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Abstract

It is known that if a classical link group is a free abelian group, then
its rank is at most two, and a µ-component 2-link group for µ > 1 is
not a free abelian group. In this paper we give examples of surface
links whose link groups are free abelian groups of rank three or four.
Moreover we show that the examples of rank three are infinitely many
and one of them has the triple point number four. 1

0 Introduction

Closed 1-manifolds embedded locally flatly in the Euclidean 3-space R
3 are

called classical links, and closed 2-manifolds embedded locally flatly in the
Euclidean 4-space R

4 are called surface links. A surface link whose each
component is of genus zero (resp. one) is called a 2-link (resp. T 2-link).
Two classical links (resp. surface links) are equivalent if one is carried to the
other by an ambient isotopy of R

3 (resp. R
4).

It is known that if a classical link group is a free abelian group, then
its rank is at most two (cf. [11] Theorem 6.3.1). It is also known that a
µ-component 2-link group for µ > 1 is not a free abelian group (cf. [7]
Corollary 2 of Chapter 3).

In this paper in Section 2 we give examples of surface links whose link
groups are free abelian groups of rank three (Theorem 2.1) or four (Theorem
2.2). These examples are link groups of torus-covering T 2-links, which are
T 2-links in R

4 which can be described in braid forms over the standard torus
(see Definition 1.4).

In Section 3 we study the torus-covering-links Sn of Theorem 2.1, i.e.
the torus-covering T 2-links whose link groups are free abelian groups of
rank three, where n are integers. Computing quandle cocycle invariants, we
show that Sn is not equivalent to Sm if n 6= m (Theorem 3.1). Using the
quandle cocycle invariant together with a BW orientation for the singularity
set of a surface diagram, we can moreover determine the triple point number
of S0 of Theorem 2.1. In fact, the triple point number of S0 is four, and its
associated torus-covering-chart ΓT, 0 realizes the surface diagram with triple
points whose number is the triple point number (Theorem 3.2).
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1 Definitions and Preliminaries

As preliminaries, we give the definitions of braided surfaces, charts and
torus-covering-links (Definition 1.4) (cf. [12]). We can compute the link
groups of torus-covering T 2-links (Lemma 1.8). Throughout this paper, let
σ1, σ2, . . . , σm−1 be the standard generators of the braid group of degree m.

Definition 1.1. A compact and oriented 2-manifold SB embedded properly
and locally flatly in D2

1 ×D2
2 is called a braided surface of degree m if SB

satisfies the following conditions:

(i) pr2|SB
: SB → D2

2 is a branched covering map of degree m,

(ii) ∂SB is a closed m-braid in D2
1 × ∂D2

2, where D2
1, D

2
2 are 2-disks, and

pr2 : D2
1 ×D2

2 → D2
2 is the projection to the second factor.

A braided surface SB is called simple if every singular index is two.
Two braided surfaces of the same degree are equivalent if there is a fiber-
preserving ambient isotopy of D2

1 × D2
2 rel D2

1 × ∂D2
2 which carries one to

the other.

There is a chart which represents a simple surface braid.

Definition 1.2. Let m be a positive integer, and Γ be a graph on a 2-disk D2
2.

Then Γ is called a surface link chart of degree m if it satisfies the following
conditions:

(i) Γ ∩ ∂D2
2 = ∅.

(ii) Every edge is oriented and labeled, and the label is in {1 , . . . , m− 1}.

(iii) Every vertex has degree 1, 4, or 6.

(iv) At each vertex of degree 6, there are six edges adhering to which,
three consecutive arcs oriented inward and the other three outward,
and those six edges are labeled i and i+ 1 alternately for some i.

(v) At each vertex of degree 4, the diagonal edges have the same label and
are oriented coherently, and the labels i and j of the diagonals satisfy
|i− j| > 1 (Fig. 1.1).

A vertex of degree 1 (resp. 6) is called a black vertex (resp. white vertex).
A black vertex (resp. white vertex) in a chart corresponds to a branch point
(resp. triple point) in the surface diagram of the associated simple surface
braid by the projection pr2.

A chart with a boundary represents a simple braided surface.

There is a notion of C-move equivalence between two charts of the same
degree. The following theorem is well-known.
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Figure 1.1: Vertices in a chart

Theorem 1.3 ([9, 10]). Two charts of the same degree are C-move equiva-
lent if and only if their associated simple braided surfaces are equivalent.

Now we will give the definition of torus-covering-links (cf. [12]).

Definition 1.4. Let D2 be a 2-disk, and S1 a circle. First, embed D2×S1×S1

into R
4 naturally, and identify D2 × S1 × S1 with D2 × I3 × I4/ ∼, where

(x, 0, v) ∼ (x, 1, v) and (x, u, 0) ∼ (x, u, 1) for x ∈ D2, u ∈ I3 = [0, 1]
and v ∈ I4 = [0, 1].

Let us consider a surface link S embedded in D2 × S1 × S1 such that
S ∩ (D2 × I3 × I4) is a simple braided surface. We call S a torus-covering-
link (Fig. 1.2). In particular, if each component of a torus-covering-link is
of genus one, then we call it a torus-covering T 2-link.

A torus-covering-link is associated with a chart on the standard torus,
i.e. a chart ΓT in I3×I4 such that ΓT ∩(I3×{0}) = ΓT ∩(I3×{1}) and ΓT ∩
({0}×I4) = ΓT ∩({1}×I4). Denote the classical braids represented by ΓT ∩
(I3×{0}) and ΓT ∩({0}×I4) by a and b respectively. We will call ΓT a torus-
covering-chart with boundary braids a and b. In particular, a torus-covering
T 2-link is associated with a torus-covering-chart without black vertices, and
the torus-covering T 2-link is determined from the boundary braids a and b,
which are commutative. In this case we will call ΓT a torus-covering-chart
without black vertices and with boundary braids a and b.

We can compute link groups of torus-covering T 2-links (Lemma 1.8). Be-
fore stating Lemma 1.8, we will give the definition of Artin’s automorphism
(Definition 1.7, cf. [10]). Let D2 be a 2-disk, β an m-braid in a cylinder
D2 × [0, 1], Qm the starting point set of β.

Definition 1.5. An isotopy of D2 associated with β is an ambient isotopy
{φt}t∈[0,1] of D2 such that

(i) φt|∂D2 = id,

(ii) φt(Qm) = pr1(β ∩ pr−1
2 (t)) for t ∈ [0, 1], where pr1 : D2 × [0, 1] → D2

(resp. pr2 : D2 × [0, 1] → [0, 1]) is the projection to the first (resp.
second) factor.

Definition 1.6. A homeomorphism of D2 associated with β is the terminal
map ψ = φ1 : D2 → D2 of an isotopy {φt}t∈[0,1] of D2 associated with β.
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Figure 1.2: A torus-covering-link

Let q0 be a point of ∂D2. Identify the fundamental group π1(D
2 −

Qm, q0) with the free group Fm generated by the standard generator system
of π1(D

2 −Qm, q0).

Definition 1.7. Artin’s automorphism of Fm associated with β is the auto-
morphism of Fm induced by a homeomorphism of D2 associated with β. We
denote it by Artin(β).

We can obtain Artin’s automorphism (of the free group Fm associ-
ated with an m-braid) algebraically by the following rules. Let Fm =
〈x1, x2, . . . , xm〉.

1. Artin(β1β2) = Artin(β2) ◦ Artin(β1) for m-braids β1 and β2, and

2.

Artin(σi)(xj) =











xj if j 6= i, i+ 1,

xixi+1x
−1
i if j = i,

xi if j = i+ 1,

and

Artin(σ−1
i )(xj) =











xj if j 6= i, i+ 1,

xi+1 if j = i,

x−1
i+1xixi+1 if j = i+ 1,

where i = 1, 2, . . . ,m− 1 and j = 1, 2, . . . ,m.

We can compute link groups of torus-covering T 2-links.

Lemma 1.8 ([12] Lemma 3.4). Let ΓT be a torus-covering-chart of degree m
without black vertices and with boundary braids a and b. Let S be the torus-
covering T 2-link associated with ΓT . Then the link group of S is obtained
as follows:

π1(R
4−S) = 〈x1 , . . . , xm |xj = Artin(a)(xj) = Artin(b)(xj) , j = 1, 2 , . . . , m 〉,
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where Artin(a) : Fm → Fm (resp. Artin(b)) is Artin’s automorphism of the
free group Fm = 〈x1 , . . . , xm 〉 associated with the m-braid a (resp. b).

2 Surface links whose link groups are free abelian

There are torus-covering T 2-links whose link groups are free abelian groups
of rank three (Theorem 2.1) or four (Theorem 2.2).

Theorem 2.1. Let ΓT, n be the torus-covering-chart of degree 3 without
black vertices and with boundary braids σ2

1σ
2n
2 and ∆2, where ∆ = σ1σ2σ1

(Garside’s ∆) and n is an integer. Then the torus-covering T 2-link Sn

associated with ΓT, n has the link group π1(R
4 − Sn) = Z ⊕ Z ⊕ Z.

Theorem 2.2. Let ΓT be the torus-covering-chart of degree 4 without black
vertices and with boundary braids σ2

1σ
2
2σ

2
3 and ∆2, where ∆ = σ1σ2σ3σ1σ2σ1

(Garside’s ∆). Then the torus-covering T 2-link S associated with ΓT has
the link group π1(R

4 − S) = Z ⊕ Z ⊕ Z ⊕ Z.

Proof of Theorem 2.1. Let us compute the link groupGn = π1(R
4−Sn)

by Lemma 1.8. Let x1, x2 and x3 be the generators. Then the relations
concerning the boundary braid σ2

1σ
2n
2 are

x1x2 = x2x1, (2.1)

(x2x3)
|n| = (x3x2)

|n|. (2.2)

The other relations concerning the other boundary braid ∆2 are

x1 = (x1x2x3)x1(x1x2x3)
−1,

x2 = (x1x2x3)x2(x1x2x3)
−1,

x3 = (x1x2x3)x3(x1x2x3)
−1,

which are

x1x2x3 = x2x3x1, (2.3)

x2(x1x2x3) = (x1x2x3)x2, (2.4)

x3x1x2 = x1x2x3. (2.5)

By (2.1), (2.3) is deformed to x2x1x3 = x2x3x1. Thus we have

x1x3 = x3x1. (2.6)

Similarly, by (2.4) and (2.1), we have

x2x3 = x3x2. (2.7)
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We can see that all the relations are generated by the three relations (2.1),
(2.6) and (2.7). Thus we have

Gn = 〈x1, x2, x3 |x1x2 = x2x1, x2x3 = x3x2, x3x1 = x1x3 〉

= Z ⊕ Z ⊕ Z.

Proof of Theorem 2.2. Similarly to the proof of Theorem 2.1, for
generators x1, x2, x3 and x4, we have the following relations:

xixi+1 = xi+1xi, (2.8)

where i = 1, 2, 3, and

xi = (x1x2x3x4)xi(x1x2x3x4)
−1, (2.9)

where i = 1, 2, 3, 4. Using x1x2 = x2x1 and x3x4 = x4x3 of (2.8), the latter
four relations (2.9) are deformed as follows:

x1x3x4 = x3x4x1, (2.10)

x2x3x4 = x3x4x2, (2.11)

x3x1x2 = x1x2x3, (2.12)

x4x1x2 = x1x2x4. (2.13)

By x2x3 = x3x2 of (2.8), (2.11) is deformed to x3x2x4 = x3x4x2. Thus we
have

x2x4 = x4x2. (2.14)

Similarly, by x2x3 = x3x2 of (2.8) and (2.12), we have

x3x1 = x1x3, (2.15)

and by (2.14) and (2.13), we have

x4x1 = x1x4. (2.16)

We can see that all the relations are generated by the relations (2.8), (2.14),
(2.15) and (2.16). Thus the link group G is isomorphic to Z⊕Z⊕Z⊕Z.

3 The surface links of Theorem 2.1

As surface links which can be made from classical links, there are spun T 2-
links, turned spun T 2-links, and symmetry-spun T 2-links. Consider R

4 as
obtained by rotating R

3
+ around the boundary R

2. Then a spun T 2-link
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is obtained by rotating a classical link (cf. [2]), a turned spun T 2-link by
turning a classical link once while rotating it (cf. [2]), and a symmetry-spun
T 2-link by turning a classical link with periodicity rationally while rotating
(cf. [15]). By definition, torus-covering-links include symmetry-spun T 2-
links. Indeed, a symmetry-spun T 2-link is represented by a torus-covering-
chart with no (black nor white) vertices.

It is well-known that if a classical link group is isomorphic to Z⊕Z, then
it is a Hoph link. On the other hand, by definition, the torus-covering T 2-
link associated with a torus-covering-chart of degree 2 is a symmetry-spun
T 2-link. Here it is known that a symmetry-spun T 2-link is either the spun
T 2-link or the turned spun T 2-link of a classical link, say L, and the link
group of the spun (or turned spun) T 2-link of L is isomorphic to the classical
link group of L (cf. [15]). Hence we can see that if a torus-covering T 2-link
has the link group Z⊕Z and moreover it is associated with a torus-covering-
chart of degree 2, then it is either the spun or the turned spun T 2-link of a
Hoph link. Thus for the torus-covering T 2-links with the link group Z ⊕ Z

which are associated with torus-covering-charts of degree 2, there are just a
finite number of equivalence classes.

Then what about the torus-covering T 2-links of Theorem 2.1? Are the
number of the equivalence classes of them finite? The answer is no.

Theorem 3.1. For the torus-covering T 2-links of Theorem 2.1, Sn and Sm

are not equivalent for n 6= m, where n and m are integers.

Before the proof, we give the definition of the quandle cocycle invariants.
(cf. [3, 4, 5]). Let F be an oriented surface link.

Let π : R
4 → R

3 be a generic projection. In the surface diagram
D = π(F ), there are two intersecting sheets along each double point curve,
one of which is higher than the other with respect to π. They are called the
over sheet and the under sheet along the double point curve, respectively. In
order to indicate crossing information of the surface diagram, we break the
under sheet into two pieces missing the over sheet. This can be extended
around a triple point. Around a triple point, the sheets are called the top
sheet, the middle sheet, and the bottom sheet from the higher one. Then the
surface diagram is presented by a disjoint union of compact surfaces which
are called broken sheets. We denote by B(D) the set of broken sheets of D.

A set X with a binary operation ∗ : X ×X → X is called a quandle if
it satisfies the following conditions:

(i) for any a ∈ X, a ∗ a = a,

(ii) for any a, b ∈ X, there exists a unique c ∈ X such that a = c ∗ b, and

(iii) for any a, b, c ∈ X, (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c) (cf. [8]).

A finite quandle is a quandle consisting of a finite number of elements. A
trivial quandle is a set X with the binary operation a∗b = a for any a, b ∈ X.
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A coloring for a surface diagramD by a quandleX is a map C : B(D) →
X such that C(H1) ∗ C(H2) = C(H ′

1) along each double point curve of D,
where H2 is the over sheet and H1 (resp. H ′

1) is the under sheet such that
the normal vector of H2 points from (resp. toward) it. The image by C is
called the color.

At a triple point of D, there exist broken sheets J1, J2, J3 ∈ B(D)
uniquely such that J1 is the bottom sheet, J2 is the middle sheet, J3 is the
top sheet and the normal vector of J2 (resp. J3) points from J1 (resp. J2).
The color of the triple point is the triplet (C(J1), C(J2), C(J3)) ∈ X×X×X.
The sign of the triple point is positive or +1 (resp. negative or −1) if the
triplet of the normal vectors of J1, J2, J3 is right-handed (resp. left-handed).

If D has a corresponding chart, this corresponds to the following (cf. [6]
Proposition 4.43 (3)). The color of the white vertex representing σiσjσi →
σjσiσj (|i− j| = 1) is (a, b, c), where a, b and c are the colors of the broken
sheets of D connected with the starting points of the i′-th, (i′ + 1)-th, and
(i′ + 2)-th strings of σiσjσi, where i′ = min{i, j}. The white vertex is
positive (resp. negative) if j > i (resp. i > j), i.e. if there is exactly one
edge with the larger (resp. smaller) label oriented toward the white vertex.

Take a map θ : X × X × X → A, where X is a finite quandle and A
is an abelian group in which the sum is written multiplicatively. Take a
coloring C for the surface diagram D by the quandle X. Let τ1 , τ2 , . . . , τs
be all the triple points of D with the sign ǫi ∈ {+1, −1} and the color
(ai, bi, ci) ∈ X ×X × X for each τi. Put Wθ(τi ; C) = θ(ai , bi , ci)

ǫi ∈ A
for each τi, and Wθ(C) =

∏s
i=1Wθ(τi ; C) ∈ A for the coloring C. We call

Wθ(τi ; C) the Boltzman weight of τi, and Wθ(C) the Boltzman weight. Since
X is a finite quandle and the set of broken sheets of D is finite, so is the set
of colorings for D by X. Let C1 , C2 , . . . , Cn be all the colorings, and define
Φθ(D) by Φθ(D) =

∑n
j=1Wθ(Cj) ∈ Z[A]. If the map θ satisfies the following

conditions (θ1) and (θ2), then Φθ(D) does not depend on the choice of the
surface diagram D of the surface link F . Then we call Φθ(D) the quandle
cocycle invariant of F associated with the 3-cocycle θ, and use the notation
Φθ(F ). The conditions are as follows, where x, y, z, w ∈ X.

(θ1) θ(x, y, z) = 1X for x = y or y = z,

(θ2) θ(x, z, w) ·θ(x, y, w)−1 ·θ(x, y, z) = θ(x∗y, z, w) ·θ(x∗z, y ∗z, w)−1 ·
θ(x ∗ w, y ∗ w, z ∗ w).

Proof. Consider a trivial quandle of three elements, T3, such that the
associated set is {0, 1, 2}, and take a map θ : T3 × T3 ×T3 → Z = 〈 t 〉 such
that

θ(x, y, z) = t(x−y)(y−z)(z−x)z . (3.1)

This map θ satisfies the conditions (θ1) and (θ2). Let us compute the
quandle cocycle invariant of Sn associated with θ by coloring the associated
torus-covering-chart ΓT, n.
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Figure 3.1: The coloring for σ2
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2n
2 , if n ≥ 0

a

c

a

a
c

c

c

c

b
a

C(τ11) C(τ12 )

bb
b

b

a
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Figure 3.2: The coloring for (σ1σ2σ1)
2 and the colors

First let us consider the case when n is a non-negative integer. Color
the surface diagram associated with ΓT, n by T3. Then the coloring for the
diagrams of the vertical boundary braid σ2

1σ
2n
2 and the horizontal boundary

braid (σ1σ2σ1)
2 is as in Fig.s 3.1 and 3.2, where a, b, c ∈ {0, 1, 2}, which

are all the colorings. Denote the coloring by C. We can draw the part of the
torus-covering-chart without black vertices and with boundary braids σ1 and
(σ1σ2σ1)

2 such that it has two white vertices as in Fig. 3.3. Denote them
by τi1 and τi2 from left to right as in Fig. 3.3, where i = 1, 2. The colors
C(τ11) and C(τ12) of the first two white vertices τ11 and τ12 are obtained
from reading the colors along the dotted paths in Fig. 3.2. Since there is
exactly one edge with the larger (resp. smaller) label, i.e. the label 2 (resp.
the label 1) oriented toward τ11 (resp. τ12), we see that the sign of τ11 (resp.
τ12) is positive (resp. negative). Thus the signs and colors are +(b, a, c) for
τ11 and −(c, b, a) for τ12. Similarly, the color of τ21 (resp. τ22) is obtained
from that of τ11 (resp. τ12) by exchanging a and b, and the sign of τ21 (resp.
τ22) is the same with that of τ11 (resp. τ12). Thus we can see that the signs
and colors are +(a, b, c) for τ21 and −(c, a, b) for τ22.

Let us denote
∏2

i=1

∏2
j=1Wθ(τij ;C) by Wθ(Γ1;C), where Wθ(τij ;C) is

the Boltzman weight of τij for the coloring C. Then Wθ(Γ1;C) is as follows:

Wθ(Γ1;C) = θ(b, a, c) · θ(c, b, a)−1 · θ(a, b, c) · θ(c, a, b)−1

= t(a−b)(b−c)(c−a)(a−b). (3.2)

Hence we have

Wθ(Γ1;C) =











t−2 if (a, b, c) = (0, 1, 2), (1, 0, 2), (1, 2, 0), (2, 1, 0)

t4 if (a, b, c) = (0, 2, 1), (2, 0, 1)

1 if {a, b, c} = {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}.
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Figure 3.3: White vertices τi1 and τi2, where i = 1, 2

1 2 1 1 12

τ τ2

1 1 1 12 2

2i1 i2

Figure 3.4: White vertices τi1 and τi2 (i = 3, 4, . . . , 2n+ 2), if n > 0

Similarly, We can draw the part of the torus-covering-chart without black
vertices and with boundary braids σ2 and (σ1σ2σ1)

2 such that it has two
white vertices as in Fig. 3.4. Denote these by τi1 and τi2 for i = 3, 4, . . . , 2n+
2 as in Fig. 3.4. Then the signs and the colors are −(a, b, c) for τ(2k−1)1,
+(b, c, a) for τ(2k−1)2, −(a, c, b) for τ(2k)1, and +(c, b, a) for τ(2k)2, where
k = 2, 3, . . . , n + 1. Fig. 3.2 shows the colors of τ(2k−1)1 and τ(2k−1)2, and
the color of τ(2k)1 (resp. τ(2k)2) is obtained from τ(2k−1)1 (resp. τ(2k−1)2) by

exchanging b and c. Let us denote
∏2k

i=2k−1

∏2
j=1Wθ(τij;C) by Wθ(Γk;C),

where k = 2, 3, . . . , n+ 1. Then we have

Wθ(Γk;C) = θ(a, b, c)−1 · θ(b, c, a) · θ(a, c, b)−1 · θ(c, b, a)

= t(a−b)(b−c)(c−a)(b−c),

and

Wθ(Γk;C) =











t−2 if (a, b, c) = (0, 1, 2), (0, 2, 1), (2, 0, 1), (2, 1, 0)

t4 if (a, b, c) = (1, 0, 2), (1, 2, 0)

1 if {a, b, c} = {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}.

Since τij for i = 1, 2, . . . , 2n+ 2 and j = 1, 2 are all the white vertices of
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Figure 3.5: White vertices τ ′i1 and τ ′i2 (i = 3, 4, . . . , 2n+ 2), if n < 0
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Figure 3.6: The colors of τ ′(2k−1)1 and τ ′(2k−1)2

ΓT, n, the Boltzman weight Wθ(C) is
∏n+1

k=1 Wθ(Γk;C), which is as follows:

Wθ(C) =























t−2−2n if (a, b, c) = (0, 1, 2), (2, 1, 0)

t4−2n if (a, b, c) = (0, 2, 1), (2, 0, 1)

t−2+4n if (a, b, c) = (1, 0, 2), (1, 2, 0)

1 if {a, b, c} = {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}.

Hence the quandle cocycle invariant Φθ(Sn) of Sn associated with θ is

Φθ(Sn) = 21 + 2t−2−2n + 2t4−2n + 2t−2+4n (3.3)

for n ≥ 0.
Similarly, if n < 0, then we can draw the part of the torus-covering-chart

without black vertices and with boundary braids σ−1
2 and (σ1σ2σ1)

2 such
that it has two white vertices as in Fig. 3.5. Denote these by τ ′i1 and τ ′i2 for
i = 3, 4, . . . , 2|n| + 2 as in Fig. 3.5. Then the signs and colors are +(a, b, c)
for τ ′(2k−1)1, −(c, b, a) for τ ′(2k−1)2, +(a, c, b) for τ ′(2k)1, and −(b, c, a) for

τ ′(2k)2, where k = 2, 3, . . . , |n| + 1. Fig. 3.6 shows the colors of τ ′(2k−1)1

and τ ′(2k−1)2, where the braid surrounded by the dotted square is the braid

(σ1σ2σ1)
2. The color of τ ′(2k)1 (resp. τ ′(2k)2) is obtained from τ ′(2k−1)1 (resp.

τ ′(2k−1)2) by exchanging b and c. Hence we can see that the equation (3.3)

holds for n < 0, too. Thus we see that Φθ(Sn) 6= Φθ(Sm) for n 6= m.
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The triple point number of a surface link F is the minimum number of
triple points in a surface diagram of F , for all the surface diagrams. We can
moreover determine the triple point number of S0.

Theorem 3.2. The triple point number of S0 of Theorem 2.1 is four, and its
associated torus-covering-chart ΓT, 0 realizes the surface diagram with triple
points whose number is the triple point number.

Let T3(a, b, c) be a a trivial quandle of three elements such that the
associated set is {a, b, c}. First let us introduce a property of a BW orien-
tation for the singularity set Σ of a surface diagram D, and define E(C; Σ)
and E(Σ) for a BW orientation for Σ and a coloring C of D by T3(a, b, c).

Let D be a surface diagram of an oriented surface link. Let Σ be the
singularity set of D. A triple point (resp. branch point) of D corresponds
to a vertex of degree 6 (resp. degree one) of Σ. An edge of Σ around
a triple point is called a b/m-edge, b/t-edge or m/t-edge if it is a double
point curve which is the intersection of the bottom sheet and the middle
sheet, the bottom sheet and the top sheet, or the middle sheet and the
top sheet respectively. The singularity set Σ admits a BW orientation (cf.
[13]). Let us consider an edge of Σ connected with a triple point. Let us
say the edge is positive (resp. negative) with respect to the triple point if
it is oriented outward from (resp. toward) the triple point. Then a BW
orientation orients each edge of Σ such that around each triple point, say τ ,
the BW orientation of the six edges around τ satisfy one of the conditions
as follows: the four edges consisting of the b/m-edges and m/t-edges are
positive (resp. negative), and the other two edges consisting of the b/t-
edges are negative (resp. positive) with respect to τ .

Let us give a coloring C for D by T3(a, b, c), and moreover give a BW
orientation to Σ. Then the color of the six edges of Σ around a triple point
τ is one of the following. Let τ(C) be the color of the triple point:

(i) (x, y), (x, y), (x, z), (x, z), (y, z), (y, z) if τ(C) = (x, y, z),

(ii) (x, y), (x, y), (x, x), (x, x), (y, x), (y, x) if τ(C) = (x, y, x),

(iii) (x, x), (x, x), (x, y), (x, y), (x, y), (x, y) if τ(C) = (x, x, y),

(iv) (y, x), (y, x), (y, x), (y, x), (x, x), (x, x) if τ(C) = (y, x, x),

(v) (x, x), (x, x), (x, x), (x, x), (x, x), (x, x) if τ(C) = (x, x, x),

where the first and the second colors are those of b/m-edges, the third and
the fourth colors are those of b/t-edges, and the fifth and the sixth colors
are those of m/t-edges, and {x, y, z} = {a, b, c}.

Let τ1, τ2, . . . , τν be all the triple points of D, and let the color of τj
be (aj , bj , cj), where aj , bj , cj ∈ {a, b, c} and j = 1, 2, . . . , ν. Let ǫj = +1
(resp. −1) if the BW orientation of the six edges of Σ around τj are as
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follows, where j = 1, 2, . . . , ν: the b/m-edges and m/t-edges are positive
(resp. negative) and the b/t-edges are negative (resp. positive) with respect
to τ . Then let us define

E(C; τj) = {ǫj(aj , bj), −ǫj(aj , cj), ǫj(bj , cj)}, (3.4)

where j = 1, 2, . . . , ν, and E(C; Σ) = ∪ν
j=1E(C; τj).

Let us say the color of an edge of Σ is degenerate (resp. non-degenerate)
if the color is (x, x) (resp. (x, y)), where x, y ∈ {a, b, c} with x 6= y. Any
edge of Σ connected with a branch point has a degenerate color. Hence
we can see that if an edge, say e, of Σ connected with a triple point, say
τ , has a non-degenerate color, then the other end of e is connected with a
triple point, say τ ′ (i.e. not a branch point). Moreover we see that the BW
orientation of the edge e is positive with respect to τ , and negative with
respect to τ ′. Hence we can see that

E(C; Σ) = A ∪B, (3.5)

where A is a set consisting of pairs in the form of {+(x, y), −(x, y)}, and B
is a set consisting of elements in the form of ǫ(x, x), where x, y ∈ {a, b, c}
with x 6= y and ǫ ∈ {+1, −1}. Moreover for the above ǫ, x and y, let f be a
map which maps an element of E(C; Σ) to an integer such that f(ǫ(x, x)) = 0
and f(ǫ(x, y)) = ǫ. Then let

E(τj) = f(ǫj(aj, bj)) + f(−ǫj(aj , cj)) + f(ǫj(bj , cj)), (3.6)

where j = 1, 2, . . . , ν (cf. (3.4)), and E(Σ) =
∑ν

j=1E(τj). Then we have

E(τj) =











ǫj if τj is of type (i),

2ǫj if τj is of type (ii),

0 otherwise.

By (3.5), we can see that
E(Σ) = 0. (3.7)

Note that if E(τj) is positive (resp. negative), then ǫj = +1 (resp. −1).
Let us say a triple point is non-degenerate if its color is of type (i) or

(ii), and degenerate otherwise. By definition, if τ is a non-degenerate triple
point, then E(τ) = ǫ (resp. 2ǫ) if τ is of type (i) (resp. type (ii)), where
ǫ ∈ {+1, −1}, and if τ is a degenerate triple point (i.e. of type (iii), (iv), or
(v)), then E(τ) = 0.

Proof of Theorem 3.2. The quandle cocycle invariant Φθ(S0) of S0

associated with the trivial quandle T3 and the 3-cocycle θ of Theorem 3.1
is Φθ(S0) = 21 + 4t−2 + 2t4 by Theorem 3.1. Let Wθ(C) be the Boltzman
weight associated with the 3-cocycle θ and a coloring C.
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Let us consider another 3-cocycle θ′ : T3 ×T3 ×T3 → Z = 〈 t 〉 such that

θ′(x, y, z) = t(x−y)(y−z)(z−x)x. (3.8)

Let us denote by Wθ′(C) the Boltzman weight associated with the 3-cocycle
θ′ and a coloring C. Let C0 be the coloring C of Theorem 3.1. Then similarly
to Theorem 3.1, we can see that the Boltzman weight associated with the
3-cocycle θ′ and the coloring C0 is

Wθ′(C0) = θ′(b, a, c) · θ′(c, b, a)−1 · θ′(a, b, c) · θ′(c, a, b)−1

= t(a−b)(b−c)(c−a)(a−b),

which is the same with Wθ(C0) = Wθ(Γ1, C0) (3.2) of Theorem 3.1. Hence
the quandle cocycle invariant Φθ′(S0) of S0 associated with θ′ is the same
with Φθ(S0), i.e.

Φθ(S0) = Φθ′(S0) = 21 + 4t−2 + 2t4. (3.9)

Let D be a surface diagram of an oriented surface link. Let T3(a, b, c) be
a trivial quandle of three elements such that the associated set is {a, b, c}.
Let C(a, b, c) be a coloring for D by T3(a, b, c). Let us denote by C the set of
all the colorings by T3 described by C(a, b, c), i.e. C = {C(a, b, c) | a, b, c ∈
{0, 1, 2} }. By the definitions of θ (3.1) and θ′ (3.8), we can see that for
C(a, b, c) by T3(a, b, c) and a triple point τ of D, if τ is not of type (i), then

Wθ(τ ;C) = Wθ′(τ ;C) = 1 (3.10)

for any C ∈ C. Now, suppose we can show that for each possible coloring
C(a, b, c) by T3(a, b, c) and its associated set of colorings C, one of the
following holds:

(W1) Wθ(C) = 1, for each C ∈ C,

(W2) For a coloring C ∈ C, Wθ(C) is neither 1, t−2 nor t4, or

(W3) ΣC∈CWθ′(C) = 27.

Then D is not a surface diagram of S0 by the following argument. Suppose
(W3) holds. Since the number of all the colorings for any surface diagram of
S0 is Φθ(S0)|t=1 = 27, we can see that the number of all the colorings forD is
27. Since the number of the elements of C is ΣC∈CWθ′(C)|t=1 = 27, we have
Φθ′(S0) = ΣC∈CWθ′(C), which contradicts (3.9) and ΣC∈CWθ′(C) = 27.
Thus (W3) does not occur. By (3.9), the Boltzman weight Wθ(C) for a
coloring C must be 1, t−2 or t4. Hence (W2) also does not occur. Then,
if only (W1) occurs, then the quandle cocycle invariant is an integer value,
which also contradicts (3.9).
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Thus it follows that for a surface diagram with at most three triple
points, if all the possible colorings C(a, b, c) for it by T3(a, b, c) satisfies
(W1), (W2) or (W3), then the surface diagram does not represent S0, i.e.
the triple point number of S0 is at least four.

Hence from now on we will show that for a surface diagram D with at
most three triple points and a set of colorings C for D, either (W1) or (W2)
or (W3) occurs. Here C is the set of all the colorings of T3 described by
C(a, b, c), where C(a, b, c) is a coloring for D by T3(a, b, c). Let us give a
coloring C(a, b, c) by T3(a, b, c) for D. Let Σ be the singularity set of D,
and give a BW orientation to Σ. Let ǫ ∈ {+1, −1}. If D does not have a
triple point, then (W1) holds. Hence we can assume that D has at least one
triple point.

(Case 1) If D has one triple point, then let τ be the triple point. If τ
is of type (i), then E(Σ) = +1 or −1, which contradicts E(Σ) = 0 (3.7).
Hence by (3.10) we have Wθ(τ ;C) = 1 for any C ∈ C, which is Case (W1).
Indeed it is known that we can cancel the triple point (cf. [13]), i.e. there is
another surface diagram which represents the same surface link represented
by D such that it has no triple points.

(Case 2) If D has two triple points, then considering E(Σ), we can see
that the triple points are both of type (i), or both of type (ii), or both
degenerate. By (3.10), it suffices to show in the case that the triple points
are both of type (i). Let τ and τ ′ be the triple points. If τ and τ ′ are both
of type (i), then by (3.5), we can see that τ and τ ′ have the same colors. We
can assume that the colors are both (a, b, c). If τ and τ ′ have the opposite
signs, then Wθ(C(a, b, c)) = θ(a, b, c)ǫ · θ(a, b, c)−ǫ = 1 for any coloring
C(a, b, c) ∈ C. This is Case (W1). If τ and τ ′ have the same signs, then we
have Wθ(C(a, b, c)) = θ(a, b, c)ǫ · θ(a, b, c)ǫ = t2ǫ(a−b)(b−c)(c−a)c. Then for
a coloring C(0, 1, 2) ∈ C we have Wθ(C(0, 1, 2)) = t8ǫ, which is neither 1,
t−2, nor t4. This is Case (W2).

(Case 3) If D has three triple points, say τ1, τ2 and τ3, then there are
two cases. Since E(τ) = ǫ (resp. 2ǫ) if τ is a triple point of type (i) (resp.
type (ii)), and E(τ) = 0 if τ is degenerate, and E(Σ) must be zero (3.7),
and since by (3.10) we can assume that there is at least one triple point of
type (i), there are two cases as follows:

(Case 3.1) τ1 and τ2 are of type (i), and τ3 is degenerate, or
(Case 3.2) τ1 and τ2 are of type (i), and τ3 is of type (ii). Moreover we

can assume that E(τ1) = E(τ2) = +1 and E(τ3) = −2.
(Cases 3.1) Similarly to (Case 2), this case satisfies (W1) or (W2).
(Case 3.2) Since τ1 is of type (i), we can assume that τ1 has the color

(a, b, c). Since E(τ1) = +1, we have E(C(a, b, c); τ1) = {+(a, b),−(a, c),+(b, c)}.
Since E(τ3) = −2, τ3 has the color (x, y, x) of type (ii) and moreover
E(C(a, b, c); τ3) = {−(x, y), +(x, x), −(y, x)}, where {x, y} = {a, b}, {a, c}
or {b, c}. Since E(C(a, b, c); τ3) = {−(x, y), −(y, x)} ∪ {+(x, x)}, by (3.5)
we can see that at least one element of {−(x, y), −(y, x)} has the same
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color and the opposite BW orientation of an element of E(C(a, b, c); τ1) ∪
E(C(a, b, c); τ2). We can assume that the element is in E(C(a, b, c); τ1).
Then we have {x, y} = {a, b} or {b, c}. If {x, y} = {a, b}, then we have

E(C(a, b, c); Σ)

= {+(a, b),−(a, c),+(b, c),−(a, b),+(x, x),−(b, a)} ∪ E(C(a, b, c); τ2)

= {−(a, c),+(b, c),−(b, a)} ∪ E(C(a, b, c); τ2) ∪ {+(a, b),−(a, b)} ∪ {+(x, x)},

where x = a or b. By (3.5) we have E(C(a, b, c); τ2) = {+(a, c),−(b, c),+(b, a)}.
Hence the color of τ2 must be (b, a, c). Hence in this case C(a, b, c) =
C1(a, b, c), where τ1 has the color (a, b, c), and τ2 has the color (b, a, c),
and τ3 has the color (a, b, a) or (b, a, b). Similarly, if {x, y} = {b, c}, then
C(a, b, c) = C2(a, b, c), where τ1 has the color (a, b, c), and τ2 has the color
(a, c, b), and τ3 has the color (b, c, b) or (c, b, c).

In the case of C(a, b, c) = C1(a, b, c), if τ1 and τ2 have the same
signs, then by (3.10) Wθ(C1(a, b, c)) = θ(a, b, c)ǫ · θ(b, a, c)ǫ = 1. This
is Case (W1). If τ1 and τ2 have the opposite signs, then Wθ(C1(a, b, c)) =
θ(a, b, c)ǫ · θ(b, a, c)−ǫ = t2ǫ(a−b)(b−c)(c−a)c, which is t8ǫ when (a, b, c) =
(0, 1, 2). This is Case (W2).

In the case of C(a, b, c) = C2(a, b, c), if τ1 and τ2 have the same signs,
then Wθ(C2(a, b, c)) = θ(a, b, c)ǫ · θ(a, c, b)ǫ = t−ǫ(a−b)(b−c)(c−a)(b−c). If
ǫ = +1, then Wθ(C2(0, 1, 2)) = t2, which is Case (W2). If ǫ = −1, then
ΣC∈CWθ(C) = 21+4t−2+2t4, which is the same with Φθ(S0). However, since
Wθ′(C2(a, b, c)) = θ′(a, b, c)−1 · θ′(a, c, b)−1 = 1, we have ΣC∈CWθ′(C) =
27. This is Case (W3). If τ1 and τ2 have the opposite signs, thenWθ(C2(a, b, c)) =
θ(a, b, c)ǫ · θ(a, c, b)−ǫ = tǫ(a−b)(b−c)(c−a)(b+c), which is t6ǫ when (a, b, c) =
(0, 1, 2). This is Case (W2).

Thus we have shown that the triple point number of S0 is at least four.
Since the torus-covering-chart ΓT,0 has four white vertices, the triple point
number of S0 is at most four. Hence the triple point number of S0 is four,
and the associated torus-covering-chart ΓT, 0 realizes the surface diagram
where the number of the triple points is the triple point number.
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