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Abstract

The present paper is devoted to further studies of quantum the-

ory and gravity in terms of the measurability notion on the basis of

the previous author's works. In the beginning the applicability limit

of Einstein's Equivalence Principle (EP) is considered. It is noted

that in this case a natural upper limit is associated with the Planck

scales (or same Planck energies) because, due to the modern knowl-

edge about these scales, the well-known spacetime geometry should

be replaced by the spacetime foam on account of great �uctuations

of the metric. It is shown that a real applicability limit of EP may

be considerably lower than the Plank scales. Without due regard to

this fact, one can obtain senseless results from estimation of the rel-

evant quantities within the scope of the conventional Quantum Field

Theory. In the second part of the paper the earlier obtained results

are applied to study the spacetime foam in the case of a measurable

consideration. It is demonstrated that measurability allows for a

new approach to investigation of quantum �uctuations of the metric,

especially at high (Planck) energies, i.e. in the quantum-gravitational

region, leading to new approaches to studies of the spacetime foam.

1 Introduction

This paper is a continuation of previous works written by the author [1]�
[6] with the use of the measurability concept. In Section 2 the author
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considers the applicability limit of Einstein's Equivalence Principle (EP).
It is clear that in this case the Plank scales present a natural upper limit
because it is known: the Plank energies E ≈ Ep are associated with great
spacetime quantum �uctuations, and the initial spacetime geometry deter-
mined by the particular metric gµν is replaced by the spacetime foam, the
properties of which are still inadequately known. It is shown that a real
applicability limit of EP may be lying considerably lower than the Plank
scales. Disregarding this, one can obtain senseless results during estimation
of the relevant quantities within the scope of the conventional Quantum
Field Theory (QFT), in particular, of the cosmological term λ in General
Relativity (GR).
The author gives some arguments in support of the statement that all the
processes studied in QFT should be considered separately in two di�erent
energy ranges

E ≪ Ep

and

E ≈ Ep. (1)

Sections 3,4 present the results earlier obtained in [1]�[6] but now the author
lifts some initial restrictions (limiting conditions) imposed in the above-
mentioned papers. Speci�cally, it is not supposed from the start that a
theory involves some minimal length lmin. Instead, the primary length ℓ
(formula (10) is introduced in Section 3).In the beginning of Section 3 the
adequate argumentation of such replacement is given. It is noted that the
whole formalism developed in [1]�[6] on condition that ℓ = lmin is a minimal
length is fully valid for the case when ℓ is the primary length.
Finally, in Section 5 the obtained results are applied to study the spacetime
foam in a measurable consideration. It is demonstrated that measura-
bility allows for studies of quantum �uctuations of metrics on the basis of
a new approach. In the case of high energies E ≈ Ep, i.e.in the quantum-
gravitational region, this approach leads to new investigation methods for
the spacetime foam.
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2 Equivalence Principle and QFT Ultraviolet

Behavior in Canonical Theory

The Einstein's Equivalence Principle (EP) is a basic principle not only in
the General Relativity (GR) [7]�[9], but also in the fundamental physics as
a whole. In the standard formulation it is as follows: ([9],p.68):
�at every space-time point in an arbitrary gravitational �eld it is possible
to choose a locally inertial coordinate system such that, within a suf-
�ciently small region of the point in question, the laws of nature take the
same form as in accelerated Cartesian coordinate systems in the absence of
gravitation�.
Then in ([9],p.68) �...There is also a question, how small is �su�ciently
small� . Roughly speaking, we mean that the region must be small enough
so that gravitational �eld in sensible constant throughout it...�.
However, the statement �su�ciently small� is associated with another
problem. Indeed, let x be a certain point of the space-time manifold M
(i.e. x ∈ M) with the geometry given by the metric gµν(x). Next, in accor-
dance with EP, there is some su�ciently small region V of the point x so
that, within V , we have

gµν(x) ≡ ηµν(x), (2)

where ηµν(x) is Minkowskian metric.
In essence, su�ciently small Vr means that the region V ′

, for which x ∈
V ′

r′ ⊂ Vr with r′ < r (here r, r′ are characteristic spatial sizes of Vr and
V ′
r correspondingly), satis�es (2) as well. In this way we can construct the

sequence

... ⊂ V ′′

r′′
⊂ V ′

r′ ⊂ Vr,

... < r
′′
< r′ < r (3)

The problem arises, is there any lower limit for the sequence in formula (3)?
The answer is positive. Currently, there is no doubt that at very high en-
ergies (on the order of Planck's energies E ≈ Ep), i.e. on Planck's scales,
l ≈ lp quantum �uctuations of any metric gµν(x) are so high that in this case
the geometry determined by gµν(x) is replaced by the �geometry� following

3



from space-time foam that is de�ned by great quantum �uctuations of
gµν(x),i.e. by the characteristic spatial sizes of the quantum-gravitational
region (for example, [10]�[15]). The above-mentioned geometry is drasti-
cally di�ering from the locally smooth geometry of continuous space-time
and EP in it is no longer valid [16]�[24].
From this it follows that the region Vr,t with the characteristic spatial size
r ≈ lp (and hence with the temporal size t ≈ tp) is the lower (approximate)
limit for the sequence in (3).
It is di�cult to �nd the exact lower limit for the sequence in formula (3)�it
seems to be dependent on the processes under study. Speci�cally, when
the involved particles are considered to be point, their dimensions may be
neglected in a de�nition of the EP applicability limit. When the charac-
teristic spatial dimension of a particle is r, the lower limit of the sequence
from formula (3) seems to be given by the region Vr′ containing the above-
mentioned particle with the characteristic dimensions r′ > r, i.e. the space
EP applicability limit should always be greater than dimensions of the par-
ticles considered in this region. By the present time, it is known that spatial
dimensions of gauge bosons, quarks, and leptons within the limiting accu-
racy of the conducted measurements < 10−18m. Because of this, the con-
dition r′ ≥ 10−18m must be ful�lled. In addition, the radius of interaction
of particles rint must be taken into account in quantum theory. And this
fact also imposes a restriction on considering concrete processes in quantum
theory. However, the interactions radii of all known processes lie in the en-
ergy scales E ≪ Ep.
Therefore, it is assumed that the Equivalence Principle is valid for the lo-
cally smooth space-time and this suggests that all the energies E of the
particles in the most general form meet the necessary condition

E ≪ Ep. (4)

Then, if not stipulated otherwise, we can assume that the condition (4) is
valid.
The canonical quantum �eld theory (QFT) [25]� [27] is a local theory consid-
ered in continuous space-time with a plane geometry, i.e with the Minkowskian
metric ηµν(x) . In addition, it is assumed that all objects in QFT are point-
like. However, as noted above, this assumption will be true to a certain
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limit: the assumptions that (a) even local space-time geometry is plane and
(b) all objects in QFT are point-like have natural applicability boundaries
directly specifying the EP applicability boundary.
In reality, any interaction introduces some disturbances, introducing an ad-
ditional local (little) curvature into the initially �at Minkowskian space M.
Then the metric ηµν(x) is replaced by the metric ηµν(x)+ oµν(x), where the
increment oµν(x) is small. But, when it is assumed that EP is valid, the
increment oµν(x) in the local theory has no important role and, in a fairly
small neighborhood of the point x, formula (2) is valid.
Within the scope of the canonical QFT, the process of passage to more
higher energies without a change in the local curvature has no limits [25]�
[27], just this fact is the reason for ultraviolet divergences in QFT. But as
follows from the previous section, this is not the case. Actually, on passage
to the Planck energies E ≈ Ep (Planck scales l ≈ lp), the space in the Planck
neighborhood Vr,t of the point x one cannot consider �at even locally and
in this case (as noted above) EP is not valid.
Then we introduce the following assumption:

Assumption 2.1
In the canonical QFT in calculations of the quantities it is wrong to sum
(or same consider within a single sum) the contributions corresponding to
space-time manifolds with locally nonzero or zero curvatures since these con-
tributions are associated with di�erent processes: (1) with the existence of
a gravitational �eld that, in principle, can hardly be excluded; (2) in the
absence of a gravitational �eld.

From the start, we can isolate the case when EP is valid (at su�ciently
low energies, speci�cally satisfying the condition (4)) from the cases when
EP becomes invalid (for example, Planck energies E ≈ Ep).
Let us consider a widely known example when Assumption 2.1 is not ful-
�lled leading to the senseless results.
In his well-known lectures [28] at the Cornell University Steven Weinberg
considered an example of calculating, within the scope of QFT, the expected
value for the vacuum energy density < ρvac > that is proportional to the
cosmological term λ. To this end, zero-point energies of all normal modes
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of some �eld with the mass m are summed up to the wave number cuto�
Λ ≫ m for the selected normalization ~ = c = 1 (formula (3.5) in [28]):

< ρvac >∼
∫ Λ

0

4πk2dk

(2π)3
1

2

√
k2 +m2 ≃ Λ4

16π2
. (5)

Assuming, similar to [28], that GR is valid at all the energy scales up to
the Planck's, we have the cuto� Λ ≃ (8πG)−1/2 and hence (formula (3.6) in
[28]) leads to the following result:

< ρvac >∝ 2 · 1071GeV 4, (6)

that by 10118 orders of magnitude di�ers from the well-known experimental
value for the vacuum energy density

< ρvac,exp >≼ 10−29g/cm3 ∝ 10−47GeV 4. (7)

Here G is a gravitational constant.
It is clear that in this case Assumption 2.1 fails as Planck's scales and
those close to them at lower energies are included into consideration. By
the author's opinion, this is impermissible because for Planck's scales the
quantum rather than classical gravity is true and the space even in a small
neighborhood of the point is hardly �at. But in formula (5) for the cuto�
Λ ≃ (8πG)−1/2 this fact is not included because all calculations in the
canonical QFT [27] are valid for the locally �at space and hence (5) in this
case leads to senseless results.
Of particular interest is the inverse problem: if the experimental value of
the vacuum energy density < ρvac,exp > is known from (7), substituting it
into formula (5), we can estimate Λexp at the upper limit of integration by
the above formula

< ρvac,exp >∼
∫ Λexp

0

4πk2dk

(2π)3
1

2

√
k2 +m2 ≃ 10−47GeV 4. (8)

Note that Λexp may be found in other way. Denoting by ΛUV the quantity
≃ (8πG)−1/2 from formula (5), corresponding to the cuto� at Planck's scale
≈ 1, 6 ·10−33cm that is taken as the ultraviolet cuto�, denoting the required
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quantity < ρvac > by < ρvac,UV >, by ΛIF denoting the quantity from the
same formula, that corresponds to the cuto� at the scale of a visible part of
the Universe ≈ 1028cm, and the corresponding quantity < ρvac > denoting
as < ρvac,IF > (infrared limit), in accordance with [29],[30], we obtain

< ρvac,exp >=
√
< ρvac,UV >< ρvac,IF >. (9)

Obviously, Λexp derived from formulae (8), (9) satis�es the condition (4)
and in this case Assumption 2.1 is ful�lled.

Remark 2.2
In this work we, in fact, consider two two limiting case:
a)low energies E ≪ Ep and
b)very high (essentially maximal) energies E ≈ Ep.
Then it should be noted that, as all the experimentally involved energies E
are low, they satisfy condition a). Speci�cally, for LHC maximal energies
are ≈ 10TeV = 104GeV , that is by 15 orders of magnitude lower than the
Planck energy ≈ 1019GeV .
Moreover, the characteristic energy scales of all fundamental interactions
also satisfy condition a). Indeed, in the case of strong interactions this
scale is ΛQCD ∼ 200MeV ; for electroweak interactions this scale is deter-
mined by the vacuum average of a Higgs boson and equals υ ≈ 246GeV ;
�nally, the scale of the (Grand Uni�cation Theory (GUT)) MGUT lies in
the range of ∼ 1014GeV −−1016GeV . It is obvious that all the above �gures
satisfy condition a).
Thus, only the expected characteristic energy scale of quantum gravity sat-
is�es condition b).

FromRemark 2.2 it directly follows that even very high energies arising on
uni�cation of all the interaction typesMGUT ≈ 1014GeV− ∼ 1016GeV ,(except
of gravitational),satisfy the condition (4).
At the same time, it is clear that the requirement of the Lorentz-invariant
QFT, due to the action of Lorentz boost (or same hyperbolic rotations)
(formula (3) in [8]), results in however high momenta and energies. But it
has been demonstrated that unlimited growth of the momenta and energies
is impossible because in this case we fall within the energy region, where
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the conventional quantum �eld theory [25]� [27] is invalid.
Note that at the present time there are experimental indications that Lorentz-
invariance is violated in QFT on passage to higher energies (for example,
[31]).Proceeding from the above, the requirement for Lorentz-invariance and
EP is possible only within the scope of the condition (4). Besides, one should
note important recent works associated with EP applicability boundaries
and violation in nuclei and atoms at low energies (for example [32]). By the
present time, numerous papers have been devoted to the applicability limits
of EP to the processes of di�erent nature in high energy physics within the
scope of the condition (4) (for example [33]�[38]). Of course, the list of
these papers is not in the least complete.

3 Preliminary Information about the Measur-

ability Concept

In this Section we brie�y consider some of the results from [1]�[6] which
are essential for subsequent studies. Without detriment to further consid-
eration, in the initial de�nitions we lift some unnecessary restrictions and
make important speci�cations.
Presently, many researchers are of the opinion that at very high energies
(Plank's or trans-Planck's) the ultraviolet cuto� exists that is determined
by some maximal momentum.
Therefore, it is further assumed that there is a maximal bound for the
measurement momenta p = pmax represented as follows:

pmax
.
= pℓ = ~/ℓ, (10)

where ℓ is some small length and τ = ℓ/c is the corresponding time. Let us
call ℓ the primary length and τ the primary time.
Without loss of generality, we can consider ℓ and τ at Plank's level, i.e.
ℓ ∝ lp, τ = κtp, where the numerical constant κ is on the order of 1. Con-
sequently, we have Eℓ ∝ Ep with the corresponding proportionality factor,
where Eℓ

.
= pℓc.

Explanation. In the theory under study it is not assumed from the start
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that there exists some minimal length lmin and that ℓ is such. In fact, the
minimal length is de�ned with the use of Heisenberg's Uncertainty Princi-
ple (HUP) ∆x ·∆p ≥ 1

2
~ or of its generalization to high (Planck) energies

� Generalized Uncertainty Principle (GUP) [40]�[48], for example, of the
form [40]

∆x ≥ ~
∆p

+ α′l2p
∆p

~
, (11)

where α′ is a constant on the order of 1. Evidently this formula (11) initially

leads to the minimal length ℓ̃ on the order of the Planck length ℓ̃
.
= 2

√
α′lp.

Besides, other forms of GUP [48] also lead to the minimal length. Thus,
we should note that in all the works lmin is actually (but not explicitly)
introduced on the basis of some measuring procedure (di�erent forms of
the Generalized Uncertainty Principle (GUP)). In any form GUP in turn
is a high-energy generalization of HUP. But in the original proof of HUP a
planar geometry of the initial space-time was actively used [49]. Extension
of this principle to other pairs of conjugate variables is also valid only for
quantum mechanics in the planar geometry space [50]. As HUP is a local
principle, at low energies in the curved space-time, by virtue of Einstein's
Equivalence Principle, we can consider that in a fairly small neighborhood
of any point the geometry is planar an hence HUP is valid too. But all
the results obtained point to the fact that lmin should be at a level of lp,i.e.
lmin ∝ lp, or even should be smaller. As noted in the previous section, at
the Planck scales Einstein's Equivalence Principle is obviously inapplica-
ble, and there is no way to use the measuring procedure ignoring the space
geometry at these scales. Meantime, none of the GUP forms [48] makes
an e�ort to include it and is hardly completely correct. Moreover, there
are some serious arguments against GUP as demonstrated in Section IX of
the review paper [48]. The foregoing considerations support argumentation
against the introduction of lmin from the start.
Because of this, in the present work the validity of this principle is not
implied from the start too. GUP is given merely as an example. As pmax

(10) is taken at Planck's level, it is clear that HUP is inapplicable. Taking

this into consideration, the existence of a certain minimal length ℓ̃ is not
mandatory. So, we start from the primary length ℓ and the primary time τ .
The whole formalism, developed in [1]�[6] on condition that ℓ is the minimal
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length, is valid for the case when ℓ is the primary length but now we can
lift the formal requirement for involvement of lmin in the theory from the
start.
There is one more barrier for the use of lmin in the theory as indicated in
[47] and other works (for example, [48]). In the above-mentioned papers, it
has been noted that there is a nonzero minimal uncertainty in position, i.e.
lmin implies that there is no physical state which is a position eigenstate
since an eigenstate would, of course, have zero uncertainty in position. So,
in this case in a quantum theory we have the momentum representation
rather than the position representation, and the quantum theory becomes
very depleted.
The question arises whether the introduction of pmax is naturally associated
with the involvement of a minimal length. But this is the case only when
at the energies Emax corresponding to pmax we have the substantiated mea-
suring procedure. Unfortunately, this is not the case.
Note that in the canonical QFT in continuous space-time (i.e. without
lmin) [25] �[27] measurements of the contributions in the loop amplitudes
involve the standard cut-o� procedure for some large (maximal) momen-
tum pcut

.
= pmax. Then it is demonstrated that the theory at low energies

p ≪ pcut is in fact independent of the selection of pcut
.
= pmax. Of course,

the theory still remains to be continuous [25] �[27]. In this case we make
another step forward, relating the corresponding length ℓ = ~/pmax to pmax

and constructing on its basis a low-energy theory very close to the initial
continuous theory. Now we have the naturally derived parameter ℓ for the
construction of a high-energy deformation of this theory at the energies
E ≈ Emax within the scope of determining the physical theory deformation
[39]. So, we start from the primary length ℓ and the primary time τ . The
whole formalism, developed in [1]�[6] on condition that ℓ is the minimal
length, is valid for the case when ℓ is the primary length but now we can
lift the formal requirement for involvement of lmin in the theory from the
start.
Evidently that for the correctness of the theory it is necessary that at low
energies E ≪ Ep all results should not depend on the choice pmax.

3.1. The primarily measurable space-time quantities (variations) are
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understood as the quantities ∆xi and ∆t taking the form

∆xi = N∆xi
ℓ,∆t = N∆tτ, (12)

where N∆xi
, N∆t are integer numbers. Further in the text we use both

N∆xi
, N∆t and the equivalent Nxi

, Nt.

3.2. Similarly, the primarily measurable momenta are considered as
a subset of the momenta characterized by the property

pxi

.
= pNxi

=
~

Nxi
ℓ
, (13)

where Nxi
is a nonzero integer number and pxi

is the momentum corre-
sponding to the coordinate xi.

3.3. Finally, let us de�ne any physical quantity as primarily or ele-
mentary measurable when its value is consistent with point 3.1,3.2 and
formulae (12), (13).
Then we consider formula (13) with the addition of the momenta px0

.
=

pN0 = ~
Nx0ℓ

, where Nx0 is an integer number corresponding to the time co-

ordinate (N∆t in formula (12)).
For convenience, we denote Primarily Measurable Quantities satisfying
3.1�3.3 in the abbreviated form as PMQ. Also, for the Primarily Mea-
surable Momenta we use the abbreviation PMM.

First, we consider the case of Low Energies, i.e. E ≪ Eℓ (same E ≪ Ep.
It is obvious that all the nonzero integer numbers Nxi

, Nt (or same Nxµ ;µ =
0, ..., 3) from formulae (12),(13) should satisfy the condition |Nxµ | ≫ 1. It is
clear that all the momenta pi at low energies E ≪ Ep meet the condition
pi = ~/(Niℓ), where |Ni| ≫ 1 but is not necessarily an integer. With regard
for smallness of ℓ and for the condition |Ni| ≫ 1, we can easily show that
the di�erence 1/(Niℓ)− 1/([Ni]ℓ), (~/(Niℓ)− ~/([Ni]ℓ)) is negligible and in
this way all momenta in the region of low energies E ≪ Ep may be taken
as PMM with a high accuracy.
It is obviously that the case of Low Energies in this section is coincident
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with the �low energies� condition from Remark 2.2.
It is assumed that a theory we are trying to resolve is a deformation of the
initial continuous theory.

Remark 3.0
The deformation is understood as an extension of a particular theory by in-
clusion of one or several additional parameters in such a way that the initial
theory appears in the limiting transition [39].

Then it should be noted that PMQ is inadequate for studies of the physi-
cal processes. In fact, among PMQ, we have no quantities capable to give
the in�nitesimal quantities dxµ, µ = 0, ..., 3 in the limiting transition in a
continuous theory.
Therefore, it is reasonable to use notion of Generalized Measurability
We de�ne any physical quantity at all energy scales as generalized mea-
surable or, for simplicity, measurable if any of its values may be obtained
in terms of PMQ speci�ed by points 3.1�3.3.
The generalized measurable quantities will be denoted as GMQ.
Note that the space-time quantities

τ

Nt

= pNtc
ℓ2

c~
ℓ

Ni

= pNi

ℓ2

~
, 1 = 1, ..., 3, (14)

where pNi
, pNtc are Primarily Measurable momenta, up to the fundamen-

tal constants, are coincident with pNi
, pNtc and they may be involved at any

stage of the calculations but, evidently, they are not PMQ, but they are
GMQ.
So, in the proposed paradigm at low energies E ≪ Ep a set of the PMM
is discrete, and in every measurement of µ = 0, ..., 3 there is the discrete
subset Pxµ ⊂ PMM:

Pxµ

.
= {..., pNxµ−1, pNxµ

, pNxµ+1, ...}. (15)
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In this case, as compared to the canonical quantum theory, in continuous
space-time we have the following substitution:

∆pµ 7→ dpµ,∆pNxµ
= pNxµ

− pNxµ+1 = pNxµ (Nxµ+1);

∆

∆pµ

7→ ∂

∂pµ

;
∆F(pNxµ

)

∆pµ

=
F(pNxµ

)− F(pNxµ+1)

pNxµ
− pNxµ+1

=
F(pNxµ

)− F(pNxµ+1)

pNxµ (Nxµ+1)

.(16)

And

ℓ

Nxµ

7→ dxµ;

∆

∆Nxµ

7→ ∂

∂xµ

,
∆F(xµ)

∆Nxµ

=
F(xµ + ℓ/Nxµ)− F(xµ)

ℓ/Nxµ

. (17)

It is clear that for su�ciently high integer values of |Nxµ |, formulae (16),(17)
reproduce a continuous paradigm in the momentum space to any preas-
signed accuracy. However, at low energies E ≪ Eℓ a set of PMM clearly is
not a space. Considering this, the formulae at low energies o�er the Cor-
respondence to Continuous Theory (CCT).

It is important to make the following remarks in medias res:

Remark 3.1.
In this way any point {xµ} ∈ M ⊂ R4 and any set of integer numbers high
in absolute values {Nxµ} are correlated with a system of the neighborhoods
for this point (xµ ± ℓ/Nxµ). It is clear that, with an increase in |Nxµ|, the
indicated system converges to the point {xµ}. In this case all the ingredi-
ents of the initial (continuous) theory the partial derivatives including are
replaced by the corresponding �nite di�erences.

Remark 3.2.
It is further assumed that at low energies E ≪ Eℓ (same E ≪ Ep)
all the observable quantities are PMQ.
Because of this, values of the length ℓ/Ni and of the time ℓ/Nt from for-
mula (14) could not appear in expressions for observable quantities, being
involved only in intermediate calculations, especially at the summation for

13



replacement of the in�nitesimal quantities dt, dxi; i = 1, 2, 3 on passage from
a continuous theory to its measurable variant.

Further it is assumed that at High Energies, E ≈ Ep, PMQ are in-
adequate for studies of the theory at these energies. The assumption follows
quite naturally. For example, if GUP (11) is valid and if ℓ = ℓ̃, then at high
energies formula (11) creates the momenta ∆p(N∆x, GUP ) which are not
primarily measurable [4] �[6]:

∆p
.
= ∆p(N∆x, GUP ) =

~
1/2(N∆x +

√
N2

∆x − 1)ℓ
. (18)

Naturally, formula (18) represents only a particular case of variations in the
generalized measurable momenta at high energies E ≈ Ep. Suppose, we
know that in the general case at high energies E ≈ Ep minimal variations
of momenta are given by a set of the generalized measurable quantities
pNxµ

, where we have the integer numbers Nxµ , |Nxµ | ≈ 1. Then it is reason-
able to assume that minimal variations of �coordinates� at high energies are
given by the following formula:

lH(pNxµ
)
.
=

ℓ2

~
pNxµ

, (19)

where pNxµ
are the above-mentioned generalized measurable momenta

at high energies.

The main target of the author is to form a quantum theory and gravity
only in terms of generalized measurable quantities (or of PMQ).
In conclusion of this Section we summarize the principal results.

Remark 3.3
When at low energies E ≪ Ep we lift restrictions on integrality of Nxµ , from
formulae (16),(17) it directly follows that in this case we have a continuous
analog of the well-known theory with the only di�erence: all the used small
quantities become dependent on the existent energies and we can correlate

14



them. In this way formula (17) may be written as

dxµ ↔ ℓ

Nxµ

→ ℓ

[Nxµ ]
,

∂

∂xµ

↔ ∆

∆Nxµ

→ ∆

∆[Nxµ ]

(20)

where |Nxµ | ≫ 1 is a su�ciently large number that varies continuously. It
is clear that in formula (20) the �rst arrow corresponds to the continuous
theory with a speci�c selection of values of the in�nitesimal quantities dxµ.
As noted above, the di�erence ℓ/Nxµ − ℓ/[Nxµ ] is negligible and hence the
second arrow corresponds to passage from the initial continuous theory to
a similar discrete theory. Of course, formula (16) may be rewritten in the
like manner. In what follows, formula (20) plays a crucial part in derivation
of the results and is greatly important for their understanding.
The main target of the author is to form a quantum theory and gravity only
in terms of PMQ.

Measurable form arbitrary metric and Minkowskian metric

According to the previous works, the measurable variants of quantum
theory and gravity at low energies E ≪ Ep should be formulated in terms
of themeasurable space-time quantities ℓ/N∆xµ or primary measurable
momenta pN∆xµ

.
Let us consider the case of the random metric gµν = gµν(x) [7],[8], where
x ∈ R4 is some point of the four-dimensional space R4 de�ned in measur-
able terms. Now, any such point x

.
= {xχ} ∈ R4 and any set of integer

numbers {Nxχ} dependent on the point {xχ} with the property |Nxχ| ≫ 1
may be correlated to the �bundle� with the base R4 as follows:

BNxχ

.
= {xχ,

ℓ

Nxχ

} 7→ {xχ}. (21)

It is clear that lim
|Nxχ |→∞

BNxχ
= R4.

As distinct from the normal one, the �bundle� BNxχ
is distinguished only by

the fact that the mapping in formula (21) is not continuous (smooth) but
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discrete in �bers, being continuous in the limit |Nxχ | → ∞.
Then as a canonically measurable prototype of the in�nitesimal space-time
interval square [7],[8]

ds2(x) = gµν(x)dx
µdxν (22)

we take the expression

∆s2Nxχ
(x)

.
= gµν(x,Nxχ)

ℓ2

NxµNxν

. (23)

Here gµν(x,Nxχ) � metric gµν(x) from formula (22) with the property that
minimal measurable variation of metric gµν(x) in point x has form

∆gµν(x,Nxχ)χ = gµν(x+ ℓ/Nxχ , Nxχ)− gµν(x,Nxχ). (24)

Let us denote by ∆χgµν(x,Nxχ) quantity

∆χgµν(x,Nxχ) =
∆gµν(x,Nxχ)χ

ℓ/Nxχ

. (25)

It is obvious that in the case under study the quantity ∆gµν(x,Nxχ)χ is a
measurable analog for the in�nitesimal increment dgµν(x) of the χ-th com-
ponent (dgµν(x))χ in a continuous theory, whereas the quantity∆χgµν(x,Nxχ)
is a measurable analog of the partial derivative ∂χgµν(x).
In this manner we obtain the (21)-formula induced bundle over the metric
manifold gµν(x):

Bg,Nxχ

.
= gµν(x,Nxχ) 7→ gµν(x). (26)

Referring to formula (14), we can see that (23) may be written in terms of
the primary measurable momenta (pNi

, pNt)
.
= pNµ as follows:

∆s2Nxµ
(x) =

ℓ4

~2
gµν(x,Nxχ)pNxµ

pNxν
. (27)

Considering that ℓ ∝ lP (i.e., ℓ = κlP ), where κ = const is on the order of
1, to within the constant ℓ4/~2, we have

∆s2Nxµ
(x) = gµν(x,Nxχ)pNxµ

pNxν
. (28)
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As follows from the previous formulae, the measurable variant of General
Relativity should be de�ned in the bundle Bg,Nxχ

.
Let us consider any coordinate transformation xµ = xµ (x̄ν) of the space�
time coordinates in continuous space-time. Then we have

dxµ =
∂xµ

∂x̄ν
dx̄ν . (29)

As mentioned at the beginning of this section, in terms of measurable
quantities we have the substitution

dxµ 7→ ℓ

N∆xµ

; dx̄ν 7→ ℓ

N̄∆x̄ν

, (30)

where N∆xµ , N̄∆x̄ν � integers (|N∆xµ| ≫ 1, |N̄∆x̄ν | ≫ 1) su�ciently high in
absolute value, and hence in the measurable case (29) is replaced by

ℓ

N∆xµ

= ∆µν(x
µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν )

ℓ

N̄∆x̄ν

. (31)

Equivalently, in terms of the primary measurable momenta we have

pN∆xµ
= ∆µν(x

µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν ) pN̄∆x̄ν
, (32)

where∆µν(x
µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν )

.
= ∆µν(x

µ, x̄ν , pN∆xµ
, pN̄∆x̄ν

) � correspond-
ing matrix represented in terms of measurable quantities.
It is clear that, in accordance with formula (14), in passage to the limit we
get

lim
|N∆xµ |→∞

ℓ

N∆xµ

= dxµ =

= lim
|N̄∆x̄ν |→∞

∆µν(x
µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν )

ℓ

N̄∆x̄ν

=
∂x̄µ

∂xν
dxν . (33)

Equivalently, passage to the limit (33) may be written in terms of the pri-
mary measurable momenta pN∆xµ

, pN̄∆x̄ν
multiplied by the constant ℓ2/~.

How we understand formulae (30)�(33)?
The initial (continuous) coordinate transformations xµ = xµ (x̄ν) gives the
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matrix ∂xµ

∂x̄ν . Then, for the integers su�ciently high in absolute value N̄∆x̄ν , |N̄∆x̄ν | ≫
1, we can derive

ℓ

N∆xµ

=
∂xµ

∂x̄ν

ℓ

N̄∆x̄ν

, (34)

where |N∆xµ | ≫ 1 but the numbers for N∆xµ are not necessarily integer.
Then using the formula (20) from Remark 3.3 and substitution of [N∆xµ ]
for N∆xµ in the left-hand side of (34) leads to replacement of the initial
matrix ∂xµ

∂x̄ν by the matrix ∆µν(x
µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν ) represented in terms

of measurable quantities and, �nally, to the formula (31). Clearly, for suf-
�ciently high |N∆xµ |, |N̄∆x̄ν | , the matrix ∆µν(x

µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν ) may
be selected no matter how close to ∂xµ

∂x̄ν .
Similarly, in the measurable format we can get the formula

dx̄µ =
∂x̄µ

∂xν
dxν . (35)

and correspondingly the matrix ∆̃µν(x
µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν ) instead of the

matrix ∆µν(x
µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν ).

Thus, any coordinate transformations may be represented, to however high
accuracy, by themeasurable transformation (i.e., written in terms ofmea-
surable quantities), where the principal components are the measurable
quantities ℓ/N∆xµ or the primary measurable momenta pN∆xµ

Analogously, a canonically measurable prototype of the relativistic in�nites-
imal space-time interval square

ds2 = ηµνdx
µdxν . (36)

is given by

∆s2Nxχ
(x)

.
= ηµν(x,Nxχ)

ℓ2

NxµNxν

, (37)

where ηµν is the Minkowskian metric

||ηµν || = ||ηµν || = Diag (1,−1,−1,−1) . (38)
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Here the integers Nxχ naturally satisfy the condition |Nxχ| ≫ 1, compo-
nents of the measurable Minkowskian metric ||ηµν(x,Nxχ)|| are �close� to
||ηµν ||,i.e. we have

lim
(|Nxχ |)→∞

ηµν(x,Nxχ) = ηµν . (39)

Without loss of generality, we can assume that ηµν(x,Nxχ) = 0, µ ̸= ν.
Thus ||ηµν(x,Nxχ)|| is the diagonal matrix too and ||ηµν(x,Nxχ)|| is its in-
verse matrix, i.e.

||ηµν(x,Nxχ)|| · ||ηµν(x,Nxχ)|| = 1 (40)

Further we assume that the integers Nxχ are su�ciently large in absolute
value and, due to formula (39), the metric ||ηµν(x,Nxχ)||, to a high accuracy,
is equal to ||ηµν ||; then formula (37) is as follows:

∆s2Nxχ
(x)

.
= ηµν

ℓ2

NxµNxν

, (41)

4 General Relativity in Terms of Measurable

Quantities and Its High-Energy Deformations

At low energies E ≪ Ep for connectivity coe�cients in gravity, i.e. Christof-
fel symbols, and for the �xed set {N} .

= (Nxχ) in his paper [6] the author
has derived their expressions in the measurable form (formula (50) in [6]):

Γα
µν(x, {N}) = 1

2
gαβ(x, {N}) (∆νgβµ(x, {N}) + ∆µgνβ(x, {N})−

−∆βgµν(x, {N})). (42)

Here, to make it short, the author denotes the operator ∆/∆Nxχ
from

formula (17) as ∆χ, and Nxχ�corresponding element from the set {N}.
In [6] it is shown that, with the use of (42) in the measurable form, one
can obtain all the base quantities of General Relativity (GR), in particular
the Riemann tensor Rµ

ναβ(x, {N}) and, �nally, the measurable form of
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Einstein Equations, for short denoted as (EEM) (abbreviation for Einstein
Equations Measurable) (formula (57) in [6]):

EEM{N} .
= Rµν(x, {N})− 1

2
R(x, {N}) gµν(x, {N}) + λ(x, {N}) gµν(x, {N}) =

= 8 π GTµν(x, {N}).(43)

Considering the properties of {N}, for the measurable form of GR the
Bianchi identity may be written, to a high accuracy, as follows:

D̃ρ,{N}R
χ
λµν(x, {N}) + D̃µ,{N}R

χ
λµρ(x, {N}) + D̃ν,{N}R

χ
ναβ(x, {N}) = 0, (44)

where D̃α,{N} =
∆

∆Nxα
+ Γµ

να(x, {N}) and Nxα ∈ {N}.
Actually, it is clear that (EEM) given by formula (43) represents defor-
mation of the canonical Einstein equations (EE) [7] in the sense of the
De�nition given in [39] with the deformation parameter {N} (or 1/{N}),
and we evidently have [6])

lim
|{N}|→∞

EEM{N} = EE

or same lim
1/|{N}|→0

EEM{N} = EE . (45)

It should be noted that the understanding of �high energies� in gravity and
in other theories (in particular in gauge theories) is di�erent. According to
the current knowledge, in gravity these energies are at a level of the Planck
energies E ≈ Ep (or same E ≈ Eℓ) which are associated with origination of
the quantum-gravitational e�ects. In [6], using the de�nitions given in Re-
mark 2.0, the author has constructed a high-energy (Planck) deformation
of GR of the form

EEM[Nq]
.
= Rµν(x, {Nq})−

1

2
R(x, {Nq}) gµν(x, {Nq})−

+λ(x, {Nq}) gµν(x, {Nq}) =
= 8 π GTµν(x, {Nq}). (46)

Here {Nq}
.
= {Nxχ}, χ = 0, ..., 3 is a set of the integer numbers Nxχ the

absolute values of which are close to 1.
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The small quantity ℓ/Nxχ = ℓ2

~ pNxχ
,where pNxχ

is a primarily measurable
momentum and |Nxχ| ≫ 1, at low energies E ≪ Eℓ in the case under study
has its analog at high energies E ≈ Eℓ�the quantity lH(pNxµ

) that is given
by formula (19) in the present paper (or formula (113) in [6]).
As absolute values of the integers Nxµ are small, the quantities lH(pNxµ

) are
varying discretely (for example similar to the denominator in the right-hand
side of formula (18)) and hence the high-energy deformation of GR speci�ed
by EEM[Nq] (formula (46)) is in fact a discrete theory.
It is clear that in this case the limit

pNxχ
, (|Nxχ| ≈ 1)

|Nxχ |≈1→|Nxχ |≫1
⇒ pNxχ

, (|Nxχ| ≫ 1), (47)

where momenta in the right-hand side of formula (47), i.e. pNxχ
, (|Nxχ| ≫

1), are the primarily measurable momenta at low energies E ≪ Ep and
pNxχ

, (|Nxχ| ≈ 1) � corresponding generalized measurable momentum
from formula (19), should be valid. Obviously, the momentum from for-
mula (18) for N∆x

.
= Nxχ satis�es this condition.

Then formula (23) for the canonically measurable prototype of the in�nites-
imal space-time interval at low energies E ≪ Ep is replaced by its quantum
analog or the canonically measurable quantum prototype for E ≈ Ep taking
the form

∆s2{N}(x,q)
.
= gµν(x, {N},q)lH(pNxµ

)lH(pNxν
) =

ℓ4

~2
gµν(x, {N},q)pNxµ

pNxν
.(48)

Here there is no doubt that the numbers Nxµ , Nxν belong to the set {N},
all the components of this set are integers with small absolute values, pNxχ

are the generalized measurable momenta at high energies corresponding
to formula (47) and gµν(x, {N},q) meets the condition

gµν(x, {N},q), (|{N}| ≈ 1)
|{N}|≈1→|{N}|≫1⇒ gµν(x, {N}), (|{N}| ≫ 1), (49)

where gµν(x, {N}) = gµν(x,Nxχ) is a metric in the measurable form at
low energies (formula (23)).
Thus, at high energies E ≈ Ep we have

lH(pNxχ
)
.
=

ℓ2

~
pNxχ

; |Nxχ| ≈ 1. (50)
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Then by the substitution ℓ/Nxχ 7→ lH(pNxχ
) in formulae (24),(25) we can

have quantum analogs of minimal measurable variations of the metric and
of the partial derivative

∆qgµν(x,Nxχ ,q)χ
.
= gµν(x+ lH(pNxχ

), Nxχ ,q)− gµν(x,Nxχ ,q),

∆χ,qgµν(x,Nxχ ,q)
.
=

∆qgµν(x,Nxχ ,q)χ

lH(pNxχ
)

. (51)

Using the substitution in formula (17)

ℓ

Nxµ

7→ lH(pNxµ
);

∆

∆Nxµ

7→ ∆q

∆Nxµ ,q

,

∆qF(xµ)

∆Nxµ ,q

=
F (xµ + lH(pNxµ

))− F (xµ)

lH(pNxµ
)

(52)

and applying this substitution to all corresponding formulae in the mea-
surable format of GR at low energies, we can derive at planck energies
E ≈ Ep all the components high-energy deformation of Einstein Equations
in the measurable form EEM[Nq] (46) (or formula (117) in [6])
As a result, we have

lim
E≪Ep

EEM[Nq] = EEM or lim
|{Nq}|≫1

EEM[Nq] = EEM. (53)

For EEM[Nq], the metrics gµν(x,Nxχ ,q) (formula (48)) represent the solu-
tion.

5 Spacetime Foam and Measurability

In accordance with the modern understanding of the problem, at high en-
ergies E ≈ Ep the space geometry, due to high Space-Time Quantum Fluc-
tuations (stqf), represents the �space-time foam�(stf) [10]�[24]. The notion
of �space-time foam� was introduced by J. A. Wheeler about 60 years ago
for the description and investigation of physics at Planck's scales (Early
Universe). Actually, because of high quantum �uctuations of the metric
gµν , the space has a quantity of geometries. Despite the fact that in the last
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time numerous works have been devoted to physics at Planck's scales within
the scope of this notion, by this time still their no clear understanding of
stf as it is.
And it should be noted that the proposed approach can be considered as
a development of the idea of stf,i.e. space-time geometry stf [10]�[24] but
for the case of discrete consideration. Really, at low energies E ≪ Ep

the canonical metric components in a continuous consideration gµν(x) may
be taken as components of the metric in the measurable form gµν(x,Nxχ)
(formula (23) for Nxχ = ∞, i.e. we have gµν(x) = gµν(x,∞)). But, as at
low energies |Nxχ| ≫ 1, the theory may be considered continuous to a high
accuracy due to Remark 2.5. Then, expanding the quantity gµν(x,Nxχ)
into a series in terms of the small parameter 1/Nxχ close to the point gµν(x)
and retaining only the zero- or �rst-order terms (due to obvious smallness
of all the remaining terms), in fact, we arrive at the formula for �uctuation
of the metric g in a region with the size L ([12],formula (43.29)):

∆g ∼ lp
L
. (54)

Indeed, as lp ∝ ℓ, considering that the energies are low and with due re-
gard for Remark 2.2, L represents PMQ. Then, setting L = Nxχℓ and
substituting it into (54),we get the following:

∆g ∼ lp
L

∼ ℓ

Nxχℓ
=

1

Nxχ

. (55)

So, at low energies the indicated quantum �uctuations are very small, ac-
tually being coincident with the basic parameters in the measurable ap-
proach (parameters of the corresponding deformation).
But, as demonstrated by formulae (46)�(52), at high energies E ≈ Ep this
is not the case, and quantum �uctuations
gµν(x, {N},q), (|{N}| ≈ 1) of the metric gµν(x, {N}), (|{N}| ≫ 1) are
great.
In this case in the measurable form the notion �space-time foam� is
absolutely adequate because the only restriction imposed on
gµν(x, {N},q), (|{N}| ≈ 1) is (49). It is clear that in this case there is
a great deal of di�erent gµν(x, {N},q), (|{N}| ≈ 1). As the measurable
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analogs of Einstein Equations at low energies EEM (43) and at high ener-
gies EEM[Nq] (46), according to the above formulae, are determined by the
quantities pNxχ

, where |Nxχ | ≫ 1, |Nxχ| ≈ 1, respectively, at low energies
for the given metric
gµν(x, {N},q), (|{N}| ≫ 1) its quantum �uctuations in the general case are
determined by the functions Gµ(Nxµ), µ = 0, ..., 3 which are dependent on
integer values of Nxµ so that

pNxµ

.
=

~
Gµ(Nxµ)ℓ

, (56)

and

lim
|Nxµ |→∞

Gµ(Nxµ) = Nxµ . (57)

Still, some models based on micro-black holes are very interesting and fairly
promising. In particular, the models studied in [15]�[21] and based onmicro-
black holes, i.e. black holes with a Schwarzschild radius of several Planck's
units of length.
It should be noted that the case of micro-black holes with the Schwarzschild
metric in terms of measurable quantities has been already studied by the
author in his paper [4]. In this paper, within the scope of validity of the
Generalized Uncertainty Principle (GUP) of Section 3, in terms of themea-
surability notion the gravitational equations at the event horizon surface
of these holes have been derived and their basic thermodynamic character-
istics (temperature, entropy) have been obtained.
It is obvious that these holes form a discrete �nite set, provided their
Schwarzschild radii rmbh are considered primarily measurable quantities:

rmbh = Nrmbh
ℓ,Nrmbh

≈ 1, (58)

where Nrmbh
is an integer number.

As, in accordance with GUP of Section 3, we have

p(Nxi
, GUP ) =

~
1/2(Nxi

+
√

N2
xi
− 1)ℓ

, i = 1, ..., 3, (59)
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on passage from high energies E ≈ Ep to low energies E ≪ Ep, formulae
(56),(57) are valid and we can, to a high accuracy, obtain at low energies
the primarily measurable momenta p(Nxµ), |Nxµ | ≫ 1.
However in [4], due to the validity of GUP, initially it has been supposed
that ℓ is a minimal length, that is a rather restrictive condition as noted
in the very beginning of Section 3. But in the case under study we assume
only that ℓ is a primary length, i.e. it satis�es the formula of (10).
Then formula (59) for the integer Nxi

takes the following form:

pNxi
=

~
1/2(Nxi

+
√

N2
xi
− 1)ℓ

, i = 1, ..., 3, (60)

and formulae (56),(57) are valid too. This is in line with remark from
Section 3: �the whole formalism, developed in [1]�[6] on condition that ℓ is
the minimal length, is valid for the case when ℓ is the primary length�.
In the terms and notations from [14], for the �uctuations δ̃l of the distance
l, the estimate is as follows:

(δ̃l)γ ∼> lγp l
1−γ = lp(

l

lp
)1−γ = l(

lp
l
)γ = lλγ

l , (61)

or that same

|(δ̃l)γ|min = βlγp l
1−γ = βlp(

l

lp
)1−γ = βlλγ

l , (62)

where 0 < γ ≤ 1, coe�cient β is of order 1 and λl ≡ lp/l.
From (61),(62), we can derive the quantum �uctuations for all the primary

characteristics, speci�cally for the time (δ̃t)γ,l, energy (δ̃E)γ,l, and metrics

(δ̃gµν)γ,l. In particular, for (δ̃gµν)γ,l we can use formula (10) in [14]

(δ̃gµν)γ,l ∼> λγ
l . (63)

As it is assumed that ℓ ∝ lp, i.e. ℓ = κlp, where κ ≈ 1, in formulae (61)�(63),
without loss of generality, the following substitution is justi�ed:

lp 7→ ℓ. (64)
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Then at low energies E ≪ Ep in the measurable form it is natural to
assume that the distance l is the primarily measurable quantity, i.e.
l = Nlℓ, where Nl ≫ 1 is an integer number, in this case λl ≡ ℓ/l = N−1

l ,
and all the quantities in formulae (61)�(63) are expressed in terms of Nl.
Speci�cally, formula (63) takes the form

(δ̃gµν)γ,l ∼> N−γ
l . (65)

Obviously, because in this case we have Nl ≫ 1, (δ̃gµν)γ,l is weakly depen-
dent on Nl.
On the contrary, at high energies E ≈ Ep, according to formulae (56),(57),
the distance l is not a primarily measurable quantity

l = G(Nl)ℓ, (66)

where Gi = Gj = G, i ̸= j; i, j = 1, ..., 3, Nl is a small integer number, and

the �uctuation (δ̃gµν)γ,l in this case is evidently strongly dependent on Nl

(or l).
Note that, within the constant factor ~/ℓ, the parameter λl is coincident
with the momentum pl = ~/(G(Nl)ℓ) from formula (56) that, in accordance
with formula (57), is a primarily measurable momentum at low energies
E ≪ Ep and a generalized measurable momentum at high energies E ≈
Ep.
In [6] at low energies E ≪ Ep for themeasurable form of gravity EEM{N}
(43) the author has derived the Least Action Principle and the Lagrangian
formalism .
The action for GR in the measurable format can be derived from the
action for the canonical GR in continuous space-time

SEH = − 1

16πG

∫
d4x

√
|g| (R + λ) (67)

And �measurable� action has the following form (formula (79) from [6])

SEH({N}) = − 1

16πG

∑
∆({N})Ω

√
|g({N})| ·

· (R(x, {N}) + Λ(x, {N})) , |{N}| ≫ 1, (68)
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where ∆({N})Ω is the volume element in a measurable variant of GR (for-
mulae (44)-(46) in [6]).
It is clear that at high energies E ≈ Ep, due to real discreteness of the
theory, the Least Action Principle in the general case is no longer valid for
this theory. We can note only the Planck deformation SEH(Nxχ , q) of the
�measurable� action SEH(Nxχ) (68):

SEH(Nxχ ,q)
.
= − 1

16πG

∑
∆(Nxχ ),qΩ

√
|g(Nxχ ,q)| ·

·
(
R(x,Nxχ ,q) + λ(x,Nxχ ,q)

)
, |Nxχ| ≈ 1, (69)

with substitution of all components in formula (68) in accordance with the
formulae in Section 4.
Of course, in this case the condition

SEH(Nxχ ,q), (|Nxχ| ≈ 1)
|Nxχ |≈1→|Nxχ |≫1

⇒ SEH(Nxχ), (|Nxχ| ≫ 1) (70)

must be ful�lled. It should be noted that the above-mentioned results may
be applied for the derivation of ameasurable variant of gravitational ther-
modynamics for horizon spaces and Schwarzschild's black holes [4]
Besides, we also have

lim
|{N}|→∞

SEH({N}) = SEH (71)

Then at low energies E ≪ Ep, due to formulae (45) and (71), at su�ciently
large |{N}| all the results for the spacetime foam valid in the continuous
pattern remain valid in a measurable consideration, to a high accuracy,
with the adequate replacement of the quantities used in the continuous case
by the measurable-form quantities.
In particular, all the results from [23] devoted to evolution of quantum low-
energy �elds (i.e. the �elds at the energies E ≪ Ep) in a foam-like spacetime
may be expressed in the measurable form within a high accuracy by sub-
stitution of ℓ for lp with the use of the above-mentioned formula ℓ = κlp.
In the case under study, using formulae (46),(56),(60),... , one can extend
the results from [23] to evolution of quantum high-energy �elds (i.e. the
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�elds at the energies E ≈ Ep).
It is important: taking into account that at low energies E ≪ Ep in the
measurable form |{N}| < ∞ gives hope that in a measurable picture,
with the speci�c restrictions imposed on the set {N}, we should have no
pathological solutions of GR (speci�cally, Closed Timelike Curves (CTC)
[51]�[54]), which are not excluded in a continuous consideration (Section 3
Loss of quantum coherence in [23]).
Passage in the measurable form to high energies E ≈ Ep leads to a com-
pletely discrete picture and hence in this case the notion of CTC in its initial
formulation becomes senseless. Possibly, due to the limiting transition in
formula (53), this furnishes the clue to understanding of the conditions re-
sulting in the absence of CTC in gravity and, generally, in the absence of
the loss of quantum coherence in the measurable form of gravity.

6 Conclusion

Let us summarize the results obtained in this work.

6.1 The Einstein's Equivalence Principle (EP) has a natural applicability
limit, the upper bound of which lies at the Planck scales E ≈ Ep, though,
or the speci�c processes in high-energy physics, this bound is always con-
siderably lower than the Planck's, lying within the energy region E ≪ Ep.

6.2 The measurability notion enables one to represent gravity at all the
energy scales (i.e. at low energies E ≪ Ep and at high energies E ≈ Ep) in
terms of one and the same parameters dependent on the integer variables
Nxµ . It should be noted that in the earlier works by the author (for example,
[55],[56])similar parameters were in the form of the quantity αl

.
= ℓ2/l2,yet

beyond the measurability concept.

6.3The measurability concept generates a new approach to studies of
quantum �uctuations of metrics and, �nally, of the spacetime foam at high
energies E ≈ Ep. Therewith, quantum �uctuations of metrics are deter-
mined by the generalized measurable momenta which, on passage to
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low energies E ≪ Ep, become primarily measurable momenta.

6.4 As noted in the beginning of Section 3, for the correctness of this ap-
proach, it is necessary that at low energies E ≪ Ep all the results should
be independent of the choice of pmax. The problem arises: and what about
high energies E ≈ Ep?
It is clear that, in accordance with the �rst part of this point, for any
choice of pmax, we should have the same quantities in the right-hand sides
of formulae (53) and (70)within a high accuracy. Provided at the Planck
energies E ≈ Ep the results are also weakly dependent on choice of pmax,
there should be discrete symmetries relating measurable pictures at high
energies for di�erent values of pmax.

References

[1] Shalyt-Margolin, A.E. Minimal Length and the Existence of Some In-
�nitesimal Quantities in Quantum Theory and Gravity. Adv. High Energy
Phys., 2014 (2014), 8.
http://dx.doi.org/10.1155/2014/195157

[2] Shalyt-Margolin,Alexander. Minimal Length, Measurability and Grav-
ity. Entropy 2016, 18(3), 80.
http://dx.doi.org/10.3390/e18030080

[3] A.E. Shalyt-Margolin, Uncertainty Principle at All Energies Scales and
Measurability Conception for Quantum Theory and Gravity,Nonlinear
Phenomena in Complex Systems, 19(2) (2016),166�181.

[4] Shalyt-Margolin,Alexander E. Minimal Length, Minimal Inverse Tem-
perature, Measurability and Black Hole. Electronic Journal of Theoretical
Physics 2018, 14(37), 35-54.

[5] Shalyt-Margolin,Alexander. Dark energy and minimal length. Advances
in Dark Energy Research 2015,103-123, Nova Science Publishers,NY.

29



[6] Shalyt-Margolin,Alexander. Minimal Quantities and Measurability.
Gravity in Measurable Format and Natural Transition to High Ener-
gies.Nonlinear Phenomena in Complex Systems 2018, 21(2), 138 - 163.

[7] Wald,R.M. General Relativity,University of Chicago Press, Chicago,
Ill,USA,1984.
http://dx.doi.org/10.7208/chicago/9780226870373.001.0001

[8] Akhmedov,Emil T. Lectures on General Theory of Relativity,
arXiv:1601.04996 [gr-qc].

[9] Weinberg,S. Gravitation and Cosmology.Principles and Applications of
General Theory of Relativity.1972

[10] Wheeler,J. A.�Geons�.Phys.Rev. 1955, 97, 511.

[11] Wheeler,J. A.Geometrodynamics (Academic Press, New York and Lon-
don, 1962).

[12] Misner,C. W., Thorne,K. S. and Wheeler,J. A. Gravitation Freeman,
San Francisco, (1973).

[13] Hawking,S. W.,Space-time foam.Nuclear Phys.B 1978,114, 349

[14] Y. J. Ng, Selected topics in Planck-scale physics, Mod.Phys.Lett.A.,
vol.18,pp.1073�1098,2003.

[15] Scardigli,Fabio, Black Hole Entropy: a spacetime foam approach,
Class.Quant.Grav.,14 (1997),1781�1793.

[16] Garattini,Remo,A Spacetime Foam approach to the cosmological con-
stant and entropy. Int. J. Mod. Phys. D. 4 (2002) 635�652.

[17] Garattini,Remo, A Spacetime Foam Approach to the Schwarzschild-de
Sitter Entropy. Entropy 2 (2000) 26�38.

[18] Garattini,Remo,Entropy and the cosmological constant: a spacetime-
foam approach. Nucl.Phys.Proc.Suppl. 88 (2000) 297�300.

30



[19] Garattini,Remo, Entropy from the foam. Phys.Lett.B 1999, 459, 461�
467.

[20] Scardigli,Fabio. Generalized Uncertainty Principle in Quantum Gravity
from Micro-Black Hole Gedanken Experiment. Phys.Lett.B. 1999, 452,
39�44.

[21] Scardigli,Fabio. Gravity coupling from micro-black holes.
Nucl.Phys.Proc.Suppl. 2000, 88, 291�294.

[22] Garay,Luis J. Thermal properties of spacetime foam. Phys.Rev. D
1998, 58, 124015.

[23] Garay,Luis J. Quantum evolution in spacetime foam.
Int.J.Mod.Phys.A 1999, 14, 4079�4120.

[24] Garay,Luis J. Spacetime foam as a quantum thermal bath.
Phys.Rev.Lett. 1998, 80, 2508�2511.

[25] Rayder,Lewis.H.Quantum Field Theory,University of Kent and Can-
terbuty,.

[26] M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field
Theory,Addison-Wesley Publishing Company, 1995.

[27] Steven Weinberg, The Quantum Theory of Fields,Vol.1,2. Cambridge
University Press, 1995.

[28] Weinberg,S.The cosmological constant problem.Rev. Mod. Phys.
1989,61,1.

[29] Padmanabhan, T., 2005, Darker side of the universe . and the crying
need for some bright ideas! Proceedings of the 29th International Cosmic
Ray Conference, Pune, India, 47-62.

[30] Padmanabhan,T.,2006, Dark Energy: Mystery of the Millennium.
Paris 2005, Albert Einstein's century, AIP Con-ference Proceedings 861,
American Institute of Physics, New York, 858-866

31



[31] Kostelecky, V.A., Russell, N. Data tables for Lorentz and CPT viola-
tion. Rev. Mod. Phys. 2011, 83(1), 11�31.

[32] Flambaum V.V. Enhanced violation of the Lorentz invariance and Ein-
stein's equivalence principle in nuclei and atoms. Phys. Rev. Lett. 2016,
117,072501.

[33] J. Pantaleone, A. Halprin, C.N. Leung, Neutrino Mixing due to a Vi-
olation of the Equivalence Principle. Phys.Rev.D 1993,47,4199�4202.

[34] Rene Lafrance, Robert C. Myers, Gravity's Rainbow: Limits for the
applicability of the equivalence principle. Phys.Rev.D 1995,51,2584�2590.

[35] G. Z. Adunas, E. Rodriguez-Milla, D. V. Ahluwalia, Probing Quantum
Violations of the Equivalence Principle. Gen.Rel.Grav. 2001,33,183�194.

[36] Anindya Datta,Probing the violation of equivalence principle at a muon
storage ring via neutrino oscillation. Phys.Lett.B 2001,504,247�253.

[37] De-Chang Dai, Serious limitations of the strong equivalence principle.
International Journal of Modern Physics A 2017, 32,1750068.

[38] A. Hees, O. Minazzoli, E. Savalle, Y. V. Stadnik, P. Wolf, Violation
of the equivalence principle from light scalar dark matte. Phys.Rev.D
2018,98, 064051.

[39] Faddeev,L. Mathematical View on Evolution of Physics. Priroda
1989,5, 11

[40] Adler R. J. and Santiago,D. I. On gravity and the uncertainty prin-
ciple. Mod. Phys. Lett. A 1999, 14, 1371�1378.
http://dx.doi.org/10.1142/s0217732399001462

[41] Maggiore,M. Black Hole Complementarity and the Physical Origin of
the Stretched Horizon. Phys. Rev. D, 1994 49, 2918�2921.
http://dx.doi.org/10.1103/physrevd.49.2918

[42] Maggiore,M. Generalized Uncertainty Principle in Quantum Gravity.
Phys. Lett. B, 1993 304, 65�69.
http://dx.doi.org/10.1016/0370-2693(93)91401-8

32



[43] Maggiore,M. The algebraic structure of the generalized uncertainty
principle.1993 319, 83�86.
http://dx.doi.org/10.1016/0370-2693(93)90785-g

[44] Witten,E. Re�ections on the fate of spacetime. Phys. Today 1996, 49,
24�28. http://dx.doi.org/10.1063/1.881493

[45] Amati,D., Ciafaloni M. and Veneziano, G. A. Can spacetime be probed
below the string size? Phys. Lett. B 1989, 216, 41�47.
http://dx.doi.org/10.1016/0370-2693(89)91366-x

[46] Capozziello,S., Lambiase G., and Scarpetta,G. The Generalized Uncer-
tainty Principle from Quantum Geometry. Int. J. Theor. Phys. 2000, 39,
15�22.
http://dx.doi.org/10.1023/a:1003634814685

[47] Kempf,A., Mangano,G. and Mann,R.B. Hilbert space representation of
the minimal length uncertainty relation.Phys. Rev. D. 1995, 52, 1108�
1118. http://dx.doi.org/10.1103/physrevd.52.1108

[48] Abdel Nasser Taw�k, Abdel Magied Diab.Generalized Uncertainty
Principle: Approaches and Applications.Int. J. Mod. Phys. D 2014,
23,1430025.

[49] W. Heisenberg, Uber den anschaulichen Inhalt der quantentheoretis-
chen Kinematik und Mechanik. Z. Phys., 43 (1927), 172�198. (In Ger-
man)
http://dx.doi.org/10.1007/bf01397280

[50] Messiah, A. Quantum Mechanics; North Holland Publishing Company:
Amsterdam, The Netherlands, 1967; Volume 1.

[51] K. Godel, An example of a new type of cosmological solutions of
Einstein's �eld equations of gravitation,Reviews of Modern Physics.,21
(1949), 447.

[52] M. S. Morris, K. S. Thorne, and U. Yurtsever,Wormholes, Time Ma-
chines, and the Weak Energy Condition, Phys. Rev. Lett. 61 (1988), 1446.

33



[53] W.B.Bonnor,Closed timelike curves in general relativity,
Int.J.Mod.Phys. D., 12 (2003), 1705.

[54] Francisco S. N.Lobo, Closed timelike curves and causality viola-
tion,Classical and Quantum Gravity: Theory, Analysis and Applications,
chap.6 , (2012), 283�310. Nova Science Publishers.

[55] Shalyt-Margolin,A.E. Quantum Theory at Planck Scale, Limiting Val-
ues, Deformed Gravity and Dark Energy Problem// International Jour-
nal of Modern Physics D 2012 21(2),1250013 (20 pages).

[56] Shalyt-Margolin,Alexander. Dark Energy Problem, Physics of Early
Universe and Some New Approaches in Gravity//Entropy 2012 14(11),
2143-2156.

34


