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Abstract

In this paper, we deal with a class of one-dimensional reflected
backward doubly stochastic differential equations with one continuous
lower barrier. We derive the existence and uniqueness of Lp-solutions
for those equations with Lipschitz coefficients.
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1 Introduction

The general nonlinear case backward stochastic differential equation (BSDE
in short) was first introduced in Pardoux and Peng (1990), who proved the
existence and uniqueness result when the coefficient is Lipschitz. El Karoui
et al. (1997a) introduced the notion of one barrier reflected BSDE , which is
actually a backward equation but the solution is forced to stay above a given
barrier. This type of BSDEs is motivated by pricing American options (see
El Karoui et al. (1997b)) and studying the mixed game problems (see e.g.
Cvitanić and Karatzas (1996), Hamadène and Lepeltier (2000)). In order
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to give a probabilistic representation for a class of quasilinear stochastic
partial differential equations, Pardoux and Peng (1992) first considered a
class of backward doubly stochastic differential equations (BDSDEs) with
two different directions of stochastic integrals.

However in most of the previous works, solutions are taken in L2 space
or in Lp, p > 2. This limits the scope for several applications. To correct this
shortcoming, El Karoui et al. (1997c) obtained the first result on the exis-
tence and uniqueness of solution in Lp, p ∈ (1, 2) with a Lipschitz coefficient.
Briand et al. (2003) generalized this result to the BSDEs with monotone
coefficients. Following this way, Aman (2009) considered the Lp-solutions
of BDSDEs with a monotone coefficient. Moreover, Hamadène and Popier
(2008) established the existence and uniqueness of the Lp-solutions of BSDEs
with reflection having a Lipschitz coefficient.

More recently, Bahalai et al. (2009) obtained the existence and unique-
ness of solution for BDSDEs with one continuous lower barrier, having a
continuous coefficient. Motivated by above works, the purpose of this paper
is to prove the existence and uniqueness of Lp-solutions for reflected BDSDEs
with Lipschitz coefficients.

The rest of the paper is organized as follows. In Section 2, we introduce
some preliminaries including some spaces. With the help of some a priori
estimates, Section 3 is devoted to the existence and uniqueness of Lp-solutions
for those equations.

2 Preliminaries

Let T > 0 a fixed real number. Let {Wt}t≥0, {Bt}t≥0 be two mutually inde-
pendent standard Brownian motions defined on a complete probability space
(Ω,F ,P) with values in Rd and R, respectively. For t ∈ [0, T ], we define

Ft = FW
t ∨ FB

t,T ,

where FW
t = σ{Ws, 0 ≤ s ≤ t},FB

t,T = σ{Bs − Bt, t ≤ s ≤ T} completed
with the P-null sets. We note that the collection {Ft; t ∈ [0, T ]} is neither
increasing nor decreasing, so it does not constitute a classical filtration. The
Euclidean norm of a vector y ∈ Rn will be defined by |y|.

Throughout the paper, we always assume that p ∈ (1, 2). Now, let’s
introduce the following spaces :
Mp

d = {ψ : [0, T ]× Ω → Rd, predictable, such that E[(
∫ T

0
|ψs|

2ds)
p

2 ] <∞};

2



Sp = {ψ : [0, T ]×Ω → R, progressively measurable, s.t. E(supt∈[0,T ] |ψt|
p) <

∞};
Sp
ci = {A : [0, T ] × Ω → R+, continuous, increasing, s.t. A0 = 0 and

E|AT |
p <∞}.

The object in this paper is the following reflected BDSDE:




Yt = ξ +
∫ T

t
f(s, Ys, Zs)ds+

∫ T

t
g(s, Ys, Zs)dBs

+KT −Kt −
∫ T

t
ZsdWs,

Yt ≥ Lt, 0 ≤ t ≤ T a.s. and
∫ T

0
(Yt − Lt)dKt = 0, a.s.

(1)

where the dW is a standard forward Itô integral and the dB is a backward
Itô integral.

On the items ξ, f, g and L, we make the following assumptions:
(H1) The terminal condition ξ : Ω → R,FT -measurable such that E|ξ|p <
∞;
(H2) the functions f, g : [0, T ] × Ω ×R × Rd → R are jointly measurable
and satisfy:

(i) E[(
∫ T

0
|f 0

s |
2ds)

p

2 ] <∞, E[(
∫ T

0
|g0s |

2ds)
p

2 ] <∞,
where f 0

s =: f(s, 0, 0), g0s =: g(s, 0, 0);
(ii) ∀t ∈ [0, T ], (y1, z1), (y2, z2) ∈ R×Rd, there exist constants C > 0
and 0 < α < 1 such that

|f(t, y1, z1)− f(t, y2, z2)| ≤ C(|y1 − y2|+ |z1 − z2|),

|g(t, y1, z1)− g(t, y2, z2)|
2 ≤ C|y1 − y2|

2 + α|z1 − z2|
2;

(H3) The barrier {Lt, t ∈ [0, T ]} is a real valued progressively measurable
process such that E(sup0≤t≤T (L

+
t )

p) <∞ and LT ≤ ξ a.s..
Let’s give the notion of Lp-solution of reflected BDSDE (1).

Definition 2.1 An Lp-solution of the reflected BDSDE (1) is a triple of pro-
gressively measurable processes (Y, Z,K) satisfying (1) such that (Y, Z,K) ∈
Sp ×Mp

d × Sp
ci.

The following lemma is a slight generalization of Corollary 2.3 in Briand
et al. (2003).

Lemma 2.1 Let (Y, Z) ∈ Sp ×Mp
d is a solution of the following BDSDE :

|Yt| = ξ +

∫ T

t

f̃(s, Ys, Zs)ds+

∫ T

t

g̃(s, Ys, Zs)dBs + AT − At −

∫ T

t

ZsdWs,
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where:
(i) f̃ and g̃ are functions which satisfy the assumptions as f and g,
(ii) P-a.s. the process (At)t∈[0,T ] is of bounded variation type.

Then for any 0 ≤ t ≤ u ≤ T , we have

|Yt|
p + c(p)

∫ T

t

|Ys|
p−21{Ys 6=0}|Zs|

2ds

≤ |Yu|
p + p

∫ T

t

|Ys|
p−1ŶsdAs + p

∫ T

t

|Ys|
p−1f̃(s, Ys, Zs)ds

+c(p)

∫ T

t

|Ys|
p−21{Ys 6=0}|g̃(s, Ys, Zs)|

2ds

+p

∫ T

t

|Ys|
p−1Ŷsg̃(s, Ys, Zs)dBs − p

∫ T

t

|Ys|
p−1ŶsZsdWs,

where c(p) = p(p−1)
2

and ŷ = y

|y|
1{y 6=0}.

3 Main results

3.1 A priori estimates

In order to obtain the existence and uniqueness result for solution of the
reflected BDSDE (1), we first provide some a priori estimates of solution of
(1).

In what follows, d, d1, d2, · · · will be denoted as a constant whose value
depending only on C, α, p and possibly T . We also denote by θ1, θ2, · · · the
constants which taking value in (0,∞) arbitrarily.

Lemma 3.1 Let the assumptions (H1)-(H3) hold and let (Y, Z,K) be a so-
lution of the reflected BDSDE (1). If Y ∈ Sp then Z ∈ Mp

d and there exists
a constant d > 0 such that

E

[(∫ T

0

|Zs|
2ds

) p

2

]
≤ dE

[
sup

t∈[0,T ]

|Yt|
p +

(∫ T

0

|f 0
s |

2ds

) p

2

+

(∫ T

0

|g0s |
2ds

) p

2

]
.

Proof. For each integer n ≥ 0, let’s define the stopping time

τn = inf{t ∈ [0, T ],

∫ t

0

|Zs|
2ds ≥ n} ∧ T.
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Let a ∈ R, using Itô’s formula and assumption (H2), we get

|Y0|
2 +

∫ τn

0

eas|Zs|
2ds

= eaτn |Yτn|
2 − a

∫ τn

0

eas|Ys|
2ds+ 2

∫ τn

0

easYsf(s, Ys, Zs)ds

+

∫ τn

0

eas|g(s, Ys, Zs)|
2ds+ 2

∫ τn

0

easYsdKs

+2

∫ τn

0

easYsg(s, Ys, Zs)dBs − 2

∫ τn

0

easYsZsdWs

≤ eaτn |Yτn|
2 − a

∫ τn

0

eas|Ys|
2ds

+
1

θ1

∫ τn

0

eas|Ys|
2ds+ θ1

∫ τn

0

eas[4C2(|Ys|
2 + |Zs|

2) + 2|f 0
s |

2]ds

+(1 + θ1)

∫ τn

0

eas
(
C|Ys|

2 + α|Zs|
2
)
ds+ (1 +

1

θ1
)

∫ τn

0

eas|g0s |
2ds

+
1

θ2
sup

t∈[0,τn]

e2at|Yt|
2 + θ2|Kτn |

2

+2

∫ τn

0

easYsg(s, Ys, Zs)dBs − 2

∫ τn

0

easYsZsdWs.

On the other hand, from the equation

Kτn = Y0 − Yτn −

∫ τn

0

f(s, Ys, Zs)ds−

∫ τn

0

g(s, Ys, Zs)dBs +

∫ τn

0

ZsdWs,

we have

|Kτn|
2 ≤ d1

[
|Y0|

2 + |Yτn|
2 + (

∫ τn

0

|f 0
s |ds)

2 +

∫ τn

0

(|Ys|
2 + |Zs|

2)ds

+|

∫ τn

0

g(s, Ys, Zs)dBs|
2 + |

∫ τn

0

ZsdWs|
2

]
.
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Plugging this last inequality in the previous one to get

(1− d1θ2)|Y0|
2 + (1− 4C2θ1 − α(1 + θ1))

∫ τn

0

eas|Zs|
2ds− d1θ2

∫ τn

0

|Zs|
2ds

≤ (d1θ2 + eaτn)|Yτn|
2 +

(
1

θ1
+ 4C2θ1 + C(1 + θ1)− a

)∫ τn

0

eas|Ys|
2ds

+2θ1

∫ τn

0

eas|f 0
s |

2ds+ (1 +
1

θ1
)

∫ τn

0

eas|g0s |
2ds+

1

θ2
sup

t∈[0,τn]

e2at|Yt|
2

+d1θ2

[∫ τn

0

|f 0
s |

2ds+

∫ τn

0

|Ys|
2ds+ |

∫ τn

0

g(s, Ys, Zs)dBs|
2 + |

∫ τn

0

ZsdWs|
2

]

+2|

∫ τn

0

easYsg(s, Ys, Zs)dBs|+ 2|

∫ τn

0

easYsZsdWs|.

Choosing now θ1, θ2 small enough and a > 0 such that 1
θ1

+ 4C2θ1 + C(1 +
θ1)− a < 0, we obtain

∫ τn

0

|Zs|
2ds ≤ d2

(
sup

t∈[0,τn]

|Yt|
2 +

∫ τn

0

eas|g0s |
2ds+

∫ τn

0

eas|f 0
s |

2ds

+|

∫ τn

0

easYsg(s, Ys, Zs)dBs|+ |

∫ τn

0

easYsZsdWs|

+θ2|

∫ τn

0

g(s, Ys, Zs)dBs|
2 + θ2|

∫ τn

0

ZsdWs|
2

)
, (2)

it follows that

E

(∫ τn

0

|Zs|
2ds

) p

2

≤ d3E

[
sup

t∈[0,τn]

|Yt|
p +

(∫ τn

0

|g0s |
2ds

) p

2

+

(∫ τn

0

|f 0
s |

2ds

) p

2

+

(
|

∫ τn

0

easYsg(s, Ys, Zs)dBs|

) p

2

+

(
|

∫ τn

0

easYsZsdWs|

) p

2

+θ
p

2

2 |

∫ τn

0

g(s, Ys, Zs)dBs|
p + θ

p

2

2 |

∫ τn

0

ZsdWs|
p

]
.
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By the Burkhölder-Davis-Gundy and Young’s inequalities, we have

E

[∣∣∣∣
∫ τn

0

easYsg(s, Ys, Zs)dBs

∣∣∣∣
p

2

]

≤ d4E

[(∫ τn

0

|Ys|
2|g(s, Ys, Zs)|

2ds

) p

4

]

≤ d4E

[
( sup
t∈[0,τn]

|Yt|)
p

2

(∫ τn

0

|g(s, Ys, Zs)|
2ds

) p

4

]

≤ (
d4

θ3
+ θ3)E[ sup

t∈[0,τn]

|Yt|
p]

+θ3E

[(∫ τn

0

|g0s |
2ds

) p

2

+

(∫ τn

0

|Zs|
2ds

) p

2

]

and

E

[∣∣∣∣
∫ τn

0

easYsZsdWs

∣∣∣∣
p

2

]
≤
d5

θ3
E

[
sup

t∈[0,τn]

|Yt|
p

]
+ θ3E

[(∫ τn

0

|Zs|
2ds

) p

2

]
.

Plugging the two last inequalities in the previous one and using the
Burkhölder-Davis-Gundy inequality once again, it follows after choosing θ2,
θ3 small enough (s.t. (2) holds too):

E

[(∫ τn

0

|Zs|
2ds

) p

2

]

≤ dE

[
sup

t∈[0,τn]

|Yt|
p +

(∫ τn

0

|f 0
s |

2ds

) p

2

+

(∫ τn

0

|g0s |
2ds

) p

2

]
.

Finally, we get the desired result by Fatou’s Lemma. �

Lemma 3.2 Assume that (H1)-(H3) hold, let (Y, Z,K) be a solution of the
reflected BDSDE (1) where Y ∈ Sp. Then there exists a constant d > 0 such
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that

E

[
sup

t∈[0,T ]

|Yt|
p +

(∫ T

0

|Zs|
2ds

) p

2

+ |KT |
p

]

≤ dE

[
|ξ|p +

(∫ T

0

|f 0
s |

2ds

) p

2

+

(∫ T

0

|g0s |
2ds

)p

2

+ sup
t∈[0,T ]

(L+
t )

p +

∫ T

0

|Ys|
p−2I{Ys 6=0}|g

0
s |

2ds

]
.

Proof. From Lemma 2.1, for any a ∈ R and any 0 ≤ t ≤ T , we have

eapt|Yt|
p + c(p)

∫ T

t

eaps|Ys|
p−21{Ys 6=0}|Zs|

2ds

≤ eapT |ξ|p + p

∫ T

t

eaps|Ys|
p−1Ŷsf(s, Ys, Zs)ds+ p

∫ T

t

eaps|Ys|
p−1ŶsdKs

+c(p)

∫ T

t

eaps|Ys|
p−21{Ys 6=0}|g(s, Ys, Zs)|

2ds− ap

∫ T

t

eaps|Ys|
pds

+p

∫ T

t

eaps|Ys|
p−1Ŷsg(s, Ys, Zs)dBs − p

∫ T

t

eaps|Ys|
p−1ŶsZsdWs. (3)

By assumption (H2) and Young’s inequality, we obtain

pE

[∫ T

t

eaps|Ys|
p−1Ŷsf(s, Ys, Zs)ds

]

≤ E[p

∫ T

t

eaps|Ys|
p−1|f 0

s |ds+ Cp

∫ T

t

eaps|Ys|
p−1(|Ys|+ |Zz|)ds]

≤ (p− 1)θ
p

p−1

4 E

(
sup

s∈[0,T ]

|Ys|
p

)
+ θ

−p
4 E

(∫ T

t

eaps|f 0
s |ds

)p

+(Cp+
p2C2

2c(p)θ4
)E

[∫ T

t

eaps|Ys|
pds

]

+
c(p)

2
θ4E

[∫ T

t

eaps|Ys|
p−21{Ys 6=0}|Zs|

2ds

]
(4)
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and

c(p)E[

∫ T

t

eaps|Ys|
p−21{Ys 6=0}|g(s, Ys, Zs)|

2ds]

≤ c(p)(1 +
1

θ4
)E[

∫ T

t

eaps|Ys|
p−21{Ys 6=0}|g

0
s |

2ds]

+c(p)C(1 + θ4)E[

∫ T

t

eaps|Ys|
pds]

+c(p)α(1 + θ4)E[

∫ T

t

eaps|Ys|
p−2I{Ys 6=0}|Zs|

2ds]. (5)

Moreover, since dKs = 1{Ys≤Ls}dKs, we get from Young’s inequality

pE[

∫ T

t

eaps|Ys|
p−1ŶsdKs]

≤ pE[

∫ T

t

eaps|Ys|
p−1ŶsI{Ys≤Ls}dKs]

≤ pE[

∫ T

t

eaps|Ls|
p−1L̂sdKs]

≤ pE[( sup
s∈[0,T ]

L+
s )

p−1

∫ T

t

eapsdKs]

≤
p− 1

θ
p−1

p

4

E[ sup
s∈[0,T ]

(L+
s )

p] + θ
p
4E(

∫ T

t

eapsdKs)
p

≤ d6

[
θ
− p−1

p

4 E( sup
s∈[0,T ]

(L+
s )

p) + θ
p
4 E|KT |

p

]
.

On the other hand, by assumption (H2), the Burkhölder-Davis-Gundy in-
equality and Lemma 3.1, we have

E|KT |
p ≤ d7E

[
sup

s∈[0,T ]

|Ys|
p +

(∫ T

0

|f 0
s |ds

)p

+

(∫ T

0

|g0s |ds

)p
]
, (6)

it follows that

pE[

∫ T

t

eaps|Ys|
p−1ŶsdKs] ≤ d8E

[
θ
p
4 sup
s∈[0,T ]

|Ys|
p + θ

− p−1

p

4 sup
s∈[0,T ]

(L+
s )

p

+θp4

(∫ T

0

|f 0
s |ds

)p

+ θ
p
4

(∫ T

0

|g0s |ds

)p]
.(7)
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Combining (4)-(6), taking expectation on both sides of (3) to obtain

E

[
eapt|Yt|

p + c(p)

∫ T

t

eaps|Ys|
p−2I{Ys 6=0}|Zs|

2ds

]

≤ E

{
eapT |ξ|p + d8θ

− p−1

p

4 sup
s∈[0,T ]

(L+
s )

p +
[
(p− 1)θ

p

p−1

4 + d8θ
p
4

]
sup

s∈[0,T ]

|Ys|
p

+

[
(Cp+

p2C2

2c(p)θ4
) + c(p)C(1 + θ4)− ap

] ∫ T

t

eaps|Ys|
pds

+

[
c(p)

2
θ4 + c(p)α(1 + θ4)

] ∫ T

t

eaps|Ys|
p−2I{Ys 6=0}|Zs|

2ds

+θ−p
4

(∫ T

t

eaps|f 0
s |ds

)p

+ d8θ
p
4

(∫ T

t

|f 0
s |ds

)p

+ d8θ
p
4

(∫ T

t

eaps|g0s |ds

)p

+

[
c(p)(1 +

1

θ4
) + d8θ

p
4

] ∫ T

t

eaps|Ys|
p−21{Ys 6=0}|g

0
s |

2ds

}
.

Choosing θ4 small enough and a > 0 such that

(Cp+
p2C2

2c(p)θ4
) + c(p)C(1 + θ4)− ap < 0, (8)

we get

E

[
eapt|Yt|

p + c(p)

∫ T

t

eaps|Ys|
p−2I{Ys 6=0}|Zs|

2ds

]

≤ d9E

[
|ξ|p + sup

s∈[0,T ]

(L+
s )

p +

(∫ T

t

|f 0
s |

2ds

) p

2

+

(∫ T

t

|g0s |
2ds

) p

2

+

∫ T

t

eaps|Ys|
p−2I{Ys 6=0}|g

0
s |

2ds

]
+ d9θ

p
4 E[ sup

s∈[0,T ]

|Ys|
p]. (9)

Next using the Burkhölder-Davis-Gundy inequality we have

E

[
sup

t∈[0,T ]

∣∣∣∣p
∫ T

0

eaps|Ys|
p−1ŶsZsdWs

∣∣∣∣

]

≤
1

4
E[ sup

t∈[0,T ]

eapt|Yt|
p] + d10E

(∫ T

0

eaps|Ys|
p−21{Ys 6=0}|Zs|

2ds

)
(10)
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and

E

[
sup

t∈[0,T ]

∣∣∣∣
∫ T

0

eaps|Ys|
p−1Ŷsg(s, Ys, Zs)dBs

∣∣∣∣

]

≤
1

4
E

[
sup

t∈[0,T ]

eapt|Yt|
p

]
+ d11E

∫ T

0

eaps|Ys|
p−21{Ys 6=0}|g(s, Ys, Zs)|

2ds

≤
1

4
E[ sup

t∈[0,T ]

eapt|Yt|
p] + d11E

[∫ T

0

eaps|Ys|
p−21{Ys 6=0}|g

0
s |

2ds

+

∫ T

0

eaps|Ys|
pds+

∫ T

0

eaps|Ys|
p−2I{Ys 6=0}|Zs|

2ds

]
. (11)

Next going back to (3), using the Burkhölder-Davis-Gundy inequality to-
gether with the inequalities (9)-(11), we get after choosing θ4 small enough
(s.t. inequality (8) holds too)

E

[
sup

t∈[0,T ]

eapt|Yt|
p +

∫ T

t

eaps|Ys|
p−2I{Ys 6=0}|Zs|

2ds

]

≤ dE

[
|ξ|p + (

∫ T

0

|f 0
s |

2ds)
p

2 + (

∫ T

0

|g0s |
2ds)

p

2

+ sup
t∈[0,T ]

(L+
t )

p +

∫ T

0

eaps|Ys|
p−2I{Ys 6=0}|g

0
s |

2ds

]
.

We then complete the proof by the inequality (6). �

Lemma 3.3 Let (Y ′, Z ′, K ′) and (Y, Z,K) be the solution of the reflected
BDSDE (1) associated with (ξ′, f ′, g′, L) and (ξ, f, g, L) respectively, where
(ξ′, f ′, g′, L) and (ξ, f, g, L) satisfy assumptions (H1)-(H3). Then

E

[
sup

t∈[0,T ]

|Y ′
t − Yt|

p +

(∫ T

0

|Z ′
s − Zs|

2ds

) p

2

]

≤ dE

[
|ξ′ − ξ|p + (

∫ T

0

|f ′(s, Ys, Zs)− f(s, Ys, Zs)|
2ds)

p

2

+(

∫ T

0

|g′(s, Ys, Zs)− g(s, Ys, Zs))|
2ds)

p

2

]
.
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Proof. The proof of the lemma is a combination of the proofs of Lemmas
3.1 and 3.2 with a slight change. Indeed, let

ξ =: ξ′ − ξ, (Y , Z,K) =: (Y ′ − Y, Z ′ − Z,K ′ −K).

One can easily to check that (Y , Z,K) is a solution to the following BDSDE:

Y t = ξ +

∫ T

t

h(s, Y s, Zs)ds+

∫ T

t

k(s, Y s, Zs)dBs +KT −Kt −

∫ T

t

ZsdWs,

where

h(s, y, z) =: f ′(s, y + Ys, z + Zs)− f(s, Ys, Zs),

k(s, y, z) =: g′(s, y + Ys, z + Zs)− g(s, Ys, Zs).

Obviously, the functions h and k are Lipschitz w.r.t (y, z).
Let’s note that
∫ t

0

eapsY sdKs = −

∫ t

0

eaps(Y ′
s − Ls)dKs −

∫ t

0

eaps(Ys − Ls)dK
′
s ≤ 0

and
∫ t

0

eaps|Y s|
p−1Ŷ sdKs = −

∫ t

0

eaps|Y s|
p−21{Y s 6=0}(Y

′
s − Ls)dKs

−

∫ t

0

eaps|Y s|
p−2I{Y s 6=0}(Ys − Ls)dK

′
s

≤ 0.

The rest of the proof follows Itô’s formula, Lemma 2.1 and the steps similar
to those in the proofs of Lemmas 3.1 and 3.2. �

3.2 Existence and uniqueness of a solution

In order to obtain the existence and uniqueness result, we make the following
supplementary assumption:
(H4) g(·, 0, 0) ≡ 0.

The following result due to Bahlali et al. (2009).

Lemma 3.4 Let p = 2. Assume that (H1)-(H3) hold. Then the reflected
BDSDE (1) has a unique solution (Y, Z,K) ∈ S2 ×M2

d × S2
ci.

12



We now state and prove our main result.

Theorem 3.1 Assume (H1)-(H4), then the reflected BDSDE (1) has a unique
solution (Y, Z,K) ∈ Sp ×Mp

d × Sp
ci.

Proof. The uniqueness is an immediate consequence of Lemma 3.3. We
next to prove the existence.

For each n,m ∈ N
∗, define

ξn = qn(ξ), fn(t, x, y) = f(t, x, y)− f 0
t + qn(f

0
t ), L

m
t = qm(Lt),

where qk(x) = x k
|x|∨k

. One can easily to check that the items ξn, fn and Lm

satisfy the assumptions (H1)-(H3), it follows from Lemma 3.4 that, for each
n,m ∈ N

∗, there exists a unique solution (Y n, Zn, Kn) ∈ L2 for the reflected
BDSDE associated with (ξn, fn, g, L

m), but in fact also in Lp, according as-
sumption (H4) and the Lemmas 3.1 and 3.2.

Next, from Lemma 3.3, for (i, n) ∈ N× N
∗, we have

E

{
sup

t∈[0,T ]

|Y n+i
t − Y n

t |
p +

(∫ T

0

|Zn+i
s − Zn

s |
2ds

) p

2

}

≤ dE

{
|ξn+i − ξn|

p +

(∫ T

0

|qn+i(f
0
s )− qn(f

0
s )|

2ds

) p

2

}
.

Clearly, the right side of above inequality tend to 0 as n → ∞, uniformly
on i so that (Y n, Zn) is a Cauchy sequence in Sp × Mp

d. Let’s denote by
(Y, Z) ∈ Sp ×Mp

d it limit. By the equation

Kn
t = Y n

0 − Y n
t −

∫ t

0

fn(s, Y
n
s , Z

n
s )ds−

∫ t

0

g(s, Y n
s , Z

n
s )dBs +

∫ t

0

Zn
s dWs,

similar computation can derive that (Kn
t )n≥1 is also a Cauchy sequence in

Sp
ci, then there exists a non-decreasing process Kt ∈ Sp

ci (K0 = 0) such that

E(|Kn
t −Kt|

p) → 0, as n→ ∞

and
∫ T

0

(Ys − Lm
s )dKs = 0.

13



By the dominated convergence theorem, we then get
∫ T

0

(Ys − Lm
s )dKs →

∫ T

0

(Ys − Ls)dKs, as m→ ∞.

It follows that the limit (Y, Z,K) is a Lp-solution of reflected BDSDE with
(ξ, f, g, L). The proof is complete. �
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