the same morphisms
together and suppose that β1α = . . . = βs1α, βs1+1α = . . . = βs2α and so on, until
βsl−1+1α = . . . = βslα.

We have:

p(v) = (λ1 + . . .+ λs1)βs1α+ . . .+ (λsl−1+1 + . . .+ λsl)βslα = 0.

Therefore,

λ1 + . . .+ λs1 = . . . = λsl−1+1 + . . .+ λsl = 0,

and hence

v = [λ2(β2 − β1) + . . .+ λs1(βs1 − β1)] + . . .

+ [λsl−1+2(βsl−1+2 − βsl−1+1) + . . .+ λsl(βsl − βsl−1+1)].

So v can be written as a sum of these differences.
Now we can prove the lemma. Take an arbitrary object z ∈ Ob E and consider

the value N(z). If it is 0, the conclusion holds trivially. Suppose that N(z) 6= 0.
By the above description, N(z) is spanned by vectors β1 − β2 such that β1, β2

are two morphisms from y to z, and β1α = β2α. By the equivalent definition
of UFP described in Remark 6.5, there is an automorphism h ∈ AutE(y) such
that β1 = β2h and α = h−1α. Therefore hα = α, and 1 − h ∈ N(y). Thus
β1 − β2 = β(1 − h) ∈ kE · N(y). Since z is taken to be an arbitrary object, N is
generated by N(y), which is clearly equal to N1. �

From this lemma we can get:
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Proposition 6.10. Let E be a finite free EI category, then Ext2kE(kE0, kE0) = 0.

Proof. Since Ω(kE0) ∼= J , it is enough to show Ext1
kE(J, kE0) = 0. The conclusion

holds trivially if J is projective. Otherwise, since J is the direct sum of some kEα’s
with α being unfactorizable, by the above lemma we know that ΩJ is generated in
degree 1.

Applying the functor HomkE(−, kE0) to 0→ ΩJ → P → J → 0 we get

0→ HomkE(J, kE0)→ HomkE(P, kE0)→ HomkE(ΩJ, kE0)→ Ext1
kE(J, kE0)→ 0.

Since all modules are generated in degree 1, the sequence

(6.1) 0→ HomkE(J, kE0)→ HomkE(P, kE0)→ HomkE(ΩJ, kE0)

is isomorphic to the sequence

0→ HomkE0(J1, kE0)→ HomkE0(P1, kE0)→ HomkE0((ΩJ)1, kE0)

obtained by applying the exact functor HomkE0(−, kE0) to the exact sequence 0→
(ΩJ)1 → P1 → J1 → 0. Thus the last map in sequence 6.1 is surjective, so
Ext1

kE(J, kE0) = 0. �

The fact that ΩJ is generated in degree 1 implies Ext2
kE(kE0, kE0) = 0. Actually

the converse statement is also true. Indeed, consider the exact sequence 0→ ΩJ →
P → J → 0. If Ext2

kE(kE0, kE0) = 0, applying the exact functor HomkE0(−, kE0)
we get the exact sequence

0→ HomkE0(J, kE0)→ HomkE0(P, kE0)→ HomkE0(ΩJ, kE0)→ 0,

which is isomorphic to

0→ HomkE0(J1, kE0)→ HomkE0(P1, kE0)→ HomkE0(ΩJ/J(ΩJ), kE0)→ 0

since both J and P are generated in degree 1. Applying the functor HomkE0(−, kE0)
again, we recover 0→ ΩJ/J(ΩJ)→ P1 → J1 → 0. Therefore, ΩJ/J(ΩJ) ∼= (ΩJ)1,
so ΩJ is generated in degree 1.

Finite free EI categories with quasi-Koszul category algebras have very special
homological properties. For example:

Proposition 6.11. Let E be a finite free EI category. Then the following are
equivalent:

(1) ExtikE(kE0, kE0) = 0 for all i > 2;
(2) for every unfactorizable morphism α : x→ y and i > 0, either Ωi(kEα) are

all 0, or they are all generated in degree 1 (in which case it is generated by
Ωi(kEα)(y));

(3) kE is a quasi-Koszul algebra.

Proof. If kE is a quasi-Koszul algebra, then

ExtikE(kE0, kE0) = Ext2
kE(kE0, kE0) · Exti−2

kE (kE0, kE0)

for every i > 2. But Ext2
kE(kE0, kE0) = 0 by Proposition 6.10, so (3) implies (1).

Clearly, (1) implies (3).
Notice that kEα is a isomorphic to a direct summand of J ∼= Ω(kE0). Thus we

only need to prove the equivalence of the following two statements:

(1’) ExtikE(J, kE0) = 0 for every i > 1;
(2’) Ωi(J) = 0 or is generated in degree 1 for every i > 1.

Since the technique we use is similar to that in the proof of Proposition 6.10,
we only give a sketched proof. In the case that J is projective, i.e., E is standardly
stratified, then (1’) and (2’) are trivially true, hence they are equivalent. Now
suppose that J is not projective. From the proof of Proposition 6.10 and the
paragraph after it we conclude that ΩJ is generated in degree 1 if and only if
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Ext1
kE(J, kE0) = 0. Replacing J by ΩJ (which is also generated in degree 1 either

by the induction hypothesis or by the hypothesis Ext1
kE(J, kE0) = 0) and using the

same technique, we get Ω2(J) is generated in degree 1 if and only if Ext2
kE(J, kE0) =

0. The equivalence of (1’) and (2’), and hence the equivalence of (1) and (2), come
from induction. �

The reader may guess that the category algebra of a finite free EI category is
always quasi-Koszul in our sense because of the following reasons: Finite free EI
categories generalize finite groups and acyclic quivers, for which the associated
algebras are all quasi-Koszul; by Proposition 6.6 and Theorem 6.8, for an arbitrary
finite EI category E , kE is Koszul if E is standardly stratified and one of the following
condition holds: kE is quasi-Koszul, or E is a finite free EI category; and we have
proved that Ext2

kE(kE0, kE0) = 0 if E is a finite free EI category. Unfortunately,
this conjecture is false, as shown by the following example.

Example 6.12. Let E be the following finite EI category where: AutE(x) = 〈1x〉,
AutE(z) = 〈1z〉, AutE(y) = 〈h〉 is a group of order 2; E(x, y) = {α}, E(y, z) = {β}
and E(x, z) = {βα}. The reader can check that E is a finite free EI category and
then the length grading can be applied on it. Let k be an algebraically closed field
with characteristic 2.

x
α // y

β // z.

The indecomposable direct summands of kE and kE0 are:

Px =
x0

y1

z2

, Py =
y0

y0 z1
, Pz = z0, kE0 ∼= x0 ⊕ z0 ⊕

y0

y0
.

We use indices to mark the degrees of composition factors. The reader should bear
in mind that the two simple modules y appearing in Py have the same degree.

Take the summand x0 of kE0. By computation, we get

Ω(x0) =
y1

z2
, Ω2(x0) = y1, Ω3(x0) = y1 ⊕ z2.

Applying HomkE(−, kE0) to the exact sequence

0 // Ω3(x0) // Py[1] // Ω2(x0) // 0

we get Ext3kE(kE0, kE0) 6= 0. Consequently, kE is not a quasi-Koszul algebra in our
sense by the previous proposition.

We aim to characterize finite free EI categories with quasi-Koszul category alge-
bras. For this goal, we make the following definition:

Definition 6.13. Let E be a finite EI category. An object x ∈ Ob E is called left
regular if for every morphism α with target x, the stabilizer of α in AutE(x) has an
order invertible in k. Similarly, x is called right regular if for every morphism β
with source x, the stabilizer of β in AutE(x) has an order invertible in k.

Remark 6.14. We make some comments for this definition.

(1) If x ∈ Ob E is maximal, i.e., there is no non-isomorphisms with source x,
then x is right regular by convention; similarly, if x is minimal, then it is
trivially left regular.

(2) The category E is standardly stratified if and only if every object x ∈ Ob E is
left regular; similarly, Eop is standardly stratified if and only if every object
x ∈ Ob E is right regular
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(3) If E is a finite free EI category and x ∈ Ob E. Then x is left regular if and
only if for every α with target x, the kE-module kEα is a left projective kE-
module. Similarly, x is right regular if and only if for every β with source
x, the right kE-module β(kE) is a right projective kE-module.

Lemma 6.15. Let E be a finite free EI category and β : x → y be a morphism
with x ∈ Ob E being right regular. Then there exists some idempotent e in kE
such that β(kE) ∼= e(kE) as right kE-modules by sending e to β. In particular,
β(kG)α ∼= e(kG)α as vector spaces for every morphism α with target x, where
G = AutE(x).

Proof. Let G0 = StabG(α) and e =
∑
g∈G0

g/|G0|. This is well defined since x

is right regular. Then we can prove β(kE) ∼= e(kE) as right kE-modules in a way
similar to the proof of Lemma 6.3. The isomorphism is given by sending er to βr
for r ∈ kE . Since the image of e(kG)α ⊆ kE is exactly β(kE)α, we deduce that
e(kG)α ∼= β(kG)α as vector spaces. �

Using these concepts, we can get a sufficient condition for the category algebra
of a finite free EI category to be quasi-Koszul.

Theorem 6.16. Let E be a finite free EI category such that every object x ∈ Ob E
is either left regular or right regular. Then kE is quasi-Koszul.

Proof. By the second statement of Proposition 6.11, it is enough to show that for
each unfactorizable α : x → y and every i > 1, Ωi(kEα) is 0 or generated by
Ωi(kEα)(y). Let H = AutE(y) and H0 = StabH(α). If |H0| is invertible in k, then
kEα is a projective kE-module, and the conclusion follows. So we only need to deal
with the case that the order of H0 is not invertible in k.

By Lemma 6.9, Ω(kEα) is generated in degree 1, or equivalently, generated by its
value Ω(kEα)(y) = 1yΩ(kEα) on y. Now suppose that Ωi(kEα) is also generated
in degree 1, or equivalently, generated by its value Ωi(kEα)(y) = 1yΩi(kEα) on
y, where i > 1. We claim that Ωi+1(kEα) is generated by Ωi+1(kEα)(y), which is
clearly equal to Ωi+1(kEα)1. If this is true, then conclusion follows from Proposition
6.11.

Take an arbitrary object z ∈ Ob E such that E(y, z) 6= ∅. (In the case E(y, z) = ∅,
Ωs(kEα)(z) = 0 for s > 0, and the claim is trivially true.) The morphisms in
E(y, z) form a disjoint union of orbits under the right action of H. By taking
a representative βi from each orbit we have E(y, z) =

⊔n
i=1 βiH. Since |H0| is

not invertible, y is not left regular. By the assumption, y must be right regular.
Therefore, by the previous lemma, for each representative morphism βs, 1 6 s 6 n,
there exist some idempotent ei such that βs(kE) ∼= es(kE) as right projective kE-
modules, and βs(kE)α ∼= es(kE)α as vector spaces.

Consider the exact sequence

0 // Ωi+1(kEα) // P i // Ωi(kEα) // 0,

where we assume inductively that Ωi(kEα) is generated in degree 1, or equivalently
generated by its value on y. Thus P i ∈ add(kE1y[1]). Observe that the segment of
a minimal projective resolution of the kE-module kEα

P i+1 // P i // . . . // P 0 // kEα // 0

induces a minimal projective resolution of the kH-module kHα:

P i+1(y) // P i(y) // . . . // P 0(y) // kHα // 0.

Thus Ωj(kEα)1 = Ωj(kEα)(y) = ΩjkH(kHα) for 1 6 j 6 i+ 1.



A GENERALIZED KOSZUL THEORY AND ITS APPLICATION 39

Applying the exact functor HomkE(kE1y,−) to the exact sequence

(6.2) 0 // Ωi+1(kEα) // P i // Ωi(kEα) // 0 ,

we get an exact sequence

0 // Ωi+1(kEα)(y) // 1yP i // Ωi(kEα)(y) // 0 ,

which can be identified with

0 // Ωi+1
kH (kHα) // P i(y) // ΩikH(kHα) // 0 .

Applying the exact functor HomkH(
⊕n

s=1 kHes,−) to the above sequence, we have
another exact sequence

(6.3) 0→
n⊕
s=1

esΩ
i+1
kH (kHα)→

n⊕
s=1

esP
i(y)→

n⊕
s=1

esΩ
i
kH(kHα)→ 0.

Since Ωi(kEα) is generated by Ωi(kEα)(y) = ΩikH(kHα) by the induction hy-
pothesis, the value of Ωi(kEα) on z is

∑n
s=1 βs · ΩikH(kHα) (this is well defined as

ΩikH(kHα) ⊆ (kH)⊕m for some m > 0). We check that this sum is actually direct
by the UFP of E . In conclusion,

(6.4) Ωi(kEα)(z) =

n⊕
s=1

βs · ΩikH(kHα) ∼=
n⊕
s=1

esΩ
i
kH(kHα).

Similarly, the value of P i on z is

(6.5) P i(z) =

n⊕
s=1

βs · P i(y) ∼=
n⊕
s=1

esP
i(y).

Restricted to z, sequence 6.2 gives rise to

(6.6) 0 // Ωi+1(kEα)(z) // P i(z) // Ωi(kEα)(z) // 0 .

On one hand,
⊕n

s=1 βsΩ
i+1
kH (kHα) ⊆ Ωi+1(kEα)(z). On the other hand, we have:

dim
k

n⊕
s=1

βsΩ
i+1
kH (kHα) = dim

k

n⊕
s=1

esΩ
i+1
kH (kHα) by Lemma 6.15

= dim
k

n⊕
s=1

esP
i(y)− dim

k

n⊕
s=1

esΩ
i
kH(kHα) by sequence 6.3

= dim
k
P i(z)− dim

k
Ωi(kEα)(z) by identities 6.4 and 6.5

= dim
k

Ωi+1(kEα)(z) by sequence 6.6.

Therefore, Ωi+1(kEα)(z) =
⊕n

s=1 βsΩ
i+1
kH (kHα) =

⊕n
s=1 βsΩ

i+1
kE (kEα)(y) since

Ωi+1
kH (kHα) = Ωi+1

kE (kEα)(y). That is, the value of Ωi+1(kEα) on z is generated
by Ωi+1(kEα)(y). Since z is arbitrary, our claim holds, and the conclusion follows
from induction. �

7. Standardly Stratified Algebras with Linear Standard Modules

Theorem 5.10 tells us that the Yoneda category E(C0) of a directed Koszul
category C is still a directed Koszul category, so is standardly stratified as well.
Moreover, the homological dual functor E interchanges standard modules and in-
decomposable projective modules. Let A be a Koszul algebra which is standardly
stratified with respect to a poset of orthogonal primitive idempotents ({eλ}λ∈Λ,6).
We may ask a similar question: is the Koszul dual algebra Γ = Ext∗A(A0, A0) stan-
dardly stratified with respect to ({eλ}λ∈Λ,6) (or ({eλ}λ∈Λ,6op)) as well? (Here



40 LIPING LI

we identify the primitive idempotents of A and Γ in the following way: let e be a
primitive idempotent of A. Then it is also a primitive idempotent of A0. Therefore,
A0e is a projective A0-module, and Ext∗A(A0e,A0) is an indecomposable summand
of Γ. This summand corresponds to a primitive idempotent of Γ, which we still
denote by e.) This question has been studied in [1] [2] [8] [17] [18]. However, in
all these papers A0 is supposed to be a semisimple algebra. By modifying the
technique used in [1], we get a sufficient condition for the Yoneda algebra Γ to be
standardly stratified with respect to the opposite order.

Throughout this section A is a graded finite-dimensional basic k-algebra with A0

being self-injective. We choose a complete set of orthogonal primitive idempotents
{eλ}λ∈Λ and let 6 be a partial order on this set.

Theorem 7.1. If A is standardly stratified with respect to 6 such that all stan-
dard modules are concentrated in degree 0 and linear. Then A0

∼= ∆ and Γ =
Ext∗A(A0, A0) is standardly stratified with respect to the poset ({eλ}λ∈Λ,6op), where
∆ is the direct sum of all standard modules.

We show the first statement since it is relatively easier and leave the proof of
the second statement to the end of this section. Let ∆λ be a standard module with
graded projective cover Pλ. Since ∆λ is a linear A-module and concentrated in
degree 0, ∆λ = (∆λ)0 is a projective A0-module by Corollary 2.5. The surjection
Pλ → ∆λ induces a surjection (Pλ)0 → ∆λ, so ∆λ is a summand of (Pλ)0, and
hence is isomorphic to (Pλ)0 since (Pλ)0 is indecomposable. Put all these standard
modules together we find A0

∼= ∆.
Take a minimal element µ ∈ Λ and let e = eµ. Let Λ1 = Λ \ {µ} and ε =∑
λ∈Λ1

eλ. Viewed as an idempotent of Γ, e is maximal with respect to 6op. The
basic idea to prove the second statement is to show that ΓeΓ is a projective Γ-
module and the quotient algebra Γ/ΓeΓ is standardly stratified with respect to the
poset ({eλ}λ∈Λ1

,6op). Then the conclusion follows from induction.
We collect a list of preliminary results in the following lemmas, where the algebra

A is the same as in Theorem 7.1 if we do not specify it particularly.

Lemma 7.2. The algebra εAε is standardly stratified with respect to the poset
({eλ}λ∈Λ1

,6) and has standard modules εA0eλ, λ ∈ Λ1, which are all concentrated
in degree 0. Moreover,

(εAε)0 =
⊕
λ∈Λ1

εA0eλ = εA0ε = εA0

is a self-injective algebra. If M is a linear A-module, then εM is a linear εAε-
module. In particular, all standard modules of εAε are linear.

Proof. The algebra εAε has projective modules εAeλ, λ ∈ Λ1. Notice that each
Aeλ has a ∆-filtration and the standard module A0e ∼= ∆µ cannot appear in the
filtration since e is a minimal primitive idempotent. We conclude that εAε has
standard modules ε∆λ

∼= εA0eλ, and εAε has a filtration formed by εA0eλ, λ ∈ Λ1.
This proves the first statement.

Clearly,

(εAε)0 = εA0ε =
⊕
λ∈Λ1

εA0eλ.

We claim εA0e = 0, which implies εA0 = εA0ε+ εA0e = εA0ε. Indeed,

εA0e ∼= HomA0
(A0ε, A0e) ∼=

⊕
λ∈Λ1

HomA(∆λ,∆µ) = 0

Since A is standardly stratified and µ is minimal in Λ.
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By Proposition 2.5 on page 35 of [3], the exact functor F = HomA0
(A0ε,−) gives

an equivalence between a subcategory M of A0-mod and the category εA0ε-mod.
Since all projective (injective as well) modules A0eλ with λ ∈ Λ1 are contained in
M, and F sends these projective (injective, resp) modules to projective (injective,
resp) modules of εA0ε. Consequently, εA0ε = εA0 is self-injective.

Let M be a linear A-module and

. . . // P 1 // P0
// M // 0

be a linear projective resolution of M . That is, each P i is generated in degree i.
Applying the exact functor HomA(Aε,−) we get a linear projective resolution of
εM as follows

. . . // εP 1 // εP 0 // εM // 0.

Thus εM is a linear εAε-module. Since the standard modules of εAε are indecom-
posable summands of εA0, and A0 = ∆ is a linear A-module, we conclude that
every standard module of εAε is a linear εAε-module as well. �

Lemma 7.3. Let M be a linear A-module up to a degree shift. Then

(1) M has a ∆-filtration.
(2) ExtiA(M,A0e) = 0 for i > 0.
(3) [Ωi(M) : ∆µ] = 0 for each i > 1, where [Ωi(M) : ∆µ] is the number of

∆-filtration factors of M isomorphic to ∆µ.
(4) M = AεM if and only if [M : ∆µ] = 0.

Proof. Without loss of generality we assume that M is linear. By Corollary 2.18
M is a projective A0-module, and hence has a ∆-filtration since A0 = ∆.

To prove the second statement, it is enough to show Ext1
A(M,A0e) = 0. Indeed,

for i > 1, by Corollary 2.5 and using Lemma 2.10 recursively we have

ExtiA(M,A0e) ∼= Exti−1
A (ΩM,A0e) ∼= . . . ∼= Ext1

A(Ωi−1(M), A0e).

Since M is linear, Ωi−1(M) is also linear up to a degree shift. Therefore we can
replace M by Ωi−1(M) and use induction.

The projective presentation 0 → ΩM → P → M → 0 gives a surjective
map HomA(ΩM,A0e) → Ext1

A(M,A0e). The syzygy ΩM is linear up to a de-
gree shift and hence has a ∆-filtration. Since e is minimal and the algebra A is
standardly stratified with respect to the poset ({eλ}λ∈Λ,6), every ∆-filtration of
JP =

⊕
i>1 Pi has no factors isomorphic to A0e. Therefore, the ∆-filtration of

ΩM ⊆
⊕

i>1 Pi has no factors isomorphic to A0e either. But HomA(∆λ,∆µ) = 0

for λ 6= µ. Thus HomA(ΩM,∆µ) = 0, so Ext1
A(M,A0e) = 0. This proves the

second statement.
To prove (3), it suffices to show [ΩM : ∆µ] = 0 and the conclusion comes from

induction. But this fact has been established in last paragraph.
Now we prove (4). Notice that AεM is the trace of Aε in M . If [M : ∆µ] = 0,

then in particular M0 ∈ add(A0ε), and M is in the trace of Aε since it is generated in
degree 0. Conversely, if M = AεM , then M is in the trace of Aε, i.e., M is a quotient
module of some (Aε)⊕m. Since [Aε : ∆µ] = 0, we deduce that [M : ∆µ] = 0. �

We define an operator Π on A-gmod as follows:

Π(M) =

{
AεM if M 6= AεM,
ΩM if M = AεM.

Lemma 7.4. Suppose that M and AεM are linear A-modules up to a common
degree shift. Then
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(1) For all i > 1,

Πi(M) =

{
Ωi(M) if M = AεM,

Ωi−1(AεM) if M 6= AεM.

(2) There is some l ∈ Z such that Πl(M) = 0.

Proof. If M = AεM , then Π(M) = ΩM . By the previous lemma, [ΩM : ∆µ] = 0,
so ΩM = AεΩM and Π(ΩM) = Ω2(M). Using induction we get Πi(M) = Ωi(M).

If M 6= AεM , then Π(M) = AεM . Clearly, Aε(AεM) = AεM , so Π2(M) =
Ω(AεM) by the definition. Applying statements (3) and (4) of the previous lemma
recursively, we get Πi(M) = Ωi−1(AεM).

To prove (2), it suffices to show that there is a number l ∈ Z such that Πl(Π(M)) =
Ωl(Π(M)) = 0. Since Π(M) = ΩM or Π(M) = AεM , both of which are linear up to
a degree shift, Π(M) has a ∆-filtration by the above lemma. Since A is standardly
stratified and finite-dimensional, A0

∼= ∆ has finite projective dimension and every
∆-filtration of Π(M) is of finite length. Thus the projective dimension of Π(M) is
finite. �

Recall Γ = Ext∗A(A0, A0) and the indecomposable summands of Γ are precisely
Ext∗A(A0eλ, A0), λ ∈ Λ.

Lemma 7.5. Suppose that M and AεM are linear A-modules up to a common
degree shift. Then the trace ΓeExt∗A(M,A0) of Γe in Ext∗A(M,A0) is a projective
Γ-module. Moreover,

dimkExt∗A(M,A0)− dimkΓeExt∗A(M,A0) = dimkExt∗εAε(εM, εA0).

Proof. Without loss of generality we suppose that M is generated in degree 0 and
prove this lemma by induction on the least number l such that Πl(M) = 0, which
always exists by Lemma 7.4. If l = 0, then M = 0 and the conclusion holds trivially.
Now suppose that it holds for l 6 n− 1 and let M be a linear A-module for which
this least number is n. There are two cases.

(1). If M 6= AεM , then Π(M) = AεM . This happens if and only if [M : ∆µ] 6=
0. Since e = eµ is a minimal primitive idempotent, those factors isomorphic to
∆µ = A0e can only appear as direct summands of M0 by the second statement of
Lemma 7.3. Therefore we get an exact sequence 0→ AεM → M → (A0e)

⊕a → 0,
where all terms are linear by our assumption. By Proposition 2.11, this sequence
gives rise to:

0→ Ext∗A((A0e)
⊕a, A0)→ Ext∗A(M,A0)→ Ext∗A(AεM,A0)→ 0,

that is:

(7.1) 0 // (Γe)⊕a // Ext∗A(M,A0)
p // Ext∗A(AεM,A0) // 0.

By taking the trace of Γe in those terms appearing in this exact sequence, we get
another exact sequence:

(7.2) 0 // (Γe)⊕a // ΓeExt∗A(M,A0) // ΓeExt∗A(AεM,A0) // 0.

Notice that AεM is linear, AεAεM = AεM , and Πn−1(AεM) = Πn(M) = 0. By
the induction hypothesis, ΓeExt∗A(AεM,A0) is a projective Γ-module. Then the
above sequence splits and ΓeExt∗A(M,A0) is a projective Γ-module as well.

Comparing sequence 7.1 to sequence 7.2, we get:

dimkExt∗A(M,A0)− dimkΓeExt∗A(M,A0)

= dimkExt∗A(AεM,A0)− dimkΓeExt∗A(AεM,A0)

= dimkExt∗εAε(εAεM, εA0)
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by the induction hypothesis. But εAεM = εM . Thus the conclusion is true for M
by induction.

(2). If M = AεM , i.e., [M : ∆µ] = 0, then Π(M) = ΩM . Let P be a graded
projective cover of M . Then P ∈ add(Aε) and P0 ∈ add(A0ε). Since M is linear,
M0
∼= P0, so ExtiA(M,A0) = Exti−1

A (ΩM,A0) for i > 0 by Lemma 2.10, and

HomA(M,A0) ∼= HomA0
(M0, A0) ∼= HomA0

(P0, A0) ∼= HomA(P0, A0).

Therefore, the following exact sequence:

0 // ⊕
i>1 ExtiA(M,A0) // Ext∗A(M,A0) // HomA(M,A0) // 0

is isomorphic to

(7.3) 0 // Ext∗A(ΩM,A0) // Ext∗A(M,A0) // HomA(P0, A0) // 0.

Applying the exact functor HomΓ(Γe,−) to the above sequence, we get

0→ eExt∗A(ΩM,A0)→ eExt∗A(M,A0)→ eHomA(P0, A0)→ 0.

Notice that eHomA(P0, A0) = 0 since A0e = ∆µ, P0 ∈ add(A0ε) and [A0ε : ∆µ] = 0.
Thus eExt∗A(M,A0) ∼= eExt∗A(ΩM,A0)[−1] (as graded Γ-modules) and

(7.4) ΓeExt∗A(M,A0) ∼= ΓeExt∗A(ΩM,A0)

Since [ΩM : ∆µ] = 0, by Lemma 7.3, AεΩM = ΩM . So ΓeExt∗A(ΩM,A0) is a pro-
jective Γ-module by the induction hypothesis on Π(M) = ΩM , and ΓeExt∗A(M,A0)
is projective as well.

The exact sequence 0 → ΩM → P → M → 0 gives the exact sequence 0 →
εΩM → εP → εM → 0. Clearly, εP is a projective cover of εM , so εΩM = Ω(εM).
Since εM is a linear εAε-module by Lemma 7.2, we have an exact sequence similar
to (7.3):

(7.5) 0→ Ext∗εAε(Ω(εM), εA0)→ Ext∗εAε(εM, εA0)→ HomεAε(εP0, εA0)→ 0.

Therefore,

dimkExt∗A(M,A0)− dimkΓeExt∗A(M,A0) by (7.3) and (7.4)

= dimkExt∗A(ΩM,A0) + dimkHomA(P0, A0)− dimkΓeExt∗A(ΩM,A0)

= dimkExt∗εAε(εΩM, εA0) + dimkHomA(P0, A0) by induction on ΩM

= dimkExt∗A(εM, εA0) + dimkHomA(P0, A0)− dimkHomεAε(εP0, εA0),

where the last identity comes from (7.5).
We establish the identity dimkHomA(P0, A0) = dimkHomεAε(εP0, εA0) and fin-

ish the proof by induction. Take an arbitrary indecomposable summand of P0,
which is isomorphic to a certain A0eλ. Since AεM = M , P0

∼= M0 has no sum-
mands isomorphic to A0e. Therefore λ ∈ Λ1 and eλε = eλ. Now

HomA(A0eλ, A0) ∼= HomA0
(A0eλ, A0) ∼= eλA0 = eλεA0

∼= HomεA0ε(εA0eλ, εA0) ∼= HomεAε(εA0eλ, εA0).

Since P0 is a direct sum of these summands, the identity holds. �

Now we can prove the second statement of Theorem 7.1.

Proof. We use induction on the size of the poset Λ. If this number is 1, then A and
Γ = Λop both are local algebra. Clearly Γ is standardly stratified. Suppose that
the conclusion is true for posets with sizes at most m − 1 and let Λ be an poset
with m elements. Take e be a minimal idempotent and define ε,Λ1 as before.
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Let M = A0 in the previous lemma. We conclude that ΓeΓ is a projective Γ-
module. By Lemma 7.2 εAε satisfies all the conditions in the theorem and Λ1 has
only m−1 elements. Therefore, by the induction hypothesis, Γ′ = Ext∗εAε(εA0, εA0)
is standardly stratified with respect to the poset ({eλ}λ∈Λ1 ,6

op). Thus it is enough
to show Γ/ΓeΓ ∼= Γ′.

There is an algebra homomorphism ϕ : Γ → Γ′ induced by the exact functor
F = HomA(Aε,−) in the following way: ϕ sends an n-fold exact sequence

0 // A0
// Mn // . . . // M1 // A0

// 0

representing an element g ∈ Γn to an n-fold exact sequence

0 // εA0
// εMn // . . . // εM1 // εA0

// 0

representing an element g′ ∈ Γ′n for all n > 0. Every element x ∈ (Γe)n =
ExtnA(A0e,A0) can be represented by an exact sequence:

0 // A0
// Mn // . . . // M1 // A0e // 0.

Since HomA(Aε,−) sends A0e to HomA(Aε,A0e) = 0, ϕ maps every (Γe)n and
hence Γe to 0. Thus the ideal ΓeΓ generated by Γe is also sent to 0, and ϕ gives
rise to an algebra homomorphism ϕ̄ : Γ/ΓeΓ→ Γ′.

Clearly, ϕ maps Γ0 = EndA0(A0) onto EndεAε(εA0) = εΓ0ε. Moreover, we have

Ext1
A(A0, A0) ∼= HomA(

⊕
i>1

Ai, A0) ∼= HomA0(A1, A0) ∼= HomεA0ε(εA1, εA0),

where the last isomorphism is induced by the functor F (see the last paragraph of
the proof of Lemma 7.5). But

HomεA0ε(εA1, εA0) ∼= HomεAε(
⊕
i>1

εAi, εA0) ∼= Ext1
εAε(εA0, εA0).

Thus, the homomorphism ϕ induced by F maps Ext1
A(A0, A0) to Ext1

εAε(εA0, εA0)
surjectively. Since A0 (εA0, resp.) is a linear A-module (εAε-module, resp.), both
Γ = Ext∗A(A0, A0) and Γ′ = Ext∗εAε(εA0ε, εA0ε) are generated in degree 0 and degree
1 as algebras. Therefore, the map ϕ : Γ→ Γ′ is a surjective algebra homomorphism,
so ϕ̄ : Γ/ΓeΓ→ Γ′ is surjective as well.

Let M = A0 in the previous lemma. We get dimkΓ′ = dimkΓ − dimkΓeΓ.
Therefore, as a surjective homomorphism between two k-algebras with the same
dimension, ϕ̄ must be an isomorphism. This completes the proof. �

There is a similar conclusion in the case that A is a quasi-hereditary algebra, the
definition for which can be found in [7].

Corollary 7.6. Let A be the same as in the previous theorem. If A is quasi-
hereditary with respect to the poset ({eλ}λ∈Λ,6), then Γ = Ext∗A(A0, A0) is also
quasi-hereditary with respect to the poset ({eλ}λ∈Λ,6op).

Proof. We already proved that Γ is standardly stratified with respect to the poset
({eλ}λ∈Λ,6op). It suffices to check that the ideal ΓeΓ is a hereditary ideal, i.e, the
endomorphism algebra of Γe is one-dimensional.

Since e is maximal as an idempotent of Γ, the standard Γ-module corresponding
to e is exactly Γe. Thus

HomΓ(Γe,Γe) ∼= eΓe ∼= Ext∗A(A0e,A0e) = HomA(A0e,A0e)

where the last identity follows from (2) of Lemma 7.3. Since A0e is a standard
module of the quasi-hereditary algebra A, HomA(A0e,A0e) ∼= k. The conclusion
follows from induction. �
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