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Abstract

This paper is a continuation of the previous author’s works on
the subject sometimes overlapping over them. Additional arguments
supporting the idea that a minimal length and minimal time should
exist in nature and should be considered at all energy scales are
given. Compared with the previous works, apart from the notion
of measurability (measurability in principle), the author first
introduces the notion ofmeasurability in relation to the energy.
The principal objective of the paper is framing of discrete analogues
for the well-known theories (Quantum Theory, Gravity, and so on)
in terms of measurable quantities only. A program of further
studies to this end is presented in the last section of this work.

1 Introduction.

In his previous related works the author has discussed the idea that for
the adequate and correct understanding of the physical processes at all the
energy scales, one should exclude infinitesimal space-time variations (incre-
ments) from all physical theories. The reasoning is that the mathematical
apparatus currently used is inadequate necessitating its replacement by the
mathematical apparatus based on the initial introduction of the minimal
length lmin and of the minimal time tmin into the above-mentioned theories
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not only at maximal energies Emax ∝ EP but at all the energy scales. Then
these theories become discrete, though approaching the starting continuous
theories at low energies which are far from the energies associated with the
Big Bang. Actually, discreteness is revealed only at the energies close to
those of the Big Bang.
This paper is a continuation of the previous author’s works and is aimed
at elaboration of the program of further studies on the subject. The first
step is to introduce into a theory the minimal length lmin and the minimal
time tmin at all energy scales together with the associated measurability
notion.
One of the key problems of the modern fundamental physics (Quantum The-
ory (QT) and Gravity (GR)) is framing of a correct theory associated with
the ultraviolet region, i. e. the region of the highest (apparently Planck’s)
energies approaching those of the Big Bang.
However, it is well known that at high energies (on the order of the quantum
gravity energies) the minimal length lmin to which the indicated energies are
≪sensitive≫, as distinct from the low ones, should inevitably become appar-
ent in the theory. But if lmin is really present, it must be present at all the
≪Energy Levels≫ of the theory, low energies including.
What follows from the existence of the minimal length lmin? When the
minimal length is involved, any nonzero measurable quantity having the
dimensions of length should be a multiple of lmin. Otherwise, its measure-
ment with the use of lmin would result in the measurable quantity ς, so
that ς < lmin, and this is impossible.
This suggests that the spatial-temporal quantities dxµ are nonmeasurable
quantities because the latter lead to the infinitely small length ds [1]

ds2 = gµνdxµdxν (1)

nonmeasurable because of lmin.
And this has been indicated in my previous work [2].
Of course, as a mathematical notion, the quantities dxµ, ds are naturally ex-
istent but one should realize that there is no way to express them in terms
of the minimal possible measuring unit lmin.
So, trying to frame a theory (QT and GR) correct at all the energy lev-
els using only the measurable quantities, one should realize that then the
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mathematical formalism of the theory should not involve any infinitesimal
spatial-temporal quantities. Besides, proceeding from the acknowledged re-
sults associated with the Planck scales physics [3]–[11], one can infer that
certain new parameters dependent on lmin should be involved.
What are the parameters of interest in the case under study? It is obvious
that, as the quantum-gravitational effects will be revealed at very small
(possibly Planck’s) scales, these parameters should be dependent on some
limiting values, e.g., lP ∝ lmin and hence Planck’s energy EP .
This means that in high-energy QT and GR the energy- or, what
is the same, measuring scales-dependent parameters should be
necessarily introduced.
But, on the other hand, these parameters could hardly disappear totally at
low energies both in QT and in GR.
But, provided lmin exists, it must be involved at all the energy levels, both
high and low.
The fact that lmin is omitted in the formulation of low-energy QT and GR
and the theories give perfect results leads to two different inferences:

1.1. The influence of the above-mentioned new parameters associated with
lmin in low-energy QT and GR is so small that it may be disregarded at the
modern stage in evolution of the theory and of the experiment.

1.2. The modern mathematical apparatus of conventional QT and GR has
been derived in terms of the infinitesimal spatial-temporal quantities dxµ

which, as noted above, are nonmeasurable quantities in the formalism
of lmin and lmin.

The main reasoning for the introduction of the notion of measurability
based on the Uncertainty Principle at All Scales Energies is substan-
tiated in the following Section.
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2 Uncertainty Principle at All Scales Ener-

gies and ≪Principle of bounded space-time

variations (increments) ≫

Let us begin with Heisenberg’s Uncertainty Principle (HUP) [14] and with
the ≪Principle of bounded variations (increments) ≫ on its basis that
is hereinafter referred to as the Principle 1:

Principle 1. ≪Principle of bounded variations (increments) ≫

Any small variation (increment) ∆̃xµ of any spatial coordinate xµ of the
arbitrary point xµ, µ = 0, ..., 3 in some space-time system R may be realized
in the form of the uncertainty ∆xµ when this coordinate is measured within
the scope of Heisenberg’s Uncertainty Principle (HUP)

∆̃xµ = ∆xµ,∆xµ ≃ ~
∆pµ

, µ = 1, 2, 3 (2)

for some ∆pµ ̸= 0.

Similarly, for µ = 0 and for the arbitrary value of ∆̃x0 = ∆̃t we have

∆̃t = ∆t,∆t ≃ ~
∆E

(3)

for some ∆E ̸= 0.
Here HUP is given for the nonrelativistic case. In the relativistic case HUP
has the distinctive features [39] which, however, are of no significance for the
general formulation of Principle 1, being associated only with particular
alterations in the right-hand side of the second relation (2)as shown later.
It is clear that at low energies E (momentums P ) Principle 1 sets a lower

bound for the variations (increments) ∆̃xµ of any space-time coordinate xµ.
At high energies E (momentums P ) this is not the case if E (P ) have no
upper limit. But, according to the modern knowledge, E (P ) are bounded
by some maximal quantities Emax, (Pmax)

E ≤ Emax, P ≤ Pmax, (4)
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where in general Emax, Pmax may be on the order of Planck’s quantities
Emax ∝ EP , Pmax ∝ Ppl and also may be the trans-Planck’s quantities.
In any case the quantities Pmax and Emax lead to the introduction of the
minimal length lmin and of the minimal time tmin.
Because of this, it is natural to complete Principle 1 with
Principle 2:
In nature the minimal length lmin is used as a minimal measuring unit for
all quantities having the dimension of length, whereas the minimal time
tmin = lmin/c –– as a minimal measuring unit for all quantities having the
dimension of time, where c is the speed of light.
lmin and tmin are naturally introduced as ∆xµ, µ = 1, 2, 3 and ∆t in (2),(3)
for ∆pµ = Pmax and ∆E = Emax.
For definiteness, we consider that Emax and Pmax are the quantities on the
order of the Planck quantities, then lmin and tmin are also on the order of
Planck’s quantities lmin ∝ lP , tmin ∝ tP .
In this case it is more convenient to start not with Heisenberg’s Uncertainty
Principle (HUP) [14]

∆x ≥ ~
∆p

(5)

but with its widely known high-energy generalization –– the Generalized
Uncertainty Principle (GUP) [15] [27]:

∆x ≥ ~
∆p

+ α′l2P
∆p

~
. (6)

Here α′ is the model-dependent dimensionless numerical factor and lP is the
Planckian length. (Note that the normalization ∆x∆p ≥ ~ is used rather
than △x∆p ≥ ~/2.)
Note also that initially GUP (6) was derived within a string theory [15]– [18]
and, subsequently, in a series of works far from this theory [19] – [25] it has
been demonstrated that on going to high (Planck’s) energies in the right-
hand side of HUP (5) an additional ≪high-energy≫ term ∝ l2P

△p
~ appears.

Of particular interest is the work [19], where by means of a simple gedanken
experiment it has been demonstrated that with regard to the gravitational
interaction (6) is the case.
As (6) – quadratic inequality, then it naturally leads to the minimal length
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lmin = ξlP = 2
√
α′lP .

This means that the theory for the quantities with a particular dimension
has a minimal measurement unit. At least, all the quantities with such
a dimension should be ≪quantized≫, i. e. be measured by an integer number
of these minimal units of measurement.
Specifically, if lmin – minimal unit of length, then for any length L we
have the ≪Integrality Condition≫ (IC)

L = NLlmin, (7)

where NL > 0 – integer.
What are the consequences for GUP (6) and HUP (5)?
Assuming that HUP is to a high accuracy derived from GUP on going to
low energies or that HUP is a special case of GUP at low values of the
momentum, we have

(GUP,∆p → 0) = (HUP ). (8)

By the language of NL from(7), (8) is nothing else but a change-over to the
following:

(N∆x ≈ 1) → (N∆x ≫ 1). (9)

The assumed equalities in (5) and (6) may be conveniently rewritten in
terms of lmin with the use of the deformation parameter αa. This param-
eter has been introduced earlier in the papers [28]–[36] as a deformation
parameter on going from the canonical quantum mechanics to the quan-
tum mechanics at Planck’s scales (early Universe) that is considered to be
the quantum mechanics with the minimal length (QMML):

αa = l2min/a
2, (10)

where a is the measuring scale.

Definition 1.
Deformation is understood as an extension of a particular theory by inclu-
sion of one or several additional parameters in such a way that the initial
theory appears in the limiting transition [37].
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Then with the equality (∆p∆x = ~) (6) is of the form

∆x =
~
∆p

+
α∆x

4
∆x. (11)

In this case due to formulae (7) and (9) the equation (11) takes the following
form:

N∆xlmin =
~
∆p

+
1

4N∆x
lmin (12)

or

(N∆x −
1

4N∆x
)lmin =

~
∆p

. (13)

That is

∆p =
~

(N∆x − 1
4N∆x

)lmin

. (14)

From (12)–(14) it is clear that HUP (5) in the case of the equality appears
to a high accuracy in the limit N∆x ≫ 1 in conformity with (9).
It is easily seen that the parameter αa from (10) is discrete as it is nothing
else but

αa = l2min/a
2 =

l2min

N2
a l

2
min

=
1

N2
a

. (15)

At the same time, from (15) it is evident that αa is irregularly discrete.
It is clear that from formula (14) at low energies (N∆x ≫ 1), up to a
constant

~2

l2min

=
~c3

4α′G
(16)

we have
α∆x = (∆p)2. (17)

But all the above computations are associated with the nonrelativistic case.
As known, in the relativistic case, when the total energy of a particle with
the mass m and with the momentum p equals [38]:

E =
√
p2c2 +m2c4, (18)
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a minimal value for ∆x takes the form [39]:

∆x ≈ c~
E
. (19)

And in the ultrarelativistic case

E ≈ pc (20)

this means simply that

∆x ≈ ~
p
. (21)

Provided the minimal length lmin is involved and considering the ≪Inte-
grality Condition≫ (IC) (7), in the general case for (19) at the energies
considerably lower than the Planck energies E ≪ EP we obtain the follow-
ing:

∆x = N∆xlmin ≈ c~
E
,

or

E ≈ c~
N∆x

. (22)

Similarly, at the same energy scale in the ultrarelativistic case we have

p ≈ ~/N∆x. (23)

Note that all the foregoing results associated with GUP and with its lim-
iting transition to HUP for the pair (∆x,∆p), as shown in [30], may be in
ultrarelativistic case easily carried to the ≪energy - time≫ pair (∆t,∆E).
Indeed (6) gives [30]:

∆x

c
≥ ~

∆pc
+ α′l2P

∆p

c~
, (24)

then

∆t ≥ ~
∆E

+ α′ l
2
p

c2
∆pc

~
=

~
∆E

+ α′t2p
∆E

~
. (25)

where according to (20) the difference between ∆E and ∆(pc) can be ne-
glected and tP is the Planck time tP = LP/c =

√
G~/c5 ≃ 0, 54 10−43sec.
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From whence it follows that we have a maximum energy of the order of
Planck’s:

Emax ∼ EP

Then the foregoing formulae (5)–(13) are rewritten by substitution as fol-
lows:

∆x → ∆t; ∆p → ∆E; lmin → tmin;NL → Nt=L/c (26)

Specifically, (13) takes the form

(N∆t −
1

4N∆t
)tmin =

~
∆E

. (27)

As shown, for the ultrarelativistic case there is tmin.
Next we assume that for all cases there is a minimal measuring unit of
time

tmin = lmin/vmax = lmin/c. (28)

Then, similar to (7), we get the ≪Integrality Condition≫ (IC) for any
time t:

t ≡ t(Nt) = Nttmin, (29)

for certain |Nt| ≥ 0 – integer.
According to (27), let us define the corresponding energy E

E ≡ E(Nt) =
~

|Nt − 1
4Nt

|tmin

. (30)

Note that at low energies E ≪ EP , that is for |Nt| ≫ 1, the formula (30)
naturally takes the following form:

E ≡ E(Nt) =
~

|Nt|tmin

=
~

|t(Nt)|
. (31)

Definition 2.1.
1) Let us define the quantity having the dimensions of length L or time t
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measurable in principle, when it satisfies the relation (7) and, respec-
tively, (29).

2) Let us define the quantity having the dimensions of momentum p or
energy E measurable in principle, when it satisfies in the corresponding
cases (nonrelativistic and relativistic) the foregoing formulas
(14),(22),(23),(30) for the momentums and energies. At low energies (E ≪
EP ) this means that p and E , within the known multiplicative constants and
sign, are coincident with 1/NL,1/Nt, where |NL| ≫ 1,|Nt| ≫ 1 – integers.

3) Let us define any physical quantity measurable in principle, when
its value is consistent with points 1) and 2) of this Definition.

Definition 2.2.
1) Let us define any small quantity measurable in principle having the
dimensions of length L or time t and measurable with respect to the
energy E if it is associated with the value E within the scope of the Un-
certainty Principle at All Energies Scales.

2)Let us define any physical quantity measurable with respect to the
energy E when its value is consistent with point 1) of this Definition.

Specifically, the minimal length lmin and the minimal time tmin are mea-
surable only with respect to the energy Emax ∝ EP and nonmeasurable
with respect to the energies E < Emax.

Besides, measurable in principle and hence measurable with respect
to any energy E infinitesimal changes in length (and in time) are impos-
sible, such changes being dependent on the existing energies.
In particular, a minimal possible measurable change of length is lmin. It
corresponds to some maximal value of the energy Emax or momentum Pmax,
If lmin ∝ lP , then Emax ∝ EP ,Pmax ∝ PPl, where Pmax ∝ PPl, where PPl

is where the Planck momentum. Then denoting in nonrelativistic case
with △p(w) a minimal measurable change every spatial coordinate w
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corresponding to the energy E we obtain

△Pmax(w) = △Emax(w) = lmin. (32)

Evidently, for lower energies (momentums) the corresponding values of
△p(w) are higher and, as the quantities having the dimensions of length
are quantized (7), for p ≡ p(Np) < pmax, △p(w) is transformed to

|△p(Np)(w)| = |Np|lmin. (33)

where |Np| > 1-integer so that we have

|Np −
1

4Np

|lmin =
~

|p(Np)|
. (34)

In the relativistic case the formula (32) holds, whereas (33) and (34) for
E ≡ E(NE) < Emax are replaced by

|△E(NE)(w)| = |NE|lmin, (35)

where |NE| > 1-integer.
Next we assume that at high energies E ∝ EP there is a possibility only for
the nonrelativistic case or ultrarelativistic case.
Then for the ultrarelativistic case, with regard to (20)–(27), formula (34)
takes the form

|NE − 1

4NE

|lmin =
~c

E(NE)
=

~
|p(Np)|

, (36)

where NE = Np.
In the relativistic case at low energies we have

E ≪ Emax ∝ EP . (37)

In accordance with (18),(19) formula (33) is of the form

|△E(NE)(w)| = |NE|lmin =
~c

E(NE)
, |NE| ≫ 1− integer. (38)
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In the nonrelativistic case at low energies (37) due to (34) we get

|△p(Np)(w)| = |Np|lmin =
~

|p(Np)|
, |Np| ≫ 1− integer. (39)

In a similar way for the time coordinate t, by virtue of formulas (29)–(31),
at the same conditions we have similar formulas (32),(33),(34)

△Emax(t) = tmin. (40)

For E ≡ E(Nt) < Emax

|△E(Nt)(t)| = |Nt|tmin, (41)

where |NE| > 1-integer, so that we obtain

|Nt −
1

4Nt

|tmin =
~c

E(Nt)
. (42)

In the relativistic case at low energies

E ≪ Emax ∝ EP , (43)

in accordance with (18),(19), formula (33) takes the form

|△E(Nt)(w)| = |Nt|lmin =
~c

E(Nt)
, |Nt| ≫ 1− integer. (44)

Now we consider a very simple but important example of the nonmeasur-
able quantity from [2]:
The infinitesimal increment of entropy dS of the spherically symmet-
ric holographic screen S with the radius R and with the surface area A is a
nonmeasurable quantity.
Really, it is obvious that infinitesimal variations of the screen surface area
dA are possible only in a continuous theory involving no lmin.
When lmin ∝ lP is involved, the minimal variation △A is evidently associ-
ated with a minimal variation in the radius R

R → R± lmin = R±△Emax(R) (45)
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it is dependent on R and growing with ∼ R for R ≫ lmin (possible only at
the maximum energy Emax ∝ EP )

△±A(R) = (A(R± lmin)−A(R)) ∝ (±2Rlmin + l2min) ∝ (±2NR +1), (46)

where NR = R/lmin, as indicated above in (7).
But if E ≪ Emax ∝ EP , then a minimal variation in the radius R is
obviously greater than lmin

R → R±△E(NE)(R) = R± |NE|lmin, (47)

and in this case in the right-hand side of (46), within the constant l2min, we
have the number quickly growing at low energies as well:

△±A(R) = (A(R± lmin)− A(R)) ∝ (±2RNElmin +N2
El

2
min)

∝ NE(±2NR +NE). (48)

In any case from this it follows that dA has no chance to be a measurable
quantity, as its measurability suggests measurability of the quantity dR,
and this is impossible.
Since dS, within a multiplicative constant, equals dA [45],[46]: dS ∝ dA/4,
dS is also a nonmeasurable quantity.
Because of this, the ≪main instrument≫ in the well-known paper [47] that
is the infinitesimal variation dN in the bit numbers N on the holographic
screen S is also a nonmeasurable quantity [2] as dN ∝ dS to within an
integer factor.
It is easily seen that the infinitesimal variation dV in the volume V of S is
also a nonmeasurable quantity.
The following comments are of particular importance.
Comm 1.1. It should be noted that the lattice is usually understood as
a uniform discrete structure with one and the same constant parameter a
(lattice pitch). But in this case we have a nonuniform discrete structure
(lattice in its nature), where the analogous parameter is variable, is a mul-
tiple of lmin,i. e.a = Nalmin, and also is dependent on the energies. Only in
the limit of high (Planck’s) energies we get a (nearly) uniform lattice with
(nearly) constant pitch a ≈ lmin or a = κlmin where κ is on the order of 1.
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Comm 1.2 As it has been already noted above, the parameter αa from
(15) is first derived from (10) but without the additional constraint 0 <
αa ≤ 1/4. This is due to the fact that for αx from Section 2 this additional
constraint is quite naturally arising from the density matrix deformation
in a quantum mechanics at Planck scales [28]–[34]. In this Section the
constraint is redundant at the initial stage. Possibly it may arise later
during the elaboration of the proposed approach.

Comm 1.3 Obviously, when lmin is involved, the foregoing formulas for
the momentums p(Np) and for the energies E(NE), E(Nt) may certainly
give the highly accurate result that is close to the experimental one only at
the verified low energies: |Np| ≫ 1, |NE| ≫ 1, |Nt| ≫ 1. In the case of high
energies E ∝ Emax ∝ EP or, what is the same |Np| → 1, |NE| → 1, |Nt| → 1,
we have a certain, experimentally unverified, model with a correct low-
energy limit.

Comm 1.4 It should be noted that dispersion relations (18) are valid
only at low energies E ≪ EP . In the last few years in a series of works [40]–
[44] it has been demonstrated that within the scope of GUP the high-energy
generalization of (18)–Modified Dispersion Relations (MDRs)–is valid.
Specifically, in its most general form the Modified Dispersion Relation (for-
mula (9) in [44]) may be given as follows:

p2 = f(E,m; lp) ≃ E2 − µ2 + α1lpE
3 + α2l

2
pE

4 +O
(
l3pE

5
)
, (49)

where in the notation of [44] the fundamental constants are c = ~ = kB = 1,
f is the function that gives the exact dispersion relation, and in the right-
hand side the applicability of the Taylor-series expansion for E ≪ 1/lP is
assumed. The coefficients αi can take different values in different quantum-
gravity proposals. m is the rest energy of a particle, and the mass parameter
µ in the right-hand side is directly related to the rest energy but µ ̸= m if
not all the coefficients αi are vanishing.
The general case of (MDRs) (49) in terms of the considerations given in
this section is yet beyond the scope of this paper and necessitates further
studies of the transition from low E ≪ EP to high E ≈ EP energies.
For now it is assumed that at low energies formula (18) is valid to within a
high accuracy, whereas at high energies, i.e. for |Np| → 1, |NE| → 1, |Nt| →
1, (18) should be replaced by (49). Besides, it is important that in this pa-
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per, as distinct from [40]–[44], the author uses the simplest (earlier) variant
of GUP [15]–[27], involving a minimal length but not a minimal momentum.
Also note that references [40]–[44] give not nearly so complete a list of the
publications devoted to GUP (and, in particular, MDR) – a very complete
and interesting survey may be found in [41].

Comm 1.5 In what follows, within the scope of the above definitions,
we consider, unless stated otherwise, only measurable increments (varia-
tions) of the space-time quantities and the corresponding momentums and
energies.

Proceeding from all the above, this simply means that all minimal incre-
ments (variations) of the space-time quantities are dependent on the present
energies and coincident with the corresponding minimal uncertainties
from the Uncertainty Principle at All Energy Scales.

3 Space-Time Lattice of Measurable Quan-

tities and Dual Lattice

So, provided the minimal length lmin exists, two lattices are naturally aris-
ing.

I.Lattice of the space-time variation – LatS−T representing, to within
the known multiplicative constants, the sets of nonzero integers Nw ̸= 0
and Nt ̸= 0 in the corresponding formulas from the set (33)–(44) for each
of the three space variables w

.
= x; y; z and the time variable t

LatS−T
.
= (Nw, Nt), Nw ̸= 0, Nt ̸= 0− integers. (50)

Which restrictions should be initially imposed on these sets of nonzero in-
tegers?
It is clear that in every such set all the integers (Nw, Nt) should be suffi-
ciently ≪close≫, because otherwise, for one and the same space-time point,
variations in the values of its different coordinates are associated with prin-
cipally different values of the energy E which are ≪far≫ from each other.
Note that the words ≪close≫ and ≪far≫ will be elucidated further in this
text.
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Thus, at the admittedly low energies (Low Energies) E ≪ Emax ∝ EP the
low-energy part (sublattice) LatS−T [LE] of LatS−T is as follows:

LatS−T [LE] = (Nw, Nt) ≡ (|Nx| ≫ 1, |Ny| ≫, |Nz| ≫ 1, |Nt| ≫ 1). (51)

At high energies (High Energies) E → Emax ∝ EP we, on the contrary, have
the sublattice LatS−T [HE] of LatS−T

LatS−T [HE] = (Nw, Nt) ≡ (|Nx| ≈ 1, |Ny| ≈ 1, |Nz| ≈ 1, |Nt| ≈ 1). (52)

II. Next let us define the lattice momentums-energies variation LatP−E

as a set to obtain
(px(Nx,p), py(Ny,p), pz(Nz,p), E(Nt)) in the nonrelativistic and ultrarelativis-
tic cases for all energies, and as a set to obtain
(Ex(Nx,E), Ey(Ny,E), Ez(Nz,E), E(Nt)) in the relativistic (but not ultrarel-
ativistic) case for low energies E ≪ EP , where all the components of the
above sets conform to the space coordinates (x, y, z) and time coordinate
t and are given by the corresponding formulas(32)–(44) from the previous
Section.
Note that, because of the suggestion made after formula (37) in the previous
Section, we can state that the foregoing sets exhaust all the collections of
momentums and energies possible for the lattice LatS−T .
From this it is inferred that, in analogy with point I of this Section, within
the known multiplicative constants, we have

LatP−E
.
= (

1

Nw − 1
1/4Nw

,
1

Nt − 1
1/4Nt

), (53)

where Nw ̸= 0, Nt ̸= 0-integers from (50). Similar to (51), we obtain the
low-energy (Low Energy) part or the sublattice LatP−E[LE] of LatP−E

LatP−E[LE] ≈ (
1

Nw

,
1

Nt

), |Nw| ≫ 1, |Nt| ≫ 1. (54)

In accordance with (52), the high-energy (High Energy) part (sublattice)
LatP−E[HE] of LatP−E takes the form

LatP−E[HE] ≈ (
1

Nw − 1
1/4Nw

,
1

Nt − 1
1/4Nt

), |Nw| → 1, |Nt| → 1. (55)

16



Considering Comment 1 from the previous Section, it should be noted
that, as currently the low energies E ≪ Emax ∝ EP are verified by numer-
ous experiments and thoroughly studied, the sublattice LatP−E[LE] (54) is
correctly defined and rigorously determined by the sublattice LatS−T [LE]
(51).
However, at high energies E → Emax ∝ EP we can’t be so confident that
the sublattice LatP−E[HE] may be defined more exactly.
Specifically, αa is obviously a small parameter. And, as demonstrated in
[49],[50], in the case of GUP we have the following:

[x⃗, p⃗] = i~(1 + a1α+ a2α
2 + ...). (56)

But, according to (15), |1/Na| =
√
αa, then, due to (56), the denominators

in the right-hand side of (55) may be also varied by adding the terms ∝
1/N2

w,∝ 1/N3
w...,∝ 1/N2

t ,∝ 1/N3
t ..., that is liable to influence the final result

for |Nw| → 1, |Nt| → 1.
The notions ≪close≫ and ≪far≫ for LatP−E will be completely determined
by the dual lattice LatS−T [LE] and by formulas (33)– (44).
It is important to note the following.
In the low-energy sublattice LatP−E[LE] all elements are varying
very smoothly enabling the approximation of a continuous theory.

4 Conclusion. Physical Theory in Terms of

Measurable Quantities

In [2] we have considered a simple example of gravity for the static spherically-
symmetric space with horizon, earlier treated by T. Padmanabhan (for ex-
ample, [48]). It has been demonstrated that, provided all variations (in-
crements) of space-time variables are given only in terms of measurable
quantities, at low energies the theory is close to the starting continuous
one due to |NL| ≫ 1 from formula (7).
More precisely, in [2] for the above example it has been shown that
... despite the absence of infinitesimal spatial-temporal incre-
ments, owing to the existence of lmin and the essential ”discrete-
ness” of a theory, this discreteness at low energies is not ”felt”,
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the theory being actually continuous. The indicated discreteness
is significant only in the case of high (Planck) energies.
A similar conclusion may be drawn for heuristic Markov’s Model [13].This
model already considered by the author in his previous paper [50] is treated
from the standpoint of the above-mentioned arguments. In [13], it is as-
sumed that ≪by the universal decree of nature a quantity of the material
density ϱ is always bounded by its upper value given by the expression that
is composed of fundamental constants≫ ([13], p.214):

ϱ ≤ ϱp =
c5

G2~
, (57)

with ϱp as ≪Planck’s density≫.
Then the quantity

℘ϱ = ϱ/ϱp ≤ 1 (58)

is the deformation parameter as it is used in [13] to construct the follow-
ing of Einstein’s equations deformation or ℘ϱ-deformation ([13],formula
(2)):

Rν
µ −

1

2
Rδνµ =

8πG

c4
T ν
µ (1− ℘2

ϱ)
n − Λ℘2n

ϱ δνµ, (59)

where n ≥ 1/2, T ν
µ–energy-momentum tensor, Λ– cosmological constant.

The case of the parameter ℘ϱ ≪ 1 or ϱ ≪ ϱp correlates with the classical
Einstein equation, and the case when ℘ϱ = 1 – with the de Sitter Universe.
In this way (59) may be considered as ℘ϱ-deformation of the General Rela-
tivity.
As shown in [50], ℘ϱ-of Einstein’s equations deformation (59) is nothing else
but α-deformation of GR for the parameter αl at x = l from (10).
If ϱ = ϱl is the average material density for the Universe of the characteristic
linear dimension l, i.e. of the volume V ∝ l3, we have

℘l,ϱ =
ϱl
ϱp

∝ α2
l = ωα2

l , (60)

where ω is some computable factor.
Then it is clear that αl-representation (59) is of the form

Rν
µ −

1

2
Rδνµ =

8πG

c4
T ν
µ (1− ω2α4

l )
n − Λω2nα4n

l δνµ, (61)
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or in the general form we have

Rν
µ −

1

2
Rδνµ =

8πG

c4
T ν
µ (αl)− Λ(αl)δ

ν
µ. (62)

But, as r.h.s. of (62) is dependent on αl of any value and particularly in
the case αl ≪ 1, i.e. at l ≫ lmin, l.h.s of (62) is also dependent on αl of any
value and (62) may be written as

Rν
µ(αl)−

1

2
R(αl)δ

ν
µ =

8πG

c4
T ν
µ (αl)− Λ(αl)δ

ν
µ. (63)

Thus, in this specific case we obtain the explicit dependence of GR on
the available energies E ∼ 1/l, that is insignificant at low energies or for
l ≫ lmin and, on the contrary, significant at high energies, l → lmin.

(M.1.1)Low energies. Nonmeasurable case. In this case at low ener-
gies, using formula (10) in the limit lmin = 0 for a = l, we get a continuous
theory coincident with the General Relativity.

(M.1.2)Low energies. Measurable case. In this case at low energies,
using formulas (10), (15) for lmin ̸= 0, for a = l (and hence for Nl ≫ 1), we
get a discrete theory which is a ≪nearly continuous theory≫, practi-
cally similar to the General Relativity with the slowly (smoothly) varying
parameter αl(t), where t – time.

So, due to low energies and momentums (E ≪ EP , p ≪ PPl), the ≪contin-
uous case≫ M.1.1) (General Relativity) and the ≪discrete case≫ M.1.2)
that is actually a ≪nearly continuous case≫.

(M.2)At high energies we consider the measurable case only. Then
it is clear that at high energies the parameter αl(t) is discrete and for the
limiting value of αl(t) = 1 we get a discrete series of equations of the form
(62)(or a single equation of this form met by a discrete series of solutions)
corresponding to αl(t) = 1; 1/4; 1/9; ...
As this takes place, T ν

µ (αl) ≈ 0, and in both cases M.1.2) and M.2) Λ(αl) is
not longer a cosmological constant, being a dynamical cosmological term.
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Note that because of formula (17) in Section 2,
√
αl(t) in cases (M.1.2)

and (M.2) is an element of the lattice LatP−E from Section 3. And in case
(M.1.2) it is an element of the sublattice LatP−E[LE], whereas case M.2) is
associated with the sublattice LatP−E[HE].

The main idea of the author is to demonstrate the existence of the cor-
rect limiting high-energy transition:

(M.1.2)
High Energy⇒ (5.2) (64)

and the nonexistence of the correct limiting high-energy transition:

(M.1.1)
High Energy⇒ (5.2). (65)

In the general case, based on the parameter αa from the formula (10) this
means that there exists the correct limiting high-energy transition:

lim
lmin ̸=0,|Na|≫1

αa
High Energy⇒ lim

lmin ̸=0,|Na|≈1
αa (66)

and there is no correct limiting high-energy transition

lim
lmin=0

αa
High Energy⇒ lim

lmin ̸=0,|Na|≈1
αa. (67)

However, the whole theoretical physics, in which presently at low energies
E ≪ EP the minimal length lmin, is not involved (i. e. lmin = 0), is framed
around the search for nonexistent limits (65) in a case of the heuristic
Markov’s Model [13], and also in the general case (67) in terms of the
parameter αa, respectively.

Thus, the main ”ideology” of the proposed approach is as follows:

Provided the minimal length lmin is involved, its existence must be taken
into consideration not only at high but also at low energies in a any Phys-
ical Theory (PH). This becomes apparent by rejection of the infinitesimal
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quantities associated with the spatial-temporal variations dxµ, .... In other
words, with the involvement of lmin, the ”continuous” (PH) must be re-
placed by a (still unframed) minimal-length theory that may be denoted as
PH lmin . In low energies E ≪ Emax ∝ EP their results (PH) and PH lmin

should be very close but, as regards their mathematical apparatus (instru-
ments), these theories are absolutely different.

Besides, PH lmin should offer a rather natural transition from high to low
energies

[NL ≈ 1] → [NL ≫ 1] (68)

and vice versa
[NL ≫ 1] → [NL ≈ 1], (69)

where NL – integer from formula (7) determining the characteristics scale
of the lengths L (energies E ∼ 1/L ∝ 1/NL).
In this way the results of [2] and this paper may be summarized as follows.

4.1.When in the theory the minimal length lmin ̸= 0 is actualized (involved)
at all the energy scales, a mathematical apparatus of this theory must be
changed considerably: no infinitesimal space-time variations (increments)
must be involved, the key role being played by the definitions of mea-
surability in principle and measurability in relation to the energy
(Definition 2.1 and Definition 2.2 from Section 2).

4.2.As this takes place the theory becomes discrete at all the energy scales
but, as shown by the example gravity for the static spherically-symmetric
space with horizon [48], considered in [2] and example for heuristic Markov’s
Model [13], considered in this Section, at low energies (far from the Planck
energies) the sought for theory must be very close in its results to the start-
ing continuous theory (with lmin = 0). In the process a real discreteness
is exhibited only at high energies which are close to the Planck energies.

4.3. By this approach the theory at low and high energies is associated
with a common single set of the parameters (NL from formulas (68), (69))
or with the dimensionless small parameters (1/NL =

√
αL) which are lack-

ing if at low energies the theory is continuous, i.e. when lmin = 0.
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The principal objective of my further studies is to develop for quantum
theory and gravity, within the scope of the considerations given in points
4.1–4.3, the corresponding discrete models (with lmin ̸= 0) for all the energy
scales and to meet the following requirements:

4.4.At low energies the models must, to a high accuracy, represent the re-
sults of the corresponding continuous theories.

4.5. The models should not have the problems of transition from low to
high energies and, specifically, the ultraviolet divergence problem.

4.6. By author’s opinion, the problem associated with points 4.4. and
4.5. is as follows.
4.6.1.It is interesting to know why, with the existing lmin ̸= 0, tmin ̸= 0
and discreteness of nature, at low energies E ≪ Emax ∝ EP the appara-
tus of mathematical analysis based on the use of infinitesimal space-time
quantities (dxµ,

∂φ
∂xµ

, and so on)is very efficient giving excellent results. The

answer is simple: in this case lmin and tmin are very far from the available
scale of L and t, the corresponding NL ≫ 1, Nt ≫ 1 being in general true
but insufficient. There is a need for rigorous calculations.

4.6.2. What is a dynamics of any physical quantity measureable with
respect to the energy E within the scope of the Definition 2.2 in Sec-
tion 2 when going from low to high energies? It seems that for solving of
this problem we have to correct the Definition 2.2 itself.

The author is hopeful that the correct construction of low-energy Gravlmin

close to GR allows for a more natural transition to quantum (Planck’s) grav-
ity. Besides, within the notion of measurability, gravity could be saved
from some odd solutions, from wormholes in particular.
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