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Abstract

In this work one proves that, around each point of a dense open set (regular
points), a real analytic or holomorphic bihamiltonian structure decomposes into
a product of a Kronecker bihamiltonian structure and a symplectic one if a
necessary condition on the characteristic polynomial of the symplectic factor
holds. Moreover we give an example of bihamiltonian structure for showing
that this result does not extend to the C'*°- category.

Thus a classical problem on the geometric theory of bihamiltonian structures

is solved at almost every point.

Introduction

Given two Poisson structures A, A; on a real (at least C°°) or complex (holo-
morphic) manifold M, following Magri [9] one will say that (A, A1) is a bihamil-
tonian structure (or that A, Ay are compatible) if A + A; is a Poisson structure
as well. Bihamiltonian structures are a useful tool for dealing with some dif-
ferential equations many of them with a physical meaning; besides they are
interesting from the geometric viewpoint too that will be the case here.

The algebraic classification of the pairs of bivectors on a finite dimensional
real or complex vector space was given by Gelfand and Zakharevich in [4].
Essentially each pair decomposes into the product of a Kronecker pair and a
symplectic one (see [, [I7]). Therefore it is natural to ask whether this de-
composition into a product Kronecker-symplectic holds, at least locally, for
bihamiltonian structures as well, which would be an important steep toward
their classification. One recalls that Kronecker bihamiltonian structures are in-
timately related to Veronese webs (see [I7] for an exposition of the local theory

of Veronese webs and its relationship with Kronecker bihamiltonian structures),



whereas the local classification of symplectic bihamiltonian structures, that is
of pairs of compatible symplectic forms, is known at almost every point (see
12, 13]).

The chief goal of this work is to show that, around every point of a dense
open set (regular points), a real analytic or holomorphic bihamiltonian structure
decomposes into a product Kronecker-symplectic if a necessary condition on the
characteristic polynomial of the symplectic factor holds (theorem 7.1). Moreover
we exhibit an example of C'*°- bihamiltonian structure for which this result fails.
These results have been annoced in [18] [19)].

As main tool for this purpose, to any bihamiltonian structure we associate a
new object called a Veronese flag, which generalizes the notion of Veronese web
introduced by Gelfand and Zakharevich in [4] (codimension one) and later on
by others authors [10} [16] (higher codimension). Roughly speaking the crucial
point is to show that, about each regular point, a Veronese flag is the product of
a Veronese web and a pair of compatible symplectic forms. For that one has to
prove, in a indirect way, the existence of solutions of some differential equations
not explicitly formulated. In the complex case they are always ordinary whereas
in some real cases we have to deal with systems of partial derivative equations,
which may contain the Lewy’s example [7] as sub-system; thus the result fails
in the C°° category. In the real analytic case a method of complexification
transforms the real problem on a complex one. Once the decomposition of
Veronese flags established, that of bihamiltonian structures follows from it with
a little extra-work.

The study of bihamiltonian structures at not regular points rather belongs
to the theory of singularities and, in spite of its great interest, will be not
considered here.

The present text consists of eight sections plus an appendix. In the first one
the Veronese flag, as quotient of a bihamiltonian structure, and the bihamil-
tonian structure over a (1, 1)-tensor field and a foliation, which gives a simple
method for constructing bihamiltonian structures, are introduced.

Sections 2, 3 and 4, this last one rather technical, are devoted to prove a
local decomposition theorem for Veronese flags with only one eigenvalue. In

section 5 real Veronese flags, without real eigenvalue, are dealt with by reducing



them to holomorphic ones through the analyticity.

In section 6 one shows that, locally, Veronese flags are the fibered product
of those with just one eigenvalue, and in section 7 we prove the theorem of local
decomposition for real analytic or holomorphic bihamiltonian structures. A C'*°
counter-example to this last result is given in section 8.

Finally, in the appendix one proves a well known result on (1, 1)-tensor fields

belonging to the folklore but without many accessible proofs.

1. The quotient of a bihamiltonian structure

As it well known to any Kronecker bihamiltonian structure one may associate
a Veronese web on the local quotient of the support manifold (see [3] 10}, [16]).
Here we will associate a new structure, called a Veronese flag and defined on a
local quotient of the support manifold also, to a very large class of bihamiltonian
structures.

From now on all structured considered will be real C*° or complex holomor-

phic unless another thing is stated.

1.1. The main construction.

On a manifold P consider a foliation F (that is an involutive distribution)
of positive codimension and a morphism of vector bundles ¢ : F — TP. If « is
a s-form on an open set B of P, then ¢*«a ( we will write o £ as well) can be
regarded as s-form with domain B on the leaves of F. Let G: TP — TP be a
prolongation of /; then (G*a)|r equals £*a. On the other hand if £*« is closed
on F for every closed 1-form « such that Kera O F, then the restriction of the
Nijenhuis torsion N¢ of G to F does not depend on the prolongation G of £ (see
lemma 2.2 of [I7]) and it will called the Nijenhuis torsion Ny of L.

Let A(p), p € P, be the largest ¢-invariant vector subspace of F(p).

We will say that the pair (F,¢) is a weak Veronese flag if the following three
conditions hold:

1) *« is closed on F for every closed 1-form « such that Kera D F,
2) Ny =0,
3) dim.A(p) does not depend on p.
First of all let us see that the distribution A = U,ep.A(p) is a foliation

when (F, /) is a weak Veronese flag. Given any point ¢ € P the morphism ¢ :



F(q) = T4 P projects in a morphism ¢, : F(q)/A(q) = T4P/A(g) without non-
zero @g-invariant vector subspace. Thus (F(q)/A(g), ¢q) defines an algebraic
Veronese web w, on T,P/A(q) of codimension > 1 by setting wy(t) = (¢4 +
tI)(F(q)/A(q)), such that w,(c0) = F(q)/A(q). Moreover, as it is well known, if
ai, ..., ak, k = dim(T4P/A(q)), are non-equal scalars then wg(a1)N...Nwq(ar) =
{03}, s0 A(q) = N, (¢ + a; 1) F(q))-

On the other hand, if Ker({ 4+ al) = {0} on an open set then (£ + al)F
is involutive on this set. For showing this last assertion we need the following

result transcription of lemma 2.1 of [17].

Lemma 1.1. Consider a 1-form p, a (1,1)- tensor field H and two vector
fields X, Y on a manifold, then (d(p o H))(HX,Y) + (d(p o H))(X,HY) =

Let G be a (local) prolongation of £. If u is a closed 1-form and Kerpy D F
then Ker(puo(G+al)™!) D (G+al)F and by lemma 1.1 applied to po(G+al)~!
and (G + al) one has d(p o (G +al) ™) ((G + al)F,(G +al)F) = —d(uo (G +
al))(F,F) — w(Na(F, F)) = 0 therefore d(po (G +al)™)|(GraryF = 0, whence
the involutivity of (G + al)F.

Since whichever p € P always there exist non-equal scalars aq, ..., ar such
that Ker((+a;I)(p) = {0}, j =1, ..., k, around this point A = N¥_, ((¢(+a;1)F);
so A is a foliation, called the azis of the flag (F,¥) from now on.

Let m : P — N be a local quotient of P by A; then w(t) = m.((¢ + tI)F)
is a foliation whose codimension equals that of F and @w = {w(t) | t € K} is
a Veronese web on N. Indeed, given ¢ € P and ¢ € N such that 7(q) = ¢
then w(q) = {w(q)(t) | t € K} is the algebraic Veronese web defined by
(F(q)/ Alqg),pq) when T,P/A(q) is identified to TzN; so @ is an algebraic
Veronese web at each point of N. Moreover w(oco) = m,(F), which is a foli-
ation; therefore by proposition 2.1 of [I7] the family @ is a Veronese web.

Thus if £ : F — TN, where F = 7,(F), is the morphism canonically associ-
ated to w then (F, /) is the projection of (F, /).

Lemma 1.2. Consider a weak Veronese flag (F,{) and for every integer

k>0 set g = trace(((,4)"). Then kdgri1 = (k+ 1)dgr o € on F.



Proof. As the problem is local one may extend ¢ to a flat diagonalizable
tensor field J and consider an extension G of £ projecting in J. Then ImNg C A
and trace(G*) = gi, + cx where ¢; € K. Since trace(H; o Hy) = trace(Hs o Hy)
for every vector field X one has: kd(trace(G*+1))(X) = k(k + 1)trace(G* o
LxG) = k(k + 1)trace(G¥=1 o LaxG) — k(k + 1)trace(Ng(X, )) = (k+
D)d(trace(G*))(GX) — k(k + Dtrace(Na(X, )).

But trace(Ng(X, ))=0when X € F because Ng(F,F) =0and Im(Ng(X, ))C
AcCF. O

Now let w,w; be a couple of 2-forms defined on A. One will say that
(F, ¢, w,wy) is a Veronese flag on P if:

1) (F,¢) is a weak Veronese flag.

2) w is symplectic on A, wy closed and w; = w(¢, ) [that is w1 (X,Y) =
w(lX,Y)].

3) Whenever f is a function on an open set of P such that ¢£*df is closed on F,

then Lx ¢ =0 where X is the w-hamiltonian of f along A.

Remark. Given, on a manifold, a foliation G, a tensor field 7 defined along
G and a G-foliate vector field X, then the Lie derivative Lx7T is defined as a
tensor field along G; moreover the flow of Xpreserves 7 if and only if Lx7 = 0.
In condition 3) above X is tangent to A C F so F-foliate. Obviously this
condition implies LXfwl =0.

When A = 0, Veronese web and Veronese flag are equivalent notions.

By technical reasons we need the following definition. Given py € P we will
say that (F, ¢, w,w) is a Veronese flag at point pg when 1) and 2) hold but 3)
is replaced by:

3’) for any function f defined on an open set pg € B C P such that £*df is
closed on F, then Lx ¢ =0 on an open set po € B’ C B.

Let us recall some facts about pairs of bivectors on real or complex vector
spaces (see [4] and section 1.2 of [I7]). Consider a pair of bivectors (A, A1) on
a finite dimensional vector space W. By definition the rank of (A, A1) is the
maximum of the ranks of (1 — t)\ + tA1, t € K, and one has rank(A\, A1) =
rank((1 —t)\+t\1) except for a finite number of scalars ¢, which is < W. A
pair (A, A1) is called mazimal when rank(\) = rank(\) = rank(X, A1). Given
an odd dimensional vector space U, the action of GL(U) on (A2U) x (A%U)



possesses one dense open orbit, whose elements are named Kronecker elementary
pairs; they are maximal and their rank equals dimU — 1. According to the
classification by Gelfand and Zakharevich (see [4] and propositions 1.4 and 1.5
of [I7]), every maximal pair decomposes into a product of Kronecker elementary
pairs (Uj, , 1), § = 1,...r, where r = corank(\, A1), and a symplectic pair
(U', 1/, p}); moreover these factors are unique up to isomorphism or change of
order.

A bihamiltonian structure on a manifold is called Kronecker when at each
point its algebraic model is a product of Kronecker elementary pairs only, and
symplectic if at every point its algebraic model only has the symplectic factor.

On a real or complex m-manifold M consider a bihamiltonian structure
(A, A1) such that:

1) (A, Ay) is maximal, that is every (A(p), A1(p)), p € M, is maximal,
2) the rank of (A, A1) and the dimension of the the symplectic factor at each
point are constant.

As before set r = corank(A, A1) and let 2m’ be the dimension of the sym-
plectic factor. Since r is the number of Kronecker elementary factors, m + r is
even and one may set m = 2m’ + 2n — r. Note that, at every point, 2n — r
equals the sum of the dimensions of the Kronecker elementary factors (warning
these last dimensions could depend on the point).

Our next aim is locally to associate a Veronese flag in dimension 2m’ +n to
(A,A1). For each p € M let A;(p) be the intersection of all vector subspaces
Im(A+tA1)(p), t € K, such that rank(A+tA1)(p) = m—r. From the algebraic
model follows that dim.A;(p) = m —n = 2m’ + n — r, which defines a foliation
A; called the (primary) azis of (A,A1). Indeed, given p € M one can chose
non-equal scalars t1, ..., t, such that rank(A+t;A1)(p) =m—r,j=1,..,n;in
particular N?_; I'm(A+t;A1)(p) = Ai(p). By continuity rank(A+t;A1) = m—r,
Jj=1,.,nand NJ_; Im(A +t;A1) = A; around p.

It is not hard to see that Ay C ImA; and dim(Im(A+tAy) + A1) =m—r,
t e K. Set w(t) = Im(A+tA)+ Ai, t € K; then w = {w(¢) | t € K} is a family
of foliations of codimension r whose limit at each point, when ¢ — oo, is ImA;.
Indeed, given p € M and ¢ty € K consider functions fi, ..., fxr and vector fields
X1, ooy Xn—r—k tangent to Az, all of them defined around p, such that {(A +



toA1)(df1,  )yees (A+toA)(dfie, ), X1y, Xon—r—i} at p is a basis of @(to)(p).
By continuity {(A + tA1)(df1, ), ..., (A + tA)(dfr, ), X1y, Xon—r—k} is a
basis of w(t)(q) when (g,t) is close to (p,tg) on M x K, so w is a family of
distributions. But the set D = {(¢,t) € M x K | rank(A + tA1)(q) = m —r}
is dense and open and, obviously, w is a family of foliations on D, therefore
w is a family of foliations on M x K. Finally note that A; C ImA; and
Im(A+tAy) = Im(sA+ A;) when s =t~ 1.

Let N be the local quotient of M by Ay, which is a n-dimensional manifold,
and mnx : M — N the canonical projection. Then w = {w(t) = (wn).w(t) |
t € K} is a Veronese web on N of codimension r. Indeed, the algebraic model
shows that, at each point of IV, the family of foliations w is an algebraic Veronese
web. On the other hand its limit when ¢ — oo equals (7 )«(ImA;), which is a
foliation too; so w is a Veronese web (see proposition 2.1 of [17]).

The Poisson structure A is given by a symplectic form @ defined on ImA
while A; is given by a symplectic form form @; on I'mA;. Therefore the re-
stricted 2-forms @4, and @y 4, are closed; besides (see proposition 1.4 of [17])
Ker(@a,) = Ker(@ya,) = A(A], ) = Ai1(A}, ) where Aj is the annihila-
tor of A; and dim(Ker(@j4,)) =n —r. Thus Ay = Ker(@)4,) is a foliation of
dimension n—r, which will be called the secondary azis of (A, A1), and Ay C A;.

Let P be the local quotient of M by As and wp : M — P the canonical
projection; then dimP = 2m’+n, A; projects into a 2m’-dimensional foliation A
and W) 4, , W1|4, in two symplectic forms w, w1 on A. Moreover A projects in the
Poisson structure defined by A and w, whereas A; does in the Poisson structure
defined by A and w;y. Let F be the r-codimensional foliation on P projection of
ImA;. Obviously the local quotient of P by A is identified in a natural way to
N and momwp = my where w : P — N is the canonical projection. In short we
have three of the four elements of a Veronese flag on P. Let us construct the
fourth one.

As A(A], ) = A1(A], )= Ay and A| contains KerA and KerA;, the

T"M ImA
A, As

and L%2% respectively, by setting A([a]) = [A(a, )] and Ai([o]) = [Ar(a, )].

to

Poisson structures A, A; give rise to two isomorphisms A, A; from

ImA

whose image equals v Pt

Thus £ = oA lisa monomorphism from AL o LM
1 Ao Az

By construction £ is an invariant of (A, A1) and, for every ¢ € M, there exists



a monomorphism ¢ : (7p).(ImA1(q)) = Ty, P with Imy = (7p).«(ImA(q))

p(q

that is the projection of g(q); moreover from the algebraic model follows that
wi(u,v) = wlpu,v), u,v € A(mrp(q)), and Ai(rpe*B, ) = AnpB, ), B €
T:P(Q)

since A; (B, ) =0 whenever 3(ImA;) = 0].

P [note that A; can be regarded as a linear map from (ImAq)* to TM

For proving that, in fact, 1 projects into a suitable morphism ¢ : F —
TP we will need some extra-work, essentially local, which allows us to do it
around the points of M. Therefore, given non-equal and non-vanishing scalars
ai,...,an—r,a we may assume the existence on N of coordinates (z1,...,2,),
closed 1-forms aj, ..., o and a (1,1)-tensor field J such that dz; o J = a;dz;,
j=1.,n—r,dejoJ =adzxj, j=n—r+1,..n, Ker(an A... Na,) = 0(c0),
dlagoJ)Nar A... Ao, =0, k=1,...,7r, and that

~(t) = (H?;lk(t +a;))t+a)* (g o (J+tD) ) A Aoy o (J+tI)7h)
represents @ (see theorem 2.1 of [17]).

By identifying 7 and 77, any k-form 7, defined on open set of N, can be
regarded as an A;-basic k-form on an open set of M. Thus dx1, ..., dx,, span A,
Kerdx; D Im(A—aj;A;) whence A(dz;, )=a;A(dz;, ),j=1,...,n—r and
Kerdx; D Im(A — alAy) whence A(dxj, )=alAi(dz;, ),j=n—r+1,..,n.

On the other hand from the algebraic model at each point follows that two
functions of (x1, ..., x,) are always in involution for both A and A;, and the fam-
ilies {dw1, ...,dxp_p,10J 1, ... a0 1} and {dx1, ..., dTp_r, a1, ..., . } ave lin-
early independent everywhere. Consequently around each p € M one may chose
functions Y1, ..., Yn—r, 21, -+, Zoms such that (1, ..., Tn, Y1, o, Yn—rs 21, -oy Z2ms) 18
a system of coordinates and A is given by aj 0 J 71, ..., o J~! and the closed
2-form Q = 2777 daj A dy; + S5 dzao1 A dzag.

Therefore Ay is spanned by 9/0y1,...,0/0yn—, since A(dz;, ) = 0/0y;,
j=1,.,n—r,and AlagoJ™ 1, )=0,k=1,..,r.

By the same reason around each point p € M there exist functions ¢/, ..., ¥/, _,.,
21y ey 2o SUCh that (X1, .oy Tn, Yls oo, Yio—ps 215 ey Zhms) 1S & system of coordi-
nates while A; is given by aq, ..., a, and the closed 2-form Q; = Z?;{ dz; N
dy; + SV ey g A d2.

But A(dzj, )= 0/0y; and A1(dx;, )= 0/0y; whence 9/0y; = a;0/dy;,

j=1,..,n—r. Soexpressing dy}, ..., dy,,_,., dz, ..., dz}, ., in terms of dz1, ..., dz,,



dy1, ooy dyn—r, dz1, ..., dzopm yields O = > 5ol ajdxj Ady; + Q) where Q7 does
not contain any term involving dyi, ..., dy,—, and its coefficient functions do not
depend on (Y1, ..., Yn—r)-

Now it is clear that ¢ projects in a partial tensor field ¢ : F — TP since
the flow of each 0/0y;, j = 1,...,n — 1, preserves {. For proving the remainder
properties of £ consider the product manifold M x K" endowed with coordi-
nates (L1, ..., Tn, Y1, s Yns 21, -y 22m ), Where (Yn—r41,...,yn) are the canonical
coordinates of K", and identify M to M x {0}. As before forms on N, or
on M, will be regarded, in the obvious way, as form on M x K" when neces-
sary. On this last manifold set ) = 2?21 dz; A dy; + Z?;l dzop_1 N dzop, and
Q=370 ajdeAdy;+3070_,, 1 adejAdy;+€. Then L%Q = L%(h =0,
j=1,...,n.

Let H and Qj be the (1, 1)-tensor field and the 2-form defined by 21 (X,Y") =
QHX,Y)and Qx(X,Y) = Q(H*X,Y), k € Z, respectively (obviously Qy = Q).
Then HO/0y; = a;0/0y;,j =1,...,n—r, HJ/0y; = a0/dy;, j =n—r+1,...,n,
and Q = Y07V abdey Ady; + Y0 dFday A dy; + Q) where @ does
not contain any term involving dy, ..., dy, and its coeflicient functions do not
depend on y = (Y1, ..., Yn)-

As (ixQ)oH=QX,H )=QHX, )= (X, ), onehasdzjoH =
ajdr; and dy; o H = a;dy; + Xj, j = 1,..,n —r; dv; o H = adz; and
dyj o H = ady; + A\j, j =n—1r+1,..,n, where Ay, ..., A, are functional combi-
nations of dz1, ..., dx,,dz, ..., dzo, whose coefficients do not depend on y. By
the same reason each dzp o H, k = 1,...,2m’, is a functional combination of
dxy,...,dxy,dz1,...,dzom and its coefficients do not depend on y.

Thus, if 71 : M x K" — M is the first projection, the tensor field H projects
in J on N through my o7 and in a tensor field G on P through np o m;. In
turns G projects in J via w: P — N.

On the other hand if 7 = Y27, fjda; then its Q;-hamiltonian Y"1 a; ! £;0/0y;+
S i1 @ f;0/y; equals the Q-hamiltonian of 70.J ! = Y7~V a; ! fidx; +
> jen_rq1 @ "fjdzj. Therefore the Qi-hamiltonians of ay,...,ay, or the Q-
hamiltonians of aq o J7', ..., a, o J71, define a r-dimensional foliation A4y on
M x K" transverse to the first factor, which is ;-symplecticly complete since

aq, ..., o are closed and -symplecticly complete because aq o J 1, .., a0 J 71



regarded on N define the foliation w(0) (recall that a foliation is called sym-

plecticly complete if its symplectic orthogonal is a foliation too; see [g]).
M x K"
Let 7’ : M x K™ — ———— the canonical projection in the local quotient.

M x K"
Then 7’ : M — ————— is a diffeomorphism. Moreover as Ajg is bi-symplecticly

Ao
complete, the Poisson structures Aq and Ag,, associated to §2 and £y respec-
M x K"

Ag
striction of of &y o J71, ..., p o J71 and © to M defines A and that of oy, ...,

M x K"
and Q; defines Ay, so ' : M — % transforms (A, A7) in (A, A]) as a
0

straightforward algebraic calculation at each point (p,0) shows [or apply lemma

1.4 of [17] to T(p,O)(M X KT)a AO(paO)a T(p,O) (M X {0})5 Q(p,O) and Ql(pao)]

tively, project in two Poisson structures A’ and A] on But the re-

This last construction only needs the properties of ag,...,a, and J on N
but not the compatibility of A, A, which may be expressed by means of €2, Q.

More exactly:

Proposition 1.1. The Poisson structures A, A1 are compatible if and only

if ar Ao ANa AdSQdy = 0.
For proving this proposition we need some auxiliary results.

Lemma 1.3. On an even dimensional manifold M consider a couple of 2-
forms B, B1 such that rank = dimM everywhere. Let K the (1,1)-tensor field
defined by B1 = B(K, ) and set B = B(K?, ). Then for any vector fields
X1, X5, X3 one has:

B(Nk (X1, X2), X3)+dB(K X1, KXz, X3) = —df2(X1, X2, X3)+dB1 (K X1, X2, X3)+
dp (X1, KXs, X3).

Proof. As the foregoing formula is tensorial, one may assume [X7, Xo] =
[X1, X3] = [X2, X3] = 0 without loss of generality. Then [recall that (K, )
sl K
dP2(X1, Xo, X3) = X18(K Xo, KX3) — XoB(K X1, KX3) + X38(K X1, KX5)
dp1(K X1, X2, X3) = (KX1)B(K X2, X3)—XoB(K X1, KX3)+X38(K X1, KX5)—
B(K[K X1, Xs], X5]) + B([K X1, X5, KX3)
dp1(X1, KX, X3) = X1 8(K X, KX3)— (K X2)3(K X1, X35)+X38(K X1, KX5)—
B(K[X1, KX, X5]) — B([K X2, X5, KX1).

Therefore the right side of the formula becomes:

10



(KXl)/B(KXQ,Xg)*(KXQ)ﬂ(KXl,X3)+Xgﬂ(KX1,KXQ)*/B(K[KXl,XQ]‘i’
K[X1, KXo], X3)+B([K X1, X3], KX2)—B([K X2, X3], KX1) = B(Nk (X1, X2), X3)+
dB(K X1, KXo, X3). O

Corollary 1.3.1. Assume 3, 31 symplectic and set 7 = B ((K+tI)~t, )=
BT +tK=YH=t ). Then
dr((K+t1)X1, (K+t1)Xa, (K+t1)X3) = tB(Ng (X1, X2), X3) = —tdBa(X1, X2, X3).

Remark. At each point (K+tI)~! and (I+tK~1)~! are linear combination
of powers of K, so 7 is a 2-form on its domain of definition.

Proof. From lemma 1.3 applied to 8, 5 and K follows dfBs = —8(Ng( , ), ).

On the other hand, applying this lemma to 7, 8 and K +¢I and taking into
account that N = Ng iy and 7((K +t1)?, ) = B1((K +tI), ) yields:
T(Ni (X1, X2), X3) + dr((K + tI) X1, (K + tI) X5, X3) = —dBa(X1, Xo, X3) =
B(Nk(X1,X2), X3).

Hence by replacing X5 by (K + tI) X3 follows:
dr((K + t) X1, (K + tI) X, (K + tI)X3) = B(Nk(X1,X2), (K + tI)X3) —
7(Ng (X1, X2), (K + tI)X3) = B(Ng (X1, X2), (K +tI — (I +tK~Y)"YK +
t1)Xs) = tB(Nk (X1, X2), X3) = —tdB2(X1, X2, X3). O

Let us prove proposition 1.1. Locally always there exists t # 0 such that

I+tH =1 is invertible. Since Ag+tAq, is the dual bivector of Q((I+tH 1)~ ),
M x K"

Ao
bivector A+¢A; is given by the restriction to M [always identified to M x {0}] of

QU+tH=Y)™Y, Yand ajo(H+tI)7Y, .. aio(H+tI)~". Indeed if Q1 (Y;, )=
aj, j = 1,...,r, then Y,..., Y, span Ay and Q((I +tH~1)7Y;, )= ((H +
tH™Y;, VY=ajo(H+tI)™ ', j=1,..,r.

On the other hand each o o (H + ¢I)~! is the pull-back of a; o (J + 1)~}

it projects in A’+tA] and 7’ : M — transforms A+tA; in A’ +¢A], the

and ag o (J +tI)71, ..., 0 (J + tI)~! define the foliation w(t). So oy o (H +
tI)~L, ... a0 (H+tI)~! define a foliation on M x K" and, by restriction, on M.
Thus A +tA; is a Poisson structure, that is (A, A1) bihamiltonian, if and only if
QI +tH-1)=t ) is closed modulo dyy,—yi1, ..., dyn, a1 o (H +t1)~1 ... ap 0
(H +tI)~! when 4,41 = ... = y,, = 0.

But the coefficients of H do not depend on y and (I +¢H~')719/dy; equals
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(1+ta;")710/0y; if j <n—rand (14+ta™")719/0y; if j > n—r+1, 50 Q((I +
tH=Y)™ ) = Y0 (Ita; ) T Ady+Y 07,y (Tta™ ) " da Ady;+9Q
where Q) do not contain any term involving dyi, ..., dy, and its coefficients do
not depend on y.

Therefore, since dQ((I +tH1)"t, ) =dQY, the pair (A, A;) is bihamilto-
nian if and only if (ayo (H+tI) " DA A(apo(HHD) " HANdQU(I+tH™ Y7L, ) =
0.

From corollary 1.3.1 applied to 2, Q; and H follows dQ((I+tH~Y) =t )((H+
tI) ,(H+tl) ,(H+tI) )= —tdQs, so the above condition holds if and only
if ag A ... A AdQe =0, which finishes the proof of proposition 1.1.

Lemma 1.4. If A, Ay are compatible then oy A ... Na. A Ng = 0.

Proof. Since N¢ is the projection of Ny it suffices to show that Ny (X1, Xo2)
is a functional combination of 9/dy1, ..., 0/0y, if X1, X2 € Ker(ag A ... A ).
By proposition 1.1, dQ2 = 377 A\j A a; so dQ2(X1, X, ) is a functional
combination of ay, ..., a;.

From lemma 1.3 applied to Q, ©; and H follows Q(Ngy(X1,X2), ) =
—dQ2(X1, X2, ), which implies that Q(Ngy (X1, X2), ) is a functional com-
bination of a1, ...c,.. Therefore Ny (X7, X2) has to be a functional combination

of 8/0y1,...,0/0y,. O
Lemma 1.5. Assume A, Ay compatible. Then G is a prolongation of £.

Proof. As before M is identified to M x {0} C M xK" and mpom = 7p on
M. First note that H(ImAy) C ImA modulo 9/0y,—r+1,...,0/0y, since on M
forms ay, ..., a, define ImA; and forms a;0J 7L, ..., .0 J 71 define ImA. On the
other hand if Y belongs to ImA modulo 0/0yi, ..., /0y, then A((iyQ)|rar, )
equals —Y modulo 9/dy1, ..., 0/Oyn.
Now consider X € ImAy; then Ay((ixQ1)ry, ) = —X. But ix =
igx§2 and HX belongs to ImA modulo 9/9y1,...,0/0yn, so A((ixQ1)ram, )
equals —HX modulo 9/dyy, ..., 0/8yy; that is to say (([X]) = [(m1).HX]. Fi-
nally projecting on P via 7p yields {((7wp),X) = (np), ((m),HX) = (mrpom), (HX) =
G((mpom),X)=G((mp),X). O

12



Let us see that (F,¢) is a weak Veronese flag. Since G projects in J, the
morphism ¢ : F — TP projects in £ = Jiw(o0) and LA C A. As w is a Veronese
web there is no f-invariant vector subspace of positive dimension and ¢*& is
closed on w(oo) for any closed 1-form @& such that Kerad D w(co). Pulling-
back via m : P — N shows that conditions 1) and 3) hold. Finally as F =
Ker(aq A ... ANay.) on P, lemmas 1.4 and 1.5 imply N, = 0.

When we pointed out the existence, at each, point of an algebraic projection
of £ it was showed that w; = w(¢, ) [more exactly that w1 = w(p, )]. There-
fore (F, £, w,wr) will be a Veronese flag if condition 3) of this second definition

holds.

Lemma 1.6. On an open set P’ of P consider functions f, f1, ..., fx, k >0,
such that oy A ... Ao A ... Ndfy A ... Ndf has no zero. Assume closed £*df along
the foliation Ker(oq A... Aoy Ao Adfy A ... Ndfy). Then (Lx £)(Ker(aq A ... A
ap A ANdft A ANdf))(q) is contained in the vector subspace of Ty P spanned
by X, (q), ..., X, (q) whenever g € P'.

Proof. Let )?f, )~(f1, ...,)N(fk be the -hamiltonians of f, fi,..., fi regarded
as functions on an open set of M x K". A straightforward calculation shows
that )~(f, )?fl, e )?fk project in Xy, Xy ,..., Xy, ; in particular LXfH projects in
Lx,G.

On M x K" one has oy A ... Ay Adft A ... Ndfy, Ad(df o H) = 0 since
a1 A Aap Adfi A A Ad(df oG) = 0 on P. Therefore ag A...Ac, Adf1 A...Adfi A
Lg, 0 = 0whence locally Lg, Q1 = 35_y \jAay+ 30, piAdfs. But Ly O =
Lg,(QH, ))=QLg H, )soQLg H, )=3_,\Aoy+30, wAdfi;
this implies that Lg H = >0 Xj @ aj + 30, X/ @ A + Yo, Vi @ dfi —
Zle )~(fi ® p; where X7 ..., X" are functional combination of 9/9y1, ..., 0/0yn.
Thus the projection on P of LXfH sends Ker(ag A... A A Adfr A Adf)(q)
into the vector subspace of T, P spanned by Xy, (¢), ..., Xy, (q). O

When k = 0 from lemma 1.6 follows the third condition of the definition of

Veronese flag. Thus (F,{,w,w1)is a Veronese flag.

1.2. The bihamiltonian structure over a (1,1)-tensor field and a

foliation.
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This second part contains a kind of inverse construction of that of sub-
section 1.1. Here, under some assumptions detailed later on, one will associate
a bihamiltonian structure defined on a quotient of the cotangent bundle to a
(1, 1)-tensor field and a foliation.

Let N be a n-manifold. Recall that on A"T*N it is defined a r-form R, called
the Liouville r-form, as follows: if vi,...,v, € T,(A"T*N) then R(vi,...,v,) =
(a1, .oy Txvy) where m 1 A"T*N — N is the canonical projection. In turn
) = dR will be named the Liouville (r + 1)-form of A"T*N. When r = 1,
that is on the cotangent bundle, the Liouville forms will be denoted p and w
respectively.

Given a skew-symmetric (1, r)-tensor field H on N, in other words a section
of TN @ A"T*N, let pg : T*N — A"T*N be the morphism of vector bundles
defined by ¢u(7) = 70 H, that is g (7)(v1,...,v.) = 7(H(v1,..., Hv,)). Set

w1 = (p;{Q

Lemma 1.7. On a real or complex vector space V' of dimension 2n, consider
a 2-form a of rank 2n and a (r+1)-form 3. Then there exists h € VQA"V* con-
necting a and B3, that is to say such that B(vy, ..., vr41) = a(h(vi, ..., V), Vrg1),
V1, eery Upp1 € V. Moreover h is unique and a(h(vi, ..., ), Upg1)
= a(vp, h(V1,y ooy V1, Upg1)), V1, ey Upp1 € V.

Conversely, given a 2-form a and h € VQA"V* such that a(h(vy,...,v.), Up41)
= a(p, h(V1, ooy Up—1,Vr41)), U1,y Upp1 € V, then setting B(vi,...,0r41) =

a(h(v1, .o, V), Upg1), V1, ..y Upp1 € V), defines a (r + 1)-form .

The foregoing lemma gives rise to a skew-symmetric (1,r)-tensor field H*
on T*N connecting w and (—1)"Ttw;, which will be called the prolongation of
H (to the cotangent bundle).

Given coordinates © = (x1,...xz,) on N let (z,y) = (21, ... Zn, Y1, .-, Yn) be
the associated coordinates on T*N. Denote by m(r) the set of all the r-multi-
index K : k1 < ... < k, whereas dxg will mean dxg, A ... A dzg, (as usual
elements of m(1) will be represented by small letters). On the other hand K (j),
where 1 < j < r and r > 2, will be the element of m(r — 1) obtained by deleting
the term k; of K. Assume that H = 3., 1) xem(r) hik (0/0z;) ® dzk, then:
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* a - a a
H* = > bk <a_:c]— ®drg —» (—1) a & i de(a>>
: .

jem(1),Kem(r vt
r+1
Ohjk@) O
B Z y‘] Z (71)a+b7— ® de(b)
jem(1),Kem(r+1) a,b=1 Oz, Oy,

Therefore one has:
(a) H* projects in H.
(b) Let & be the radial vector field on T'N* [in coordinates £ = 37, y;0/0y;]
then LeH* = 0.
(c) If vy, vo are vertical vectors then H*(vy,vg,...) = 0.
(d) Set M(X1,..., Xp41) = w(H*(X1, ..., Xs-), Xy41), which defines a (0,7 + 1)-
tensor field. Then A is a closed (r + 1)-form.

These four properties characterize the prolongation of H to TIN*. More

exactly:

Proposition 1.2. If a (1,7)-tensor field H' defined on TN* satisfies (a),
(b), (c) and (d), then H = H*.

Proof. The tensor field Hy = H' — H* satisfies (b), (c) and (d), and its
projection on N vanishes. So in coordinates (x,y):

0 0

Hy = Z fiak 5— @ dyq Ndxg + Z gL ®dxr.

, - 9y, , Ay,
J,a€m(1),K€m(r—1) jem(1),Lem(r)

But L¢H; = 0 therefore £ - fjox = 0 and & - g;1 = g;r. In other words, each

function f;,x only depend on = and g;r(z,0) = 0 for every j € m(1),L € m(r).

Let A1 be the closed (r 4+ 1)-form defined by Ay (X1, ..., X;41)
= w(H1(X1,...., X;), Xr41). Then if K is the multi-index k1 < ... < k.1 one
has [recall that w = Y77, dy; A d;]:
M (0/0yq,0/0zk,, ..., 0/ 0k, ,,0/0x;)(x,0)

= w(H1(9/0yq,0/0xk,, ..., 0/0xk, ,),0/0;)(x,0) = fjak (x), whereas
M (0/0x;,0/0zky, ..., 0/ 0k, _,,0/0yq)(x,0)
= w(H1(0/0x;,0/0xk,,...,0/ 0k, _,),0/0ya)(z,0) = 0.

Therefore fjox = 0 and A; = ZSEm(TJrl) hsdxs where each function hg
only depend on z since dA\; = 0, which implies L¢A; = 0. But Lew = w and
L¢Hy =050 LgAy = Ay, Thus Ay has to vanish and H; = 0. O
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Proposition 1.3. Given a (1,1)-tensor field H on N then the prolongation
of N equals Ng«.

Proof. By construction Ny« satisfies (a), (b) and (c) with respect to Ny.
Therefore it suffices to show that setting A(X7, X2, X3) = w(Np« (X1, X2), X3)
defines a closed 3-form, which immediately follows from lemma 1.3 applied to
w, wy and H*. O

Now suppose that H is an invertible (1, 1)-tensor field and G a r-codimensional
foliation both of them defined on N. Assume that:

1) awo H is closed on G whichever « is a closed 1-form such that Kera D G,
2) the restriction of Ny to G vanishes.

Then (H + tI)G, t € K, is a r-codimensional foliation on the open set A;
of all points of N where H + tI is invertible. Indeed, reason as in the first
paragraph after lemma 1.1.

Let Go be the w-orthogonal of the foliation 71 (HG) = {v € T(T*N) | msv €
HG}, which equals the w;-orthogonal of the foliation 7 *(G) = {v € T(T*N) |
mv € G} because wy = w(H*, ) and H* projects in H. Note that Gy is a
symplecticly complete foliation for w and w;. On the other hand the quotient
M of T*N by Gy is globally defined and there is a projection 7’ : M — N such
that 7’ o = 7, where 7 : T*N — M is the canonical projection. In fact, M can
be regarded as the quotient of T*N by a vector sub-bundle and 7’ : M — N as
its quotient vector bundle.

Since Gy is both w and w; symplecticly complete, the Poisson structures A,
and A, , respectively associated to w and w1, project in two Poisson structures

A and A on M.
Proposition 1.4. The pair (A, A1) is a bihamiltonian structure.

Proof. The proof is very similar to that of proposition 1.1. As the question
is local one may suppose G defined by closed 1-forms g, ..., a;; of course we
will regard o, ..., as forms on T*N by identifying o; and 7%y, j =1, ..., 7.
Let {Y1,...,Y,} the basis of Gy defined by w1(Y;, ) =a;, j =1,..,7. Given
a point p € T*N consider a scalar t # 0 and a small transversal P to G,
passing through this point, such that I + ¢t(H "‘)_1 is invertible around p [that
is (I +tH 1) (m(p)) is invertible], 7(P) is an open set of M and 7 : P — 7(P)
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a diffeomorphism. It suffices to prove that the bivector A + tA; is a Poisson
structure. Note that it is the projection of A, + tA,, which, in turns, is the
dual bivector of w((I 4+ t(H*)™")~!, ). But regarded on P by means of 7 :
P — 7(P), the bivector A 4+ tA; is given by the restriction to this transversal
of w((I +t(H*)™)™', ) and w((I +t(H*) )7'Y;, ) = aj o (H* + 1),
=1, ...

On the other hand each a; o (H* +¢I)~! is the pull-back of a; o (H +tI)~1,
and ajo(H+tI)7 Y, ..., .o (H+tI) =t define the foliation (H+tI)G. So ajo(H*+
tI) =L, ..., a0 (H*+tI)~! define a foliation on T*N and, by restriction, on P as
well. Thus A + ¢A; is a Poisson structure if and only if w((I + t(H*)"")~1, )
restricted to P is closed modulo oy o (H* +tI)~ !, ..., .0 (H* +tI)~t. Therefore
for finishing the proof it is enough to show that w((X+¢t(H*)™")~L, ) is closed
on T*N modulo oy o (H* +tI)~,...,c. o (H* +tI)~ L.

From corollary 1.3.1, applied to w, wy and H*, follows that

dw((I +tH ™D, N(H* +tI) [ (H*+tI) ,(H*+tI) )= —tdw,
where we = w((H*)?, ). So the above condition holds if aj A ... A, Adws = 0.

By lemma 1.3 applied to w, w; and H* one has dwy = —w(Ng-( , ), ).
Therefore dws = @1, where @1 = (pn,)*Q and Q is the Liouville 3-form of
A2T*N since, by proposition 1.3, the prolongation of Nz is Ng«.

On the other hand oy A...Aa, A(pn, )* R = 0, where R is the Liouville 2-form
of A2T*N, because a1 A ... A a, A Ng = 0 [calculate (¢, )* R on coordinates
(x,y) such that ag = da,..., o = da,]. Hence ag A... Ao, Ay =0, as Q =dR
and aq, ..., a, are closed, and finally ay A ... A, Adws = 0. O

Examples. 1) On N = K", n > 1, consider the foliation given by the closed
I-form a = 377 dx; and the (1,1)-tensor field H = 3°7_, hj(x;)(0/0x;) @ d;
where the functions hq, ..., h, never vanish. Then the associated bihamilto-
nian structure (A, A7), defined on M = T*(K")/Gp, has a symplectic factor
of positive dimension at a point p € M if and only if h(x’(p)) = 0 where
h = [Ti<j<k<n(hj — hi). In other words (A, A1) is Kronecker just on the open
set (hon') 1K — {0}).

2) Now on N = R"™ — {0}, n > 1, consider the foliation G defined by a =
2?21 :I:?j dxj, where a1, ..., a, are positive natural numbers, and the (1, 1)-tensor

field H = }°7_, j(0/0x;) ® dz;. Then the associated bihamiltonian structure
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(A, A1), defined on M = T*(R™ — {0})/Go, has non-trivial symplectic factor on
the closed set (hon')~1(0), where h = z; - - - x,,, and is Kronecker on the open
set (ho7)~Y(R — {0}).

Let ¢; be the flow of the vector field & = 377, (a; + 1) '2;0/9z;. As
Lea = o and LeH = 0, the foliation G and the (1, 1)-tensor field H project
in a foliation G and a (1,1)-tensor field H respectively, defined on the quotient
manifold N = (R"—{0})/G where G = {¢}, | k € Z}. Obviously G and H satisfy
1) and 2), which gives rise to a bihamiltonian structure on M = (T*N)/G.

Moreover N is diffecomorphic to St x S,

2. Some properties of Veronese flags

The aim of this section is to establish two results on Veronese flags useful
later on. Given a vector bundle E over a manifold P and a morphism H :
E — FE, we will say that H is 0-deformable if for any points p,q € P there
exists an isomorphism between their fibers ¢ : E(p) — E(gq) such that H(p) =
¢~ oH(q)op.

By technical reasons parameters are needed. Therefore consider a foliation
JF1 on a manifold P, a second foliation F C F; and a morphism ¢ : F — F,
such that (F,¥) is a weak Veronese flag along Fi; set r = dimF; — dimF. Let
A be the foliation of the largest ¢-invariant vector subspaces (as in section 1)
and 7 : P — N a local quotient of P by A. Then N is endowed with the
quotient foliations F'y = F1/A and F' = F/A. Unless another thing is stated,
the Lie and the exterior derivatives of tensor fields defined along a foliation,
for example F; on P or F'; on N, will be considered along this foliation. By
definition (a system of) coordinates along a m-dimensional foliation G will mean
a family of functions yi, ..., ym, on an open set of the support manifold, such
that dyi A, ..., Ady,, is a volume form along G; in this case {9/0y1, ...,0/0ym}
will be the dual basis of {dy1, ..., dym }-

Consider functions x1, ...z, on N, such that dziA...Adx,, is a volume form on
F'1, and functions a1, ..., a, constant along F'y. Set J = > ", a;(9/0x;) @dx;
where {0/0x1,...,0/0x,} is the dual basis of {dx1, ...,dz,}. One has:

Proposition 2.1. Let G : F; — F1 be a morphism which extends ¢ and

projects in J. Assume that:
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(a) €| 4 is 0-deformable, nilpotent and flat on each leaf of A,
(b) ai,...,a, never vanish,
then around every point of P there exists a morphism G' : Fi — JFi1, which

extends ¢ and projects in J, such that Ng: = 0.
From proposition 2.1 follows:

Lemma 2.1. Consider a morphism H : F — F where F is am-dimensional
foliation on a manifold P. Suppose that H is 0-deformable and only has one
eigenvalue. Ifﬁ is flat on each leaf of]? then, around every point of ]5, there ex-
ists a system of coordinates (21, ..., zm) along Fsuch that H = > k=1 @k (0/025)@

dzi, where aj, € K.

Proof. Assume m < dimP otherwise the result is obvious. Consider co-
ordinates (z,y) = (Z1,...,%n,Y1,...,Ym) defined on an open set B around a
point of ?, such that dzq1 = ... = dz, = 0 gives F. Let a be the eigenvalue
of ﬁ; by taking H — al instead H we may suppose a = 0. Set ¢ = H and
J =301 a;(0/0xj) @ dxj where ay, ...,a, € K—{0}. By means of coordinates
(x,y), J and H can be regarded too as tensor fields on B in an obvious way. Set
G=J+H. It easily seem that (]t" , Z) is a weak Veronese flag on B for which
A = F and the projected Veronese web is defined by J and dx, ..., dz,.

Let G’ be the (1, 1)-tensor field given by proposition 2.1. The characteristic
polynomial of both G and G” equals ([]j_, (t—a;))t"; even more Im([];_, (G’ —

a;1)) = Im(H?:1(G —a;I)) = F [here product means composition]. On the
other hand, as Ng = 0 and H?Zl(t —a;) and " are relatively prime, locally
B splits into a product following the foliations F = Im(ITj=(G" = a;1)) =
Ker((G")") and Im((G")™) = Ker([[;_,(G' — a;I)). Thus one may consider
coordinates (z,u) = (21, ..., Tn, U1, ..., Uy ) such that Fis given by dx; = ... =
dx, = 0 and Im((G")™) by duy = ... = du,, = 0 respectively. Moreover
G' = J+3 7 =1 [ (u)(9/0u;) @ duy, since Ngr» = 0. But H is flat on the leaves
of F and GT]T_ = H, so kazl fik(w)(0/0u;) ® duy, is flat and one can choose

functions z1, ..., z;, of u such that

D iner fik(u)(0/0u;) @ dw = 377y aji(9/02;) @ dzy, ajn € K. O
Lemma 2.2. Consider a m-dimensional foliation Fona manifold P and
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a morphism H:F— F. Suppose that H is 0-deformable and Nz = 0. Then
along f, given a function f such that Kerdf D KerH and d(dfoﬁ) =0, locally

there exists a function g such that dg o H= df .

Proof. As N =0 and His 0-deformable, I mH is a foliation contained in
F ; moreover there exists a vector sub-bundle E of Fanda morphism p : FoF
such that F = E @ KerH and (poI;')‘E = 1. Set a = df o p; then aoH = df .
From lemma 1.1 applied along F follows that da(ImH, ImH) = 0, that is O i
is closed. Therefore locally there is a function g such that (dg — a)‘ smi = 080
dgoH =aoH=df. O

One will prove proposition 2.1 by induction on m = dimA. If m = 0 the
result is obvious; now suppose the proposition true up to dimension m —1. Note
that in this case lemma 2.1 is also true if dimF < m — 1. As the problem is
local we may assume that F’ is defined by r closed 1-forms ay, ..., ;- along Fj,
that is J, aq, ..., o, describe the associated Veronese web. Functions z1,...,z,
and forms aj, ..., a, can be regarded as defined on P in the obvious way (via 7).
This allows us to consider coordinates (x,z) = (21, ..., Zn, 21, ..., 2m) along Fy
such that dzy = ... = dx,, = 0 defines A and, by means of (z, z), regard J and
H = {4 as (1,1)-tensor fields along F;. Moreover as KerG = Ker(H4) C A
is a foliation since H|4 is flat, coordinates (,z) can be chosen in such a way
that KerG is defined by dzy = ... = dz, = dz; = ... = dzpm—s = 0 where
s = dimKerG. Then G = J+ H + 377" ,(9/0z;) ® B; where every f; is a
functional combination of dxy, ..., dz, and H = 377" | 37,"° f5,.(0/02;) @ dz.

But when ¢ =m — s+ 1,...,m one has:

0
—Ng <azi’ ) :GoLa‘ZiG_LG(a‘;

i

)GZGOL z_G

]

= Df; 0 - 9] aB;
- ; D aJ;JikH (8—2]) ® dz, +;H (a_zj) ® aij
therefore 0fji/0z = 0, j,k =1,...,m —s, and a1 A ... A ay A (08;/0z;) = 0,
j=1,...,m—s,since a; A... Aa, ANg = 0. Observe that it is the same proving
proposition 2.1 for G or for G + Z;:1 X; ® aj where X7, ..., X, are vector fields
tangent to A. So, by choosing suitable vector fields X1, ..., X,., one may suppose
0B;/0z; =0, j =1,..,m— s, without loss of generality.
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In this case Im(L(y;s.,)G) C KerG, i = m — s + 1, which allows us to
project G in a (1,1)-tensor field G defined on the local quotient P of P by
KerG. Besides Fi, F, A and ¢ project in similar objects F;, F, A and ¢
on P, (2,21, ..., Zm—s) can be regarded as coordinates along Fi, and N is still
the quotient of P by F; in particular o, ..., a, may be seem as forms on P.
Obviously all these objects satisfy the hypothesis of proposition 2.1 and, by the
induction hypothesis, there exists G’ : F; — Fi, which extends ¢ and projects
in J, such that Ng = 0. Since ' =G = Y_"_, X; ® aj where X1, ..., X, are
tangent to A by considering G + Z;Zl X; ® a; instead of G, where Xy, ..., X,
are tangent to A and project in X7, ..., X, one may suppose Ng = 0 without
loss of generality.

The characteristic polynomial of G equals (]_[?:1 (t—a;))t™* since = dimA =
m—s. As H?Zl(t — a;) and ™~ are relatively prime and Ng = 0, locally F;
splits into a product of two foliations A = Im(H?Zl(C_v' —a;I)) = Ker(G™™)
and G = Im(G™*) = Ker([]}_,(G — a;I)). Thus we may consider coordi-
nates (U, Z,u) = (U1, .o, Vpy T1, o, Ty Ul oy Um—s) ON P such that Fi is defined
by dvi = ... = dvy =0, A by dvy = ... =dvy, =dzx1 = ... = dx, =0, and G by
dvy = ... =dvy = duy = ... = du,y,—s = 0; moreover

G =3271a;(0/09x)) @ dj + 372 fik(v,u)(9/0u;) @ duy.

Now from lemma 2.1, applied to coordinates (v,u) and the (1,1)-tensor
field D27 fik(v,u)(9/0u;) @ duy on A, follows the existence of coordinates
(v,Z1, ..., Zm—s) such that

iner iw(0,u)(8/0uy) @ duy = 37707 an(0/0z;) ® dzy, aji € K.

Thus dz; o G = ajdz;, j =1,...,n, and every dzj o G, k=1,..,m—s,is
a linear combination with constant coefficients of dzy, ..., dz,,_s. Consequently
if 21, ..., 20, 21, ..., Zm_s are regarded as functions on P, since G projects in G,
then dr;j o G = ajdx;, j = 1,...,n, and each dzj o G,k=1,..,m—s, is a linear
combination with constant coefficients of dzy,...,dZz,,_s. On the other hand, as
N, ) = 0, Kerdzy D Ker(H)|4) and d(dzy o H)|4 = 0, by lemma 2.2 there
exists a function gj such that (dgr o H)| a4 = (d2k) 4.

As Im((H|4)*) is the annihilator in A of Ker(H|4) and H|4 is nilpotent
and 0-deformable, around any point and among g1, ..., gm—s, We may choose

functions Z,_si1,..., Zm—s, where s —5 = dim(Im(H 4) N Ker(H4)), such
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that Ker(H a) = (Im(H4) N Ker(H 4)) ® Ker((dzi A ... AdZm—5), 4). Now if
Zm—541, ---» Zm are functions such that Kerdz; D Im(H|4), j =m—5+1,...,m
and dZ;,—z41 A ... AdZ,, restricted to Ker((dz; A ... A dZm_g)M) does not vanish
anywhere, then z = (Z1,..., Z,) is a system of coordinates on A and (x,%) a
system of coordinates on F;. By construction dzj o G, j = m — s+ 1,...,m,
equals a linear combination with constant coefficients of dzy,...,dZ,,_s plus a
functional combination of dz1, ..., dx,.

In short, naming zj, every function Zj allows us to suppose that in coordinates
(z,2)

G =3271a;(0/0x;) @ dx; + 3770, 330" ajn(0/0%) ® dzy

+ 3 n—s11(0/02;) ® B
where every aj; € K, each 3; is a functional combination of dzq,...,dz, and
{0/0zm—s+1,...,0/0zm} a basis of KerG.

Besides, by linearly rearranging z1, ..., 2., if necessary, one may suppose that
{0/02x} s, for some subset L of {1,...,m}, is a basis of G(A).

But now Ng(0/0zk, ) = Lg#/9:,)G — G o Lyja, G = Lgayoz,)G and
a1 A ... ANay A Ng = 0, therefore a3 A ... A A (08;/020) =0, A€ L, j =
m — s+ 1,...,m. Thus considering G + Z;:1 X; ® o instead of G, where
X1,..., X, are suitable functional combinations of 9/0zm—s+1,...,0/0zm, and
calling it G again allows us to suppose 93;/0zy =0, A€ L, j =m—s+1,..,.m
without loss of generality.

By lemma 1.1, dzj o N¢ = dzx o Ng =0, j = 1,..n, k = 1,...,m — s.
Therefore one has to study dz; o Ng when j = m — s 4+ 1,..m. Note that
each (8; 0 J 1) o Ng =0 [here J™t =" a7 '(9/0x;) ® dx; ], so dz; o Ng =
(dzj — BjoJ Y oNg, j =m—s+1,..m, and from lemma 1.1 applied to

—BjoJ 1t and G follows (d(dzj —Bjo J 1)) (G,G)+ (dzj — BjoJ 1)oNg =0
since (dz;—BjoJ ~1)oG and (dz;—B;0J ~1)oG? equal zero or a linear combination
with constant coefficients of dz1, ..., dzm—s.

Hence

250N = (@120 )(G.6) = (dulBres NI+ S0 (DB

kmerl
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where d, is the exterior derivative with respect to x = (21, ..., z,) only [recall
that {0/0zx} ¢, is a basis of G(A) and 9f3;/0zx = 0].

Therefore the equation ay A ... A ai A Ng = 0 is equivalent to the system

j=m-—s+1,...m
By the same reason if G’ = G+2J o s41(0/025)®B], where B, _ 1, ..., By,
are functional combinations of aq, ..., a,. whose coefficient functions do not de-
pend on z), A € L, the equation Ng = 0 is equivalent to the system

- O(B; +8)) 0 I
2.

((Be+B) o A o =0

do((B; + Bj) o J™h) +

(2) k=m—s+1

j=m-—s+1,...m

In other words we need to show that given forms S,,_s41..., B, satisfying
system (1), there exist forms 3], _,,1..., 3;, such that system (2) is satisfied too.

On N forms a; o J71,...,a, 0o J=1 define a foliation contained in Fj since
a1, ..., ap, J give rise to a Veronese web along Fj; moreover around every point
of N there exist indices 1 < k1 < ... < ky—r < n such that deg, A ... Adxg, A
(a0 J ) A...A (a0 J 1) does not vanish anywhere. As the order of functions
21, ..., Tp, is arbitrary, we may assume dry A...Adxp, . AlagoJ )AL A (a0 7T
non-singular and consider coordinates y = (y1, ..., yn) along F; such that y; =
T1yeees Y = Tp—p and Ker(dyn_ry1 A ... Ady,) = Ker((ag o J7Y) Ao A (a0
J1); thus ag o J 71, ..., 0 J~1 and each B o J~1 are functional combination
of dyn—r41, ..., dyn; in the first case the coefficients only depend on y and in the
second one they do not depend on z), A € L. Moreover one can assume that
every 30 J 7! is only combination of dyi, ..., dy,_,; indeed if B0 J = =~; + p;
with v; Adyi A...Adyp—r = 0 and p; Adyn—r+1 A... Adyy, = 0, it suffices replacing
Gby G-, 1(0/025) @ (pjoJ).

On the other hand, linearly rearranging coordinates z allows us to suppose

that {1,...,m—s}—L={1,..,m'} and {m—s+1,....m}—L={m—s+1,...,m—
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s+ s} where m’ <m —s and s’ < s (here m’ = 0 means {1,...,m —s} C L and
s’ =0 that {m — s+ 1,...,m} C L). Now on P take a system of coordinates
(U, Yy Uy W) = (V1 ey Varm?s YLy «evs Yy Uy weey Ugy W1y weey Win—mr—s ) SUCh that dvy =
. =dv, =0 defines F1, voyr = 25, k=1,...,m/, uj = zZp—stj, =1, ..., 5, and
Wk = Zmigk, k= 1,.,m—m/ —s. Set 7j = B_stjoJ L, j=1,..,s Since
Bm—s+j and ﬂ;n_sﬂ do not depend on z), A € L, our problem may be stated
in coordinates (v,y,u), that is on a manifold P’ of dimension a +m’ + s and
along the foliation G’ defined by dv; = ... = dvgm = 0, as follows:

Given 1-forms 7; = >} _| fikdyk, j = 1,..., s, where functions fj; do not
depend on ug/41,...,us such that

u oT; .
(3) d(y1,---,yn,7r)7—j + ZTi A 8u]- =0,j=1,..s,
i=1 v

find forms 7; = 7 + 30—, .. firdyr, j = 1,..., s, where each fj). does not
depend on ug 41, ..., us such that
S a?]

@) dyF+Y TiAaE=0,j=1,.,s,

W
i=1 Ou;

(here dy,....y,_,) and d, are the exterior derivative in (yi,...,yn—r) Or y =

(y1, ..., yn) respectively).
Lemma 2.3. Forms 71, ...,7s always exist locally.

Proof. As a straightforward calculation shows, system (3) is equivalent to
say that vector fields X} = 0/dyx + 2;21 fik0/0u;, k =1,...,n —r, commute
among them.

An analogous statement holds for system (4).

In turn, functions f;, donot depend on ug 41, ..., us if and only if X, ..., X5,
commute with vector fields Y1, ..., Ys_s, where each Y; = 0/0us 4.

Since by hypothesis X1, ..., X;,—, Y1, ..., Ys_y commute and are linearly in-
dependent everywhere, along G’ and around every point, there exist coordinates
Ui,y Unts such that vy = y1,.., Uy = Yn, Xp = 0/0vk, k= 1,...,n —r, and

- /
Y:=0/0vntsyi,i=1,..,5—5.
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Set Xy, = 0/0vy, when k = n—r+1,...,n. Then in coordinates (y, u) one has
Xy = 0/0yx + X251 fr0/Ouj, k =n —r+1,...,n. Moreover by construction
X1, X, Y1, ..., Yy commute among them, so forms 7, = >.7_, firdyr =
T + ZZ:THTH fikdyk, 7 =1,..., s, satisfy system (4) and functions f;; do not
depend on ug/ 41, ..., us. O

Now proposition 2.1 is proved.

The next step will be extending this result to Veronese flags. Therefore
let w,w; be a symplectic form and a closed 2-form, respectively, defined on
A. Suppose that (F,¢,w,w1) is a Veronese flag on P or at some point of P
both along Fj [in the second case by definition condition 3’) has to hold on
neighbourhoods on P of this point]. Set dim.4 = 2m (now the dimension of A

has to be even since w is symplectic).

Theorem 2.1. Let G : F1 — F1 be a morphism which extends ¢ and projects
in J. Assume that:

™ where

(a) €] 4 is 0-deformable and its characteristic polynomial equals (t —a)?
a €K,
(b) functions ay, ..., a, never take the value a,
then around every point of P such that (F,l,w,w1) is a Veronese flag at it
there exist a morphism G' : Fy — F1, which extends £ and projects in J, and
functions z1, ..., zam such that (1, ..., Tn, 21, ..., Z2am) 18 a system of coordinates
along F1,

G =" a;(0/0x;) ® duj + Yoy ak(0/02;) ® dz,
where every ajr € K, and w, w1 are expressed with constant coefficients relative

to (dzl)M, vy (dz2m)|,4-

Again, one will prove theorem 2.1 by induction on m. If m = 0 the result is
obvious; now suppose the theorem true up to m — 1. Note that we may assume
¢ 4 nilpotent by considering G' — al, £ — al and w; — aw instead of G, £ and w;.
Then KerG = Kerw, C A; so KerG is a foliation since wy is closed. Consider
coordinates (z, z) = (21, ..., Tn, 21, ---, 22m ) along F; such that dzq = ... = dx,, =
dz1 = ... = dzg(m—s) = 0 defines KerG, where dimKerG = 2s. Reasoning as in
the proof of proposition 2.1 allows us to assume G projectable in a tensor field

G, defined on the local quotient P of P by KerG, and consider the objects Fi,
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F, A and /¢ with the obvious difference that now dim.A is even. Thus (F,.A) is
a weak Veronese flag along F;.

On the other hand w; projects in a symplectic form @ on A. By lemma
1.3 the 2-form wa(X,Y) = w(¢(X,Y) is closed and Kerws D Kerw, = KerG;
therefore it projects in a closed 2-form @; on A such that @; = @(f, ), and
(F,0,@,@) will be a Veronese flag if we are able to check the third condition
of the definition of this notion.

Let h be a function on an open set of P such that £*dh is a closed form on
F, that is such that ay A ... A o, A (d(dh o G)) = 0. Regarded on P one has
dh(KerG) =0and aj A...Aa, A(d(dhoG)) = 0. In particular, locally and along
F1, dh = oG for some 1-form 3 and, by lemma 1.1, one has d3(G, G) +d(dho
G)+4 o Ng =0. Hence, as a1 A ... Na, ANg = a1 A ... Aay A (d(dh o G)) = 0,
results ay A ... Ao AdB(G,G) = 0, that is (ap o J ) A... A (a0 T~ AdB = 0.

But a; o J7L, ..., o J7! define a foliation, therefore 3 = dg modulo a; o
J7Y ... a, 0 J7t for some function g. Thus a3 A ... A a. A (dg o G — dh) = 0,
whence ag A ... Ao A (d(dg o G)) = 0; in other words ¢*dg is closed on F.

Let X be the w-hamiltonian of g. From wi(X, ) =w(GX, )= —(dgo
G)a4 = —dh) 4 follows that the projection X of X onP is the @-hamiltonian of
h. But Lx! = 0 since (F,{,w,w;) is a Veronese flag, so L¢f = 0; that is to say
(F,0,@,@) is a Veronese flag too (everywhere or at some point).

By the induction hypothesis, there exist a morphism G’ : F; — F; extending
¢ and projecting in J and functions 21, ..., Za(m—s), Such that (z1, ..., 2n, 21, ..., Z2(m—s))
is a system of coordinates along F; in which G’, @ and @; are written with con-
stant coefficients. But G/ — G = > i1 X, ® aj where Xi, ..., X, are tangent to
A. Therefore considering G + Z;Zl )_(j ® a; instead of G, where X1, ..., X, are
tangent to A and project in X1, ..., X,., allows us to suppose that G projects in
G'; that is to say G’ = G.

On the other hand, proceeding as in the proof of proposition 2.1 shows the
existence of vector fields )~(1, - )N(T, tangent to KerG, such that the Nijenhuis
torsion of G + Z;:1 X j ® a; vanishes; in other words one may assume Ng =
0. Indeed, see (F,f), (F,f) as weak Veronese flags and G, G like suitable
prolongations of 7, ¢ respectively.

In short, only case to consider: in coordinates (21, ..., Zn, 21, -+; 22(m—s)) G,
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@, w are written with constant coefficients following theorem 2.1 and Ng = 0.
Regarded like function on P every dzp o G, k = 1,...,2(m — s), is a linear
combination with constant coefficients of dz1, ....dza(,—s); moreover dx; o G =
ajdrj, j =1,...,n. By lemma 2.2 there exist functions g1, ..., g2(m—s) such that

dgr o G =dzi, k=1,...,2(m — s).

Since G| 4 = {| 4 is O-deformable and nilpotent, around any point and among
g1, -5 92(m—s), One can choose functions Za(,,—s)41; -+, Z2(m—s), Where 2(s—3) =
dim(G(A) N Ker@), such that

KerG = (G(A) N KerG) @ Ker((dz1 A ... N dzam—s) N dZa(m—s)41 N ... A dzg(m_g))M).
Now if Za(m—35)41, -+, Z2m are functions such that Kerdz; > ImG, j = 2(m —
5)+1,...,2m, and dZy(pm—35)4+1 A ... A dZay, restricted to

Ker((dz1 A ... Ndzgm—s) N dZam—s)41 N ... A dig(m_g))M)
does not vanish anywhere, then (z1,...25, 21, .+, 22(m—s)s Z2(m—s)+1, --+» Z2m) 15 &
system of coordinates along F1. By construction dz;0G, j = 2(m—s)+1,...,2m,
equals a linear combination with constant coefficients of dz1, ..., dza(;,,—s). Thus

G =0 a;(0/0z;) @ day + 30 SR 75y, @ day,
where each Zj;, is a linear combination with constant coefficients of
0/0z1,...,0/0%(m—s), 0/ 0Z2(m—s)41, -y O/ VZom.

Moreover, in these coordinates, w; and wy are written with constant coeffi-
cients since @ and @; are in coordinates (21, ..., Tn, 21, -+s 22(m—s))-

Let X} be the w-hamiltonian of zx, k = 1,...2(m —s), or Zx, k = 2(m —s) +
1,...2m. Then wy (X, )=w(GXk, ) equals —dz;oG or —dz; o G; in both
cases a linear combination with constant coefficients of dz1, ..., dzy(m—s) because
w1 projects in @. In other words

X = syt Jei0/0Zi + 00 ) b0/ 02
where each by; € K.

In particular {z;, 2 }w, .k =1, ...,2(m—s), and {z;, Zk }w, j = 1, ...,2(m—s),
k=2(m—s)+1,..,2m, are constant [here { , }, and A, are respectively
the Poisson structure and the dual bivector on A associated to w].

On the other hand, everywhere or close to some point, Lx, ¢ = 0 since dz oG,
or dz;oG, is closed. Hence ajA...Aa,ALx, G = 0. A straightforward calculation
shows that Lx, G = — ng(mfsm(a/az) ® (dfrioG), s0 Ay A ... Aty A (dy fri ©

J) = 0 where d, is the exterior derivative with respect to z = (z1,...,Zn);
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that is (a1 o JT) A o A o JTY Adefrs = 0, i = 2(m — 8) + 1,...,2m.
In other words functions fy; are basic for the foliation G” C F; defined by
apoJ ool da, o d2om—s) dZa(m—s) 15 - AZ2m.

But {zx, Z;i}» = fri, therefore A, and by consequence w are written with

coefficients which are G”'-basic functions.

Lemma 2.3. Along a foliation F of dimension 2m defined on a manifold ﬁ,
consider a symplectic form A and functions f1, ..., fr such that dfy A ... Ndfy has
no zeros. Assume constant every function {f;, f;}, 4,5 =1, ..., k. Then locally
there are functions g1, ..., gom—k such that (fi, ..., fx, g1, G2im—k) S a system

of coordinates along F and X is written with constant coefficients relative to it.

Proof. It is just one of the version of Darboux theorem. [J

Pulling-back the functions given by lemma 2.3, applied to the projections
on the local quotient P/G" of A, 21, ..., zo(m—s) and w, yields G”-basic functions
g1, .-, g2s such that (z1,...,%n, 21, ..., Z2(m—s), 91, -+, §2s) is a system of coordi-
nates along F;. In this system w and w; are written with constant coefficients
[recall that wy is a constant linear combination of dz; Adzy, 1 < j <k <2(m—
s)]; by consequence the restriction of G to A is written with constant coefficients
too and every (dg;oG)|4 is a constant linear combination of dz1 4, ..., d2a(mm—s) A
Therefore in coordinates (21, ..., Tn, 21, -+ 22(m—s)s Z2(m—s)+1, --+» 22m) €ach dg; o
G equals d,g; o J plus a constant linear combination of dz1, ..., dzo(m—s)-

But g; is G"-basic, so d,g; o J is a functional combination of a1, ..., .. Thus
in coordinates (z,2) = (21, ..., Tn, 21, ..., Z2m) Where 29,1 = gi, @ = 1, ..., 25,
one has:

G =Y a;(0/0x;) © daj + 2 SR ¢1(0/025) © dz,
+ 307 (8 0z9(m—s)+i) @ Bi

where every ¢;r € Kand oy Ao Ao A3 =0,1=1,...,2s.
Now it suffices to set G’ = G — Zfil(a/azg(m,sm) ® B; for finishing the
proof of theorem 2.1.

3. The case of an eigenvalue function
In the foregoing section one has studied Veronese flags with parameters when

¢ 4 is 0-deformable and nilpotent (theorem 2.1). Here we will consider Veronese
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flags for more general tensor field £) 4, which will be the main tool for establishing
the splitting theorem of bihamiltonian structures.

One starts introducing the notion of regular open set. Let Kp[t] be the
polynomial algebra in one variable over the ring of differentiable functions on
a manifold P. A polynomial ¢ € Kplt] is said irreducible if it is irreducible at
every point of P. Two polynomials ¢,1 € Kplt] are called relatively prime if
they are at each point. Given a vector bundle E over P, of dimension m, and
a morphism H : F — FE its characteristic polynomial ¢ = Z;‘%:o h;t? belongs to
Kp(t]. Set g; = trace(H7). Since hg, ..., hm—1 are, up to sign, the elementary
symmetric polynomials of the roots and each g; the sum of their j-th powers,
every function g; may be expressed as a rational polynomial of hy, ..., hiz—1, and
each function h; like a rational polynomial of g1, ..., 9. In particular g; when
j > m + 1 equals a rational polynomial of g1, ..., gm.

One will say that H : E — E has constant algebraic type if there exist
relatively prime irreducible polynomials @1, ..., s € Kp[t] and positive integers
ajk, j =1,...,m, k =1, ..., 5, such that at each point p € P the family {¢,’* (p)},
j=1,.umk k=1,..,s, is that of elementary divisors of H(p). Let f1,..., fa
be the family of all significant coefficient functions of ¢1, ..., s € Kp[t]; that is
f when ¢ =t + f and f,g if @ = t? + ft +g. Obviously hg, ..., hs—1, and
by consequence each g;, are rational polynomials of fi, ..., fz. Conversely, for
every point of P there exist analytic functions Ag(u1, ..., u5) such that close to
this point fr = A\k(91,..,97), kK = 1,...,7 (note that n < m). Indeed, assume
the degree of every ¢y equals one (otherwise complexify E and H); then n = s
and it suffices to remark that the polynomial map F' : K® — K* defined by
F(2) = (3pe1 Drzks 2opey Dk27, oo 2opey bi2p) where each by, = Y775 agy, is
a local diffeomorphism on the open set {z € K® | z; # zifj # k} since the
determinant of its Jacobian matrix equals ¢ [ [, o; ;< (2 —2x) with c € K—{0}.

Let By be the set of all points such that around them H has constant
algebraic type.

Lemma 3.1. The set By is open and dense.

Proof. One may suppose K = C by complexifying F and H if necessary.
Given p € P let a be a root of ¢(p) of multiplicity b. Then if € > 0 is small
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enough and ¢ close to p, the sum of multiplicities of the roots of ¢(q) belonging
to the disk D.(a) equals b; indeed, this sum is the degree of the map ¢ € S* —
o(q)(a+ee’™) || o(q)(a+ece?) || ~te S1. Therefore the number of different roots
of ¢ is locally constant on a dense open set P’ of P.

Now assume p € P’. Then there exist ¢ > 0 and an open set p € B C P’
such that ¢(q), ¢ € B, has just one root on D.(a) and its multiplicity is b.
Let A be the (b — 1)-derivative of ¢ with respect to t. Then (O\/0t)(p,a) # 0
and by the implicit function theorem applied to A and 0 € C, shrinking B if
necessary, there is a differentiable (holomorphic or C*°) function f : B — C
such that —f(g), ¢ € B, is the root of ¢(q) on D.(a). Thus ¢ = [[;_, (t + fi)*
around p where fi, ..., fs are differentiable functions, b1, ..., bs integers > 1 and
[1i<j<r<s(fi — fr) never vanishes.

Finally, remark that the functions dimKer((H + fxI)?) are locally decreas-
ing, so locally constant on a dense open set B’ ¢ B. [

Suppose that E is a foliation and Ny = 0; then jdg;+1 = (j + 1)dg; o
H. Indeed, consider (E,H) as a weak Veronese flag (if codimE = 0 regard
the problem on K x P in the obvious way) and apply lemma 1.2. Therefore
ﬂjﬁlleerdgj (p) = ﬂ;-%:_OlKerdhj (p) is a H-invariant vector subspace of T,P
because each g;, j > m + 1, is a function of g1, ..., gm.

One will be say that a point p € P is regular if there exists an open neigh-
bourhood B of p such that:

(1) H has constant algebraic type on B,

(2) ﬂ;’llK erdg;, restricted to B, is a vector sub-bundle of £ and therefore a
foliation,

(3) H restricted to ﬂjﬁ;lK erdg; has constant algebraic type on B.

By lemma 3.1, applied to H and its restriction to ﬂ;’-llKerdgj, the set of all
regular points is a dense open set P, called the reqular open set.

To remark that if H has constant algebraic type on an open set D, then
ﬂjﬁlleerdgj = ﬂ;‘:lKerdfj on it where fi,..., f7 are the significant coefficient
functions of 1, ..., ps.

Consider a Veronese flag (F, ¢,w,w1) on a manifold P or at some point of P.
Let A be the foliation of the largest ¢-invariant vector subspace (as in section 1)

and 7 : P — N a local quotient of P by A. Set codimF = r, dimA = 2m and
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dimN = n. Then N is endowed with a r-codimensional Veronese web whose
limit when ¢ — oo equals the quotient foliation F' = F/A; moreover £ projects
in the morphism ¢’ associated to this Veronese web.

Suppose that ¢ = (t— f)?™ is the characteristic polynomial of ¢ |4; then from
lemma 1.2 follows df o £ = fdf on F. Now assume that df|4 never vanishes.
Let X be the w-hamiltonian of f; then Lx ¢ = 0 and /(Xy) = fX since
df ol = fdf on F. Denoted by P and @ : P — P, respectively, the local
quotient of P by Xy and its canonical projection. Consider coordinates (y,z) =
(Y1, -y Yny 21, -+, Z2m) on P such that dy; = ... = dy,, = 0 defines F, dy; = ... =
dy, = 0 the foliation A, f = 2oy, and Xy = —0/9z2m—1. Thus (y1,...,yn) can
be regarded as coordinates on N, (Y1, ..., Yn, 21, -+, Z22m—2, Z2m ) as coordinates on
P and f as a function on this last manifold. Now it is obvious that Kerdf and
F N Kerdf project in two foliations F; and F on P, respectively, and L\ FrKerdf
projects in a morphism £ : F — Fj; moreover (F,/) is a weak Veronese flag
along F; (locally any extension of £ can be lifted to an extension of £), whose
foliation A of the largest /-invariant vector subspaces equals the projection of
AN Kerdf, P/A is identified to N x B, where B is an open neighbourhood
of f(p) on K, and F; projects in the foliation of N x B by the first factor.
Moreover, the Veronese web induced by (F,¢) on each leaf N x {b} of this last
foliation equals the pull-back, by the first projection 71 : N x B — N, of that
induced by (F,?).

On the other hand, since ix,w = —dfj4 and ix,w1 = —(df 0 £)| 4 = —fdf|4,
the vector field X s belongs to Ker(w|ankerdr) and Ker(wijankerar)s SO WjAnKerdf
projects in a symplectic form & and w1 4ngergs in @ closed 2-form w1, both on
A; besides @1 = @(f, ). The family (F,¢,&,©;) will be called the symplec-
tic reduction of (F,¢,w,w1). For proving that this family is a Veronese flag it
suffices to check the third condition of the definition.

On N consider coordinates (21, ...,z,) and a (1,1)-tensor field

J =327_1a;(0/0x;) ® dxj where ai, ..., ay are scalars.

Theorem 3.1. Let G be a (1,1)-tensor field, which extends ¢ and projects
in J, defined around a point p of P such that (F,{,w,w1) is a Veronese flag at
this point. Assume that:

m

(a) the characteristic polynomial of £, 4 equals (t — f)*™ where df| 4 never van-
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ishes,
(b) the function [ does not take the values a, ..., an,
(c) p is a reqular point of £| 4,
(d) the symplectic reduction of (F,{,w,w1) is a Veronese flag at T(p),
then around p there exist a (1,1)-tensor field G' extending ¢ and projecting in
J and functions z1, ..., zam such that (x,z) = (X1, ..., Tn, 21, ..., Zom) 1S @ system
of coordinates,
G =1 a;(0/0w;) @ duj + 75 hi(2)(0/02) @ dz
and w,wy are expressed relative to dzq| 4, ..., dzaem 4 with coefficient functions

only depending on z.

Lets us prove theorem 3.1. Consider closed 1-forms ay, ..., o, defining F; by
modifying the order of variables z1,...,x, if necessary one may suppose that
dri N ... NdTp—_r ANy A ... A a—r has no zeros. Since df ol = fdf on F, one has
df oG = fdf + Z;:1 hja;. Now consider a vector field Y € A such that Y f =1
and set Gy = G7Y®(Z;:1 hjc;); then df oGy = fdf, which allows us to assume
df o G = fdf by considering G; instead of G and calling it G. On the other
hand from d(df o G) = 0 follows Lx, ¢ =0, that is ay A ... N, A Lx,G =0,
whence Lx,G = > ' X; ® aj; moreover Xi,..X, € AN Kerdf. Indeed,
0 = Lx,(fdf) = Lx,(df oG) = df o Lx,G and the projection on N of Lx G
vanishes since G projects in J and X in zero.

Around p there exist vector fields Y7, ...Y, € AN Kerdf such that [X;,Y;] =
—Xj,j=1,.,7 Then Ly (G437, Y; ® ;) = 0 and, by the same reason
as before, we can suppose df o G = fdf and Lx,G = 0. Thus G|gerq projects
in a (1,1)-tensor field G defined along F, which extend ¢ and projects in J
(regarded along the foliation of N x B by the first factor in the obvious way).

On the other hand (F,¢— fI,®, @ — f&) is a Veronese flag along F; because
f is basic for this last foliation. Moreover near 7(p) the tensor field (£ — fI ) is
nilpotent (obvious!) and 0-deformable. Indeed, p regular implies the existence
of positive integers ki, ..., ks such that, around this point, {t%s, ¢k}, j =1,...,s,
is the family of elementary divisors of (¢ — fI)| 4 [recall that every elementary
divisor of £ 4 occurs an even number of times because wi = w(f, )] whereas
{{thi tki} oy o1, % #8711} is that of (€= fI)|anKerds; now a straightforward

calculation shows that, close to 7(p), the family of elementary divisors of (£ —
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J1), 4 has to be {{ths, 1}y ooy, themt R 1)

Thus theorem 2.1 applied to G — fI, (F,{ — fI,&,&, — f&) and > (aj —
)(8/0z;) ® dx; yields coordinates (x1,...,Tn, 21, ..., 22m—2) along Fi, which
become coordinates coordinates (1, ...,Zn, 21, ..s Zam—2, Z2m) OL P by setting
Zom = f, such that dza,, = 0 defines Fi,

G — zaml =377 (a; — 22in)(0/0;) ® du;

+ 3 4 (0/02) @ da + X, X @
where Xi,..X, € A and each ajr € K, and @,01 — 290, are written with
constant coefficients. Moreover, considering G — Z;Zl X; ® a; instead of G
where each X; € ANKerdf, commutes with X ; and projects in X, and linearly
rearranging coordinates (21, ..., 2a;m—2) allows us to suppose w = (X:Z!l1 dzop_1/N\
dZQk)M and

G — 2ol = 311 (a; — 20,)(0/0x;) @ daj + 3707 ajn(0/025) @ da.

If we regard z1, ..., 22,2, 22, as functions on P one has w = (Zzl:_ll dzon_1 A\
dza + p1 A dzam )| 4. But w is closed so (du A dz2;,)j4 = 0 and one may choose
a function zg,,_1 such that dzo,,—1 A dza,, equals p A dza, on A; that is to say
w=0>", dzop—1/N\dzop)| 4 and (1, ..., Tp, 21, ..., 22mm) is a system of coordinates
around p. Now f = zomm, Xy = —0/0z0m—1 and G = 377, a;(9/07;) @ dw; +
(0/0zam—1) ® T + T where 7 is a functional combination of dz1,...,dz, and
T of (0/0z;) @ dzk, j,k = 1,...,2m; moreover the coefficient function of these
combinations do not depend on zs,,—1 since Lx fG =0.

On the other hand wy = 29w+ +ﬁ/\(d22m\,4) where €2 is a constant linear
combination of (dz; A dzi)a, 1 < j <k < 2m — 2, whose restriction to Kerdf
projects in w; — fw, and B a functional combination of dz1| 4, ..., dzam—2) 4 Whose
coefficient functions do not depend on 22,1 (recall that ix,w; = —(df o) 4 =
—fdf|4; in particular Lx,w; = 0). Therefore as w1 = w({, ) =w(G, )=
w(T, ) one has:

T = zomI. + H+ (0/0z9m-1) @ B* — Z ® dzam
where I, = i:l (0/0z) @ dzi, Z is is the vector field functional combination
of 9/0z1,...,0/0z2m—2 defined by the equation w(Z, ) = F, * the extension
of B to TP such that 5*(0/0z;) = 0, j = 1,...,n, and H the constant lin-
ear combination of (8/0z;) ® dzx, j,k = 1,...,2m — 2, satisfying the relation
w(H, )=0.
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Set Q = w — (dzam—1 A dzam)ja. Then Q@ = Q(H, ) and izQ = j.

Note that any tensor field on P, partial or not, without terms including
0/0zam—1, 0/0zam, dzam—1 O dzam, whose coefficients functions do not depend
on Zam—_1, can be regarded as a tensor field along the foliation Kerdzs,, on P
by projecting, via 7, its restriction to Kerdza,,. In coordinates (z,z) this is
equivalent to delete coordinate zo,,—1 and consider the tensor field along the
foliation dzs,, = 0. For the sake of simplicity both tensor fields will be denoted
by the same letter. Among others that will be the case of Z, H,Q, €)1, 8 already
defined and Z , E defined later on.

Until the end of the proof of theorem 3.1 and for making calculations easier,
D will denote the exterior derivative with respect of variables (z1, ..., zam—2),
along A on P or A on P, and £ the Lie derivative on P. As w; = 29, (Q +
(dzam—1 A dzam)|a) + Q1 + B A (dzam|4) is closed one has D = Lz = —€Q.

On the other hand Ng(0/0z2m, ) = L(9/920)G — G © L(9/92,,)G =
—Ly;G—H+(0/0z2m—1)@A\+Z'®dzay, with AAdzi A AdxpAdzi A . Nd2Z9m—o =
0 and Z'A(0/0z1)A...A(0/Dzam—2) = 0. Now from aq A...Aa, ANg = 0 follows
LzG=—-H+3"_ | Yi®a;+(0/0zm-1) @A\ + Z' @ dzapm, where Y1,..., Y, € A
because G projects in J on NV and Z in zero.

Hence projecting on P, that is to say considering variables (1, ..., Zn, 21, ..., 22m—_2)
and parameter zo,, yields £L;G = Lz H = ,H+Z;:1 Y;®aj where Y1, ..., Y, €
A, which is the foliation defined by dxy = ...dx, = dzo, = 0.

Set G = G — zgm] = St i (aj — z2m)(0/dx; @ daj) + H. Then on P one has
AUZ )=B0=QG, )=QH, )andLyG=LzH=-H+Y' Y;®
aj. Moreover aq A ... A A N@ =o1 A...Nap ANz =0.

Given an endomorphism S of a vector space V and a vector v € V, one

will say that v is S-generic if v and S have the same minimal polynomial; in

particular v # 0 if V' # {0}.

Lemma 3.2. Close to p on P and to 7(p) on P the vector field Z is H-

generic.

Proof. First remark that, for any ¢ € P, Z(q) is H-generic if and only if
Z(7(q)) is H-generic on P.

Assume dim.A > 2, otherwise the result is obvious. Along A each Q(H*, ),
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k > 0, is a constant 2-form and Lz(Q(H*, )) = —(k+ 1)Q(H*, ); on the
other hand Lz(Q(H*, )) = D(Q(H*Z, )). Now suppose the minimal poly-
nomial of H equals t**1. Then Q(H*, ) never vanishes and by consequence
H*Z only does on a closed set of empty interior; otherwise Lz (Q(H*, )) =0
on some non-empty open set. Therefore Z is H-generic almost everywhere
around 7(p) on P and p on P.

A straightforward calculation shows that the minimal polynomial of (£ 4)(q)
is (t — f(¢))**2 if and only if Z(q) is H-generic. So Z has to be H-generic close
to p since this point is regular. .

Let Z be a second vector field defined around p, functional combination
of 8/0z1,...,0/0z2m—2 with coefficient only depending on (z1, ..., zam—2), such
that Z(p) = Z(p), LzQ = —Q and L;Q, = —2Q;. Then LzH = —H on P and
EZG =LzH=—-H on P. The existence of a such vector field is clear since Q
and )y are written with constant coefficients; for example take as Z a suitable
linear vector field (just a linear algebra exercise) plus a constant one.

Set B = Q(Z, ). Then on P one has Dﬁ = — and there is a function
g =9(x, 21, ..., Zam—2, 22m) such that § = 5—1— Dg and Dg(7(p)) = 0; moreover
Z=27- X, where X is the Q-hamiltonian of ¢ (recall that Q is symplectic on
A).

Given a 1-form p defined on a vector sub-bundle E by u(KerH*) = 0 one
means j(v) = 0 for every v € E N KerHF. Tt is clear that Dg(KerH*) = 0 for
some integer £ > 0. The next step will be to show that our problem reduces to
the case Dg(KerH"*1) = 0.

Set B, = B+tDg and Z, = (1 —t)Z +tZ, t € K. Then QUZ;, ) = B,
L7, = —Q and Z,(7(p)) = Z(7(p)), so Z,(7(p)) is H-generic. Moreover
(Lz,G+H)ANay Ao Aay = (1 — )Lz, G+ tLzG+ H) Ay A ... Aap = 0
and (Lx, C:‘) ANag A ... N a, =0 since Xy = 7 - Z. By technical reasons let us
decompose the manifold P into a product of a n-manifold [variables (z1, ..., 7,,)],
a (2m — 2)-manifold [variables (z1, ..., zam—2)] a 1-manifold [variable (z2,,)], and
set @ = (w1, w2, w3) following this decomposition.

On P x K consider coordinates (21, ..., Tp, 21, -..; Z2m—2, Z2m, t) and the foli-
ation dza,, = dt = 0, that is variables (z1, ..., Zn, 21, ..., 22m—2) and parameters

(22m,t). From proposition 4.1, applied to Z;, (~¥, Q, Q1, A all of them regarded
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along dza, = dt = 0, m1(p), m2(p), the compact set K = {m3(p)} x [0,1] and

g when a = ¢ = ¢/ = —1, follows the existence of a function f; defined around
K’ ={@(p)} x [0,1] such that:
(1) Dy =0,

(D) (Lx,G) Ay A ... A ay = 0 where X is the Q-hamiltonian of f;,

(IT1) Df;(KerH*) =0 and D(Zf; + f: — g)(Ker H*1) = 0.
Therefore:

(1) X4x =0,

(2) X; is tangent to ImH",

(3) Lx,Q=Lx, =0,

(4) (Lx,B: — Dg)(KerH*1) = 0.

Indeed, assertions (1) is clear and (3) follows from he fact that Q; = Q(G, ).
For checking (2) remark that ImH?” is the Q-orthogonal of AN KerH* and
KerQ(Xy, ) = KerDf, > AN KerH*. Finally, for assertion (4) take into
account that Lx,8: = Lx,(QZy, ) = U[Xe, Z4], ) = —Lz,(QX:, )+
(Lz,0(Xs, )= D(Z:ft + f) and apply (III).

Let U, be the flow of the time depending vector field —X; (on P x K one
considers the vector field 9/0t — X;). As Xijgr = 0, ¥y is defined around
7(p) and it can be regarded as a germ of diffeomorphism at this point. By
construction ¥y preserves 7(p), 2, Q1, a1, ..., élﬂ = H|z and GAaLA... .

Since X, is tangent to A one has

Uy (2,21, ey 22m—2, 22m) = (@, (X, 21, ..y Z2m—2, Z2m), Z2m )-

Thus the pull-back by ¥y of G equals G + Y7_, ¥; ® o with Y3,...,Y, € A,
and that of G equals G + Y77, V; ®

Now we construct a germ of diffeomorphism F', at point p, by setting

F(z,z) = (x,®(x, 21, -y 22m—2, Z2m)s Z2m—1 + ©(T, 21, .., Z2m—2, Z2m), Z2m)
such that F'(p) = p and F*w = w. Indeed, F*w = Q + (dzam-1 A dZQm)‘A +pA
(dz2m|a) + (de A dz2m) 4 where p is a 1-form along A; as 0 = d(F*w) = dp A
(dz2m|.4) one may choose ¢ in such a way that (dp A dzam)| 4 = —p A (d22m|4)-

On the other hand:

F*(20mw + B A (d22m|4)) = z2mw + (B + Dh1) A (dz2m) 4)
where hy = hi(z, 21, ..., Z2m—2, 22m) and Dhy(KerH*+1) = 0 since D3 = DE

and ® transforms 3| ge,pr+1 in B gerpr+1, while
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F*Qy = Qy + Dhy A (dzam|a)
where ho = ho(z, 21, ..., 2Z2m—2, 22m ) because £ is closed.
Let us see that Dho(KerH*+1) = 0. Set
Uo(, 21, oy 22m—2y 22m) = (X, Vs(T, 21, oy Z2m—2, 22m ), Z2m.)-

Since X; is tangent to A N ImH* = ImH¥, the flow W, respects each leaf
of the foliation ANImH?¥. Therefore (21, ..., zom_2) and ¥4 (z, 21, ..., Zom—2, Z2m)
belong to the same leaf of the foliation ImH* regarded on the variables (z1, ..., 22/ —2)
only; by consequence (5), (90/0z2) € ImH® and, in particular, ®.(9/9z2,,) €
ImH* whence (F.(0/0221)—0/0z2m) € ImHFY; so set F.(0/0z2m) = 0/029m+
H*V. As F respects A, Kerdzs,, and H\ anKerdz,,, one has Fl (ANKerH*1n
Kerdz,) = AN KerH*' N Kerdze,. But on P, Q(0/0z2m, ) = 0,
O =Q(H, )and QH, )=Q( ,H), therefore

(F*Q1)(0/0z2m, AN KerH* ™1 N Kerdza,)
= Q1 (F.(0/022m), AN Ker H* 1 N Kerdza,,)
= QHM'V, AN KerH*1 N Kerdzom)
=Q(V, H" Y (AN KerH*' N Kerdza,)) =0

which implies Dhy(Ker H**1) = 0.

In short F*wi = zzmw+Ql+(ﬁ+Dh)/\(d22m|A) where h = h(z, 21, ..., 22m—2, Zam)
and Dh(KerHk1) = 0.

Set v = B+ Dh. Let v* be the extension of v to T'P such that ~v(0/0x;) = 0,
j=1,...,n,and U the vector field functional combination of 9/9z1, ..., 0/0z2m—2
defined by w(U, ) =+. Since G, up to the term (0/0z2mm—1) ® T, is determined
by w, w; and G, its pull-back G by F is determined by F*w = w, F*w; =
Zomw + Q1 + 7 A (dzgm‘A) and G + Z;:1 17] ® aj; therefore reasoning as before
yields

GF = Z?:l aj(a/azj) X dl‘j + (8/8227,1,1) X o+ ZQmIZ + H
+(0/0z2m—1) ® 7" = U ®@dzom + 375, Y ® o
where Y7,...,Y,. € A and v is a functional combination of dx1,...,dz, whose
coefficients do not depend on zo,, 1.

Clearly it suffices proving theorem 3.1 for Gg, F*w and F*wi; even more

the term Z;Zl Y; ® o is irrelevant and may be deleted. Thus a change of
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notation (denote Gr by G, v by S etc...) allows us to assume 3 = EJr Dh where
h = h(z, 21, ..., 2om_2, 2om) and Dh(KerH**!) = 0.

Now we start the process again with 7+ (Z - Z )(p). Finally, after a fi-
nite number of steps, we may suppose Z = Z + W where W is a constant
vector field linear combination of 9/9z1, ...,0/0zam—2. Thus Z only depend on

(2’1, ceey ZQm,Q).

Lemma 3.3. On an open set of KF1 endowed with coordinates (v,u) =
(v1, ..., Vg, u) consider a point ¢ = (q1,...,qk,q) and a tensor field T = ul +
H—U ® du where H = Zijzl a;;(0/0v;) @ dvj, with each a;; constant, and
U = Z?Zl ©;(0)(8/v;). Assume that U(q) is H-generic, H nilpotent and
LUI:j = cﬁ, c € K. Then around q there exist functions hy, ..., hy, of v such that
d(dhj oT) =0, j =1,....k, and (dhy A ... A dhg A du)(q) # 0.

Proof. Given h = h(v) one has d(dhoT) = d(doH)—d(Uh+h)Adu. Close to
q and for every j = 1, ..., k, consider a function g; of v such that g;(q1,...,qx) =0
and dg; = d(Uv; + v;). Then d(dg; o H) = 0; indeed, d(dv; o H) = 0 and
d(Uvj)OI:T = (LUdvj)oI; = Ly(dv; oH) —cdv, o H. By proposition 4.2, applied
in coordinates v = (v1, ..., v ) with a zero dimensional space of parameters, close
to (q1, ..., qx) there exists f; = f;(v) such that df;(q1, ..., qx) = 0, d(df; oH)=0
and Uf; = —f; + g;.

Set hj = v;+f;; then d(dh;oT) = 0, j = 1, ..., k, and (dhy A...Adhgx Adu)(q) =
(dvr A ... Advk A du)(q). O

Let us come back to the proof of theorem 3.1. If h = h(z1, ..., 22m—2, 22m )
one has dho G = zo;dh+ dho H — (Zh)dzay,. Thus we can apply lemma 3.3, in
variables (21, ..., 22m—2, Zom ) When T = 2omI + H — Z ® dza,,, for concluding the
existence close to p of functions h;(z1,..., 2am—2), j = 1,...,2m — 2, such that
d(dhj o G) =0 and (dh1 A ... A dham—2 A dzam)(p) # 0.

Denote by X; the w-hamiltonian of h;, j = 1,...,2m — 2. From the third
condition of Veronese flag follows (Lx,G)Aai A... A, = 0 (everywhere or close
to point p), which in turn implies (Lx,7)Aa1A...Aa, =0, j = 1,...,2m—2. Now
set T =Y T oRdri 4+ D 0y PkQhir—n; then Xjpp =0, 5 =1,...,2m — 2,
kE=1,..,n—7r But (X1 A...A Xom_oA(0/022m-1))(p) # 0 because (dhy A
e N dhom—o A dzom)(p) # 0, so each @i, k = 1,,,.n — 7, only depends on
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(z, z2m). Besides the term (0/0z2m—1) ® (ZZZH_TH Pk Qptr—n) 18 irrelevant
for our purpose and it may be deleted. In short, one can suppose that 7 only
depends on (z, 2o ).

On the other hand
Ng(a/&z:i, 8/890]) = [aia/axi—f—f(@/axi)8/622m_1, aja/axj—i—f(@/axj)8/822m_1]

*G[a/al'z, a]8/8z]+7(8/8:cj)8/822,,1,1]—G[a18/8x1+7(8/8x1)8/8,22,,1,1, 8/81']]

— dz(T (e} (J — Z2mlx>71)((:] — ZQmIz)(a/al'z), (J — ZQmII)(a/axj))aZQi_l

where I, = Z?Zl([?/ 0z;) ® dz; and d; is the exterior derivative with respect
to x.

Therefore Ng A a1 A ... A o, = 0 implies dy(7 o (J — 2zomI:) ") A (a1 o
(J — zomIz) ™) Ao A (e 0 (J — 22 1)~ 1Y) = 0. In other words, 7o (J —
2omI;) 71 is closed along the foliation in variables (x, 22,,) defined by a; o (J —
Zom )Y oy o (J — zomI) Y, d2om, and near p there exists a function h =
h(z, z2m) such that d,h equals T7o(J—z2,, 1)~ modulo ayo(J —29m )71, ..., a0
(J — z2mI;)~t. Thus adding a suitable functional combination of aq, ..., o, to
7 allows us to suppose 7o (J — ZQmII)_l = dzh. Then
d(zom-1 — h) o G = zamdzom—1 + T — 2om(0h/0zom)dzam — (dzh) o J + B* =
Zomdzom—1+daho(J—zam Iy )—22m (Oh)0z9m ) dzom — (dph)o J+ 5% = zomd(22m—1—
h)+ B*.

Finally, if the coordinate zs,,_1 is replaced by 22,,—1 = 22,m—1 — h and next
Zom—1 is called z2,,—1, as h only depends on (z, z2,,), then the expression of w
and that of w; are not modified whereas

G =>1_1aj(9/0x;) + zom I, + H + (0/022m—1) @ B* — Z ® dzam,

which proves theorem 3.1.

4. The equation Zf =af +g

In this section, rather technical, one will establish the results on the foregoing
equation needed in the proof of theorem 3.1. Consider three open sets A C
K", A’ € K*" and B C K%, their product A x A’ x B C K""2™+5 endowed

with product coordinates (z,z,u) = (x1,...,Zn, 21, .-, Z22m, U1, ..., us) and the
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following objects on it:

Fi: foliation defined by setting uq, ...us constant,

d: exterior derivative along Fi,

A: foliation contained in F; defined by dxy = ... = dx, = 0,
D: exterior derivative along A,

w,w1: couple of 2-forms on A,

Z = Z?:l ©;0/0z;: vector field tangent to A.

Along Fi, that is to say regarding B as the space of parameters, set J =
S0 a(u)(0/0x;)@dy, H = Y3 ax(0/02;)@dzy, where each ajy € K, & =
2;21 X, ® a; where Xi,..., X, € Aand a1y, ..., a, are closed 1-forms functional
combination of dx, ..., dz,, [so their coefficients only depend on (z, )] such that
a1 A ... A\ a, never vanishes, and G = J + H + €.

Let F be the foliation contained in F; defined by «j,...,a,. Suppose that
w,wq are written with constant coefficients which respect to dz1) 4, ..., d22m| 4,
functions aj(u),...,an(u) never vanish on B, H is nilpotent, w; = w(G, )
and (F,G|r) is a weak Veronese flag along F; whose associated G|r-invariant
foliation equals A; therefore ay, ..., a,, J defines a Veronese web along F; /A on
Ax B

For any function ¢ one will denote X, its w-hamiltonian.

Lemma 4.1. Let Xy be the w-hamiltonian of a function f. Then (Lx,G)A
ar A ... Nap. =0 if and only if ag A ... Ay Ad(df o G) is semi-basic for A (that
sig(lar Ao Ao Ad(df 0o G)) =0 for any U € A).

Proof. As (Lx,{) Nax Ao Aa, =0 and d(df o&) Aoy A ... A, = 0 we
may suppose £ = 0 without loss of generality. Now consider new coordinates
(z;), j=1,..,2m;,i=1,...,s,on A constant linear combination of (21, ..., 22m)
such that w = (305_, SO0, dedy_y Adzy)ja and wy = (35 Sy dedy, ) A
dzyp)ja- Then H = 350 STMTH(0/028, ) ® dzhyy + (0/02h,) @ dzgy )
since w; =w(G, )=w(H, ),and Lx,G =S+ T where

L9 " 92
=1 j=1

s m;—1 n
d B 2 f O f

A
i=1 k=1 asz-‘,—l j=1 2k+2
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and T does not involve any 0/0z; nor dz;, j =1,...,n.
Note that 7" = 0 if and only if (Lx,G)j4 = 0.
On the other hand df o G = 377, a;(0f/0x;)dx;
3 S (0 )02k )2y +(Df /025y )dzhy o).
Therefore d(df o G) = p+ A+ u where

s m;—1 n

Yy

i=1 k=1 \j=1

82 f 2 f

_ a;— dx; | Ad2L
1 X J 1 . J 2k—1
6z2k+16xj 82%_18%1

S

— —————dx; | ANdz5,, 1 — ————dx; | Ndz
Z ]azémﬁlazj Tj Z2m;—1 ; s aj 92501, Tj Z2

s m;—1 n
: o%f 92 f .
+ . — ;= dz; | N\dz, ,

=1 \j=1

A=Y hapdaj Aday and =3, hiagpdzi Adzg; thus (d(df oG))ja = 4.
But Ly, w; = w(Lx,G, )and at the same time Lx,w; = D(wi(Xy, ))=
—d(df o G))|; therefore T' = 0 if and only if y = 0 since w is symplectic.
Finally, remark that the 1-forms functional combination of dz1, ..., dz,, which
are the coefficients of 9/9z} or dzg in the expressions of S and p, respectively,
are the same up to sign and change of order, so S Aaj A... Aa, =0 if and only
if pAag A... Ao, = 0. As X is semi-basic for A, the lemma is proved. [
Remark. From lemma 4.1 immediately follows that (F ,GlFw,w) s a

Veronese flag along F7.

Proposition 4.1. Given an integer k > 0, p € A, g € A’, a compact set
K C B, three scalars a,c,c’ and a function g : A x A’ x B — K such that:
(1) (LzG —cH)ANay A ... Ao, =0 and Lzw = dw,
(2) Z is H-generic on {(p,q)} x K,
(3) (Lx,G)Nai A...\Na, =0 and Dg(KerH") =0,
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then there exist a product open set U x U' x V. C A x A’ x B, which contains
{(p,q)} x K, and a function f:U x U’ xV — K such that:

(I) Df(KerH*) =0 and D(Zf — af — g)(KerH**') =0,

(II) (Lx,G) Aoy A ... Aoy = 0,

(III) Df =0 on {(p,q)} x V.

The next goal will be to prove proposition 4.1. Note that we may assume
§ =0since (Lx,§) Naa Ao Aoy = (Lx,§) Naa Ao Aoy = 0. Set (2, 2,u) =
g(x,q,u), then Doy, = 0 and d(dpg o G) is A-basic; thus any solution of our
problem for g — ¢, is a solution for g too, which allows to suppose g(A4 x {q} x
B) = 0 by considering g — ¢, instead of g if necessary. On the other hand by
shrinking A and modifying the order of variables (z1,...,z,) one may assume
that dxqy A ... Adxp_ AN ay A ... A o, never vanishes. By lemma 4.1, the first
statement (3) and part (II) of proposition 4.1 are respectively equivalent to
suppose a1 A ... Aay Ad(dg o G) and aq A ... A a. A d(df o G) semi-basic for A;
throughout the proof one will use these statements instead of original ones.

We start reducing the problem to the case k = 0. Consider H as a tensor field
on A’ and linearly rearrange coordinates z in such a way that dzy = ... = dzem =
0 defines KerH. Let A" be the quotient (close to q) of A’ by KerH"* endowed
with coordinates (z1, ..., 29/ ), and w: A x A’ x B — A x A” x B the canonical
projection. As Dg(KerH") = 0 there is a function g on A x A” x B such
that ¢ = gow. Obviously Z, H, G, F, A project in similar object Z, H,G, F, A
defined on A x A” x B.

On the other hand w(H*, ) and w;(H*, ) project in a couple of 2-forms
@, @y defined along A. It is easily checked that the hypothesis of proposition 4.1
still hold on A x A” x B for the scalars a, ¢ and ¢’ + kc. Therefore, if the result
is proved for k = 0, there exists a solution f and it suffices to set f = f o .

In short k = 0 is the only case to deal with. We do that by induction on
the order k of nilpotency of H. First consider the case H = 0, that is k=1
and G = J. Assume m > 1, otherwise it suffices setting f = 0. As Z has
no zeros on the compact set {(p,q)} x K, we may suppose that 1 does not
vanish on A x A’ x B by shrinking these three factor and changing the order
of variables z = (21, ..., 22, ) if necessary. From (1) of proposition 4.1 follows

a1 Ao Aap A (dgpj o J) =0, j = 1,...,2m, that is to say (a3 o J71) A .. A
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(ar o J7 Y)Y Adyp; =0, j =1,...,2m. Consider new coordinates y = (Y1, ..., Yn)
around p on A such that dy; = ... = dy, = 0 defines the same foliation as
aroJ 7l .. a,0J 1 (recall that ay, ..., o, J gives rise to a Veronese web). Since
every coordinate y; only depends on  one has that d, = d, and each vector field
0/0z;, j = 1,...,2m, belongs to the dual basis of {dy1, ..., dyn, dz1, ..., dzam } as
well. Thus ¢; = @;(y1, ..., yr, 2,u), j =1,...,2m.

On the other hand given a function A then ay A ... A a, A d(dh o G) is semi-
basic for A if and only if ey A ... Aay A (dg(Oh/0z5) 0 J) =0, j =1,...,2m, that
is (no J YA A (a0 JTY) Ady(OR)D2z5) = 0, j = 1,...,2m, or in coordinates
(y,z,u) if and only if 8?h/92z;0y; = 0, i =71+ 1,...,n, 5 = 1,...,2m. In these
last coordinates consider the open neighbourhoods of p and ¢, respectively,
U =U;xUyand U’, where U; C K", Uy C K"™" and Uy, Uy, U’ are polycylinders
(that is product of open intervals if K = R or open disks if K = C). Then
a1 A ... Ao ANd(dh o G) = 0 is semi-basic for A on U x U’ x B if and only if
h="h1(y1, s Yr, 2,u) + ha(y, u); moreover we may suppose hi(p1, ..., pr,q, u) =
0, u € B, by taking hy — h and hs + h where E(y,z,u) = hi(y1, .y Yr, q, u) if
necessary.

In particular as a; A ... A @, A d(dg o G) is semi-basic for A, on U x U’ x B
one has g = g1(y1, ..., Yr, 2,u) + g2(y,u) where g1(p1,...,0r,q,u) = 0, u € B.
But g(A x {q} x B) =0s0 g2 =0, that is g = g(y1, -.., Yr, z, 10).

Let f : Uy x U’ x B — K be the function defined by the ordinary differential
equation Zf = af + g and the initial condition f(Uy x T x B) = 0 where
T ={z¢€U' | z1 = q} [again shrink U;,U’, B if necessary|. Then regarded
on U x U’ x B in the obvious way aj A ... A a. A d(df o G) is semi-basic for
A and D(Zf — af —g) = 0. By construction (0f/9z;)({(p,q)} x B) = 0,
J=2,...2m. But (Zf)({(p,9)} x B) = af({(p, )} x B) +g({(p,@)} x B) =0
so (0f/0z1)({(p,q)} x B) = 0; in short Df = 0 on {(p,q)} x B, which proves
proposition 4.1 when k= 0.

Remark. Observe that in this step proposition 4.1 was established without
making use of w or wy; therefore the result stated in terms of being semi-basic
for A is true regardless the existence or not of w,w;. This fact implies that
proposition 4.1 also holds if Dgo H = 0; even more in this case there exists

f satisfying (I), (II) and (III) such that Df o H = 0 and D(Zf — af — g) =
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0. Indeed, regard H as a tensor field on A’ and consider the quotient A” =
A'/ImH. Let m: Ax A’ x B — A x A” x B be the canonical projection. Then
g=_gom for some §g: A x A” x B — K. Since all the relevant objects project
on A x A” x B and H does in the zero tensor field, from the case k = 0 follows
the existence of a suitable function f for g and it suffices setting f = f o .
Now suppose true proposition 4.1 up to the order of nilpotency k-1 >1

and for any scalars a, c,c’. One will need the following result.

Lemma 4.2. Given a function h : Ax A’ x B — K such that Dh(KerH) =0
and aq A ... N, ANd(dh o Q) is semi-basic for A, then there exist a product open
set Ux U xV C Ax A x B, which contains {(p,q)} x K, and a function
0:UxU xV — K such that:

(I) Dpo H= Dh and a; A ... Aoy Ad(dp o G) is semi-basic for A,
(1) o({(p,q)} x V) = 0 and Dp(p,q,u) = 0 for every u € V such that
Dh(p,q,u) = 0.

Proof. Consider coordinates (z;), j=1,..,m;, it =1,.,s on A" as in
the proof of lemma 4.1 and shrink this open set in such a way that, in these
coordinates, A’ is a polycylinder. Then dz}, , o H = dzb;,_,, dz}, o H = dzi; ,,
k=1,..m;—1,dzt o H :dzémi oH=0,i=1,...,s.

Since Dh(KerH) = 0 one has 0h/dz5,, | = 0h/dz5 = 0,4 = 1,...,s and
B o H = Dh where

s mi—1
=33 (%dzzékﬂ n %dz@ .
i=1 k=1 2k—1 |A

Note that ay A...Aa- Ad(dhoG) semi-basic for A implies D(DhoH) = 0. Now
from lemma 1.1 follows that DB(ImH,ImH) = 0, so 3|y, u is closed and there
exists a function ¢ : A x A’ x B — K such that (D¢ — ﬂ)|lm
Dy o H = Dh. Hence 0¢/0z%, | = Oh/8zk, |, 0002k, = Oh/0zh, o, k =
1

y = 0; therefore

s ey — 1.
In general oy A ... A a, A d(dy o G) is not semi-basic for A and we need to
modify .
If following the terminology of the proof of lemma 4.1 we set d(dh o G) =
Pr+ A+ pn and d(Yo G) = py 4+ Ay + iy then aq Ao Aoy App, and pp, = piy =0
because a1 A... Aoy Ad(dho@G) is semi-basic for A and D(DvypoH) = D(Dh) = 0.
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Therefore oy A...Aa, Ad(dpoG) is semi-basic for A if and only if a1 A... Az Apy =
0.

When £ =1,...,m; — 1, i = 1,..., s, the 1-form coefficient of dzg,ﬁ_l in the
expression of py, equals that of dzi, ; in the expression of py, and the coefficient
of dz}, that of dzi,, (recall that Oh/dz4,, | = 8h/0z5 = 0), so they vanish
modulo ay, ..., a,.. Thus we have only to study the coefficients of dzi and dz%mi,
i=1,...,s, denoted by [B2;_1, B2; hereafter, which are

~ 0% 0% - 8%h 0%
i = _ g do: — : g2 do s
Baiza Z (8z§89€j “J aziaxj) i Z (aziaxj @ aziaxj) i

Jj=1 Jj=1

and

- Y Y
;= . g — Ao
& Z (02:Z 20T % 025, axj) K

j=1 2mi—

i - %igLi ‘
025,07 023,07,

n
0%h 02
= Z ( a v dx; respectively.
j=1
For the sake of simplicity, set 2] = Zp;_1 and 25,, = Zy;,% = 1,...,s. From the

expression of 8; and fj immediately follows 08;/0zr = 08k/0%;, j, k =1, ..., 2s.
Moreover al/\.../\aTA(aﬁa/az%) =0,a=1,..,25,b=2,...2m;—1,i=1,....s.

Indeed,
0PBa _z": N O R
oz = 0% 0zidx; 7 0zLow, /

which is the derivative with respect to zz of the coefficient of dzg_Q, if b is odd,

or dzgw, if b is even, in the expression of p;,. Thus, if we set 85 = (35 + 3% where
Bz is a functional combination of dx1, ..., dz,_, and B a functional combina-
tion of ay,...,a, (recall that dxq,...,dx,—r,a1,...,q, are linearly independent
everywhere) one has 035/82% = 0; that is every Ba, @ = 1, ..., 2s, only depends
onzx, Z=(z1,...,225) and u.

Of course 93;/0z, = 0B, /0%;, §,k =1, ..., 2s.

The coefficient of dzy, k =1, ...,2s, in the expression of p, equals

" 9%h 9%h oh oh
2 (azgazj — azkaxj> doj = do (a_z> —da (6_zk> o

Jj=1 b

where i and b depend on k. This coefficient is a functional combination of

ai, ..., therefore, as aq,...,a, define a foliation, one has a; A ... A a,. A
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dy(d(Oh/0z) o J) = 0. In turn from lemma 1.1 applied to d,(0h/dzx) o J 1
and J follows (g o J7Y) Ao A (e 0 J71) Ady(di(Oh/0Z)) 0 J~1) = 0, whence
taking into account the expression of 8y given before results (a;oJ 1) A...A(a.0
J YAd(BroJ 1) =0, k=1,..,2s. Finally, since a; A... Ao, A (B — Br) =0
and ajoJ 71 ..., .0 J~! define a foliation, one has (a; 0o J7Y) A A (0 J7HA
dy(BroJ 1) =0,k=1,..,2s.

After shrinking A and A’ if necessary, we may suppose that A in coordinates
y = (y1,...,yn) and A’ in coordinates (z;) are polycylinders. Set A = A; x Ay C
K"xK""" and p = (p1, ..., pn) following coordinates (y1, ..., yn ). Then there exist
functions fy : Ax A’ x B — K, k=1,...,2s, only depending on z, Z and u such
that fi (A1 X {(Pry1, -y Pn)} x A'xB) = 0 and (a0 " )A..A(a0J V) A(dy fr—
BroJ~ 1) = 0. Moreover dg(Zi; frdzr) = 0 where d; is the exterior derivative
with respect to zZ = (21, ..., Z25). Indeed, d(0fx/0%; — 0f;/0%k), j. k =1,...,2s,
equals (0Bx/0z; — 0B3;/0z) o J~1 = 0 modulo a; o J=%, ..., o J~L, that
is modulo dyi, ..., dy,; in other words 0fi/0%; — 0f;/0Zr does not depend on
(Yr41; -+, Yn). But clearly 0fr/0z; — 0f;/0%; vanishes on Ay X {(pri1,....Pn)} X
A" x Bso 0fy/0%; —0f;/0z, =0, j,k =1, ...,2s.

Thus there is a function 1; : A X A’ x B — K only depending on z, Z and u
such that 9v1/0zk = fi, k = 1,...,2s. Therefore a; A ... A i A (d (01 /%) ©
J = Br) = 0.

Now set ¢ = 1+11. Then DgoH = DipoH = Dg and ay A... A Ad(dpoG)
is semi-basic for A, that is ¢ satisfies (I).

Finally, let ¢ be the function given by

2s ~

Frloz) = 35 — 21(0) g (. 00) + Bl )
k=1

then ¢ = ¢ — & satisfies (I) and (IT). O

A boz [of coordinates (2})] will mean a block of coordinates (21, ..., 23,,,) for
any fixed 7; so one has s boxes. A box will be named short if m; = 1 and long
otherwise.

Consider a function h : A x A’ x B — K such that a3 A ... A a,. Ad(dh o G)
is semi-basic for A. Then there exists a function lNz, perhaps after shrinking A’,
such that Dh o H = Dh. From lemma 1.1, applied to Dh and H along A,
follows D(Dho H) = D(Dho H?) = 0, that is 5, = 0 in the terminology of the
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proof of lemma 4.1. Moreover ay A ... A a, A d(dh o @) is semi-basic for A since
the coefficient of each dz} in the expression of p; equals that of some dzg in the
expression of pp,.

Observe that h does not depend on the short boxes. By lemma 4.2, applied
to h but considering long boxes only, there exists a function hy : A x A’ x B —
K [after shrinking we identify A X A’ x B and U x U’ x V for the sake of
simplicity of the notation], which does not depend on the short boxes, such that
a1 A ... Aoy Ad(dhy o G) is semi-basic for A and Dhy o H = Dh o H. Now set
ha = h—hy; then ag A ... A, Ad(dhg o G) is semi-basic for A and Dhyo H = 0.

In other words, after shrinking A, A’ and B if necessary, the function h
decompose into a sum h = hy + ho in such a way that oy A ... Aa,. Ad(dhy o G)
and ag A ... A a. A d(dhg o G) are semi-basic for A, hy only depend on z, u and
the long boxes, and hy does on (x, Z1, ..., Z2, w) that is Dhoo H = 0.

Moreover hy({(p,q)} xB) = 0 and Dhy(p, q,u) = 0 whenever (DhoH )(p, q,u)

Consider a function ¢ : A x A’ x B — K such that Dp o H = 0 and
a1 A ... A ap Ad(dp o G) is semi-basic for A. If there is one long box at least,
then Z and Z 4+ X, are equivalent for the purpose of proposition 4.1. Let us
see that. On A x A’ x (B x K) consider the vector field Z, = Z 4+ tX,, and the
obvious extensions of G, w, wy and A, where now the space of parameters is
B x K endowed with coordinates (u1, ..., us, t). Note that the vector field Z; is
H-generic on {(p,q)} x (K x K) since X, € KerH and H # {0}.

By the remark preceding lemma 4.2 applied to a = ¢/, ¢, ¢/, Z;, v and the
compact set K’ = K x [0,1], as Dy o H = 0 there exists a function f such that
ag A... Ao Ad(df o @) is semi-basic for A, Dfo H =0, D(Z:f —c' f —¢) = 0 and
Df =0on{(p,q)} x K'. Then (Lx,G)Na1 A... Na, =0, Lx,w = Lx,w; =0
since w1 = w(G, ), and [Xf,Z;] = —X, because Lz,w = Lzw = dw and
ix,, 20w = ix,; Lz,w— Lz, (ix;w) = D(Zif — ' f) = De.

Let Uz be the flow of the time depending vector field X¢. As Xf|{(p,q)}xK/ =
0, ¥, is defined around {(p,q)} x K, preserves A, w,w, and transforms Z in
Z+ X, and G in G + & where £ =377 X; @ aj and Xy,.., X, € A. As {is
irrelevant, that is the problem is the same for G and G + &, the equivalence is

established.

47



Coming back to the main question, suppose m; > 2 when 7 = 1, ..., s’ and
m; = 1 otherwise. Set Z = Z; + Z3 where Z; corresponds to the long boxes
and Zy to the sort ones. Remark that Z; is H-generic since Zy € KerH. On
the other hand set

. a , 2m;
Z = Zl [ Z (kzék—l 97, +kz2ka ) Z kg ]

Then Lzw = cw and LzG = cH so (LG —cH) ANai A ... Ao, = 0. Thus,

after shrinking A, A’ and B if necessary, there exists a function h = hy + ho
such that Z = Z + Xh, a1 Ao Ny Ad(dhy 0o G) and ag A ... Ay Ad(dhz o G)
are semi-basic for A, hy does not depend on the short boxes and Dhy o H =0
(indeed, Lzw = ¢'w = Lzw implies that 7 = Z+ X}, for some h; now decompose
this function into a sum h = hy + hy as it was showed before).

Since the components of X}, in the short boxes vanish, Z = Z + X, + Xp,
and the vector fields Z, Z + X, are equivalent, we may assume

s my a ,le
ZQZZ [CZ(!{Z% 181 +kz%a ) Zka ]

i=s'+1 k=1

which implies that the coefficients functions of Z; do not depend on the short
boxes, otherwise Lzw # c'w.

Decompose g into a sum g = g1+ g2 in such a way that g; does not depend on
the short boxes, DgaoH = 0 and ag A...Aa,Ad(dg10G), a1 A...Aa,Ad(dg20G) are
semi-basic for A. As proposition 4.1 was already proved for g since DgooH = 0,
it suffices to show it for ¢g;. But Z; is H-generic and its components do not
depend on the short boxes, therefore it is enough considering the problem on
the long boxes only.

In other words, we may suppose that there is no short box. Note that in this
case KerH C ImH, therefore if 7 is a 1-form such that (7 o H)(KerH?) = 0
then 7(KerH) = 0.

After shrinking A, A’ and B if necessary, consider a function g such that
Dg = Dgo H; then ag A ... A a, A d(dg o G) is semi-basic for A (it suffices
reasoning as in the case Dh = Dho H). On the quotient A x (A'/KerH) x B
one may project g, Z, G, A, H and the 2-forms w;, which becomes symplectic,
and w1 (G, ). Then the order of nilpotency of the projection H of H equals
k—1 and by the induction hypothesis there is a solution of the problem for
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the scalars a + ¢, c and ¢+ ¢’ [now Lzw; = Lz(w(G, )) = (c+ )wr and the
same equality holds on the quotient A x (A’/KerH) x B] and the projection
of g. Pulling-back this solution yields a function f: UxU xV — K such
that Df(KerH) =0, D(Zf — [a+ c|f — §)(KerH?) = 0 since the pull-back of
KerH is KerH?, oq A ... A ay Ad(df o G) is semi-basic for A and Df = 0 on
{, )} x V.

Let f: U x U’ xV — K a function given by lemma 4.2 applied to f Then
Df =0on {(p,q)} x V since Df: 0 on this set; besides D(Zf —af —g)o H =
D(Zf — [a+ df — §) because (LzDf)o H = Lz(Df o H) — cDf o H. But
D(Zf —la+df—g)(KerH?) =0 therefore D(Zf —af — g)(KerH) = 0, which
finishes the proof of proposition 4.1.

From now on and until the end of this section, consider an open set A C
K™ endowed with coordinates z = (21, ..., 2mm ), a manifold B whose points are
denoted by v and on A x B the following objects:

G: foliation defined by setting u constant,
d: exterior derivative along G,

Z: vector field tangent to G,

H: (1,1)-tensor field along G.

Suppose that H is nilpotent and written with constant coefficients with
respect to (0/0z;) ® dzx, j, k = 1,...,m, where (z1, ..., 2, ) are regarded as coor-

dinates along G.

Proposition 4.2. Given an integer k > 0, a point p € A, a compact set
K C B, two scalars a,c and a function g : A x B — K such that:
(1) LzH = cH,
(2) Z is H-generic on {p} x K,
(3) d(dgo H) =0, dg(KerH*) = 0 and g({p} x B) =0,
then there exist a product open set U x V. C A x B, which contains {p} x K,
such that:
(1) Zf=af+gy,
(II) d(df o H) = 0 and df (KerH") = 0,
(IIT) df =0 on {p} x V.

Let us proof proposition 4.2. Reasoning as in the proof of proposition 4.1
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reduces the problem to the case £ = 0. On the other hand, if H = 0 one has
just a ordinary differential equation and it suffices considering a solution f that
vanishes on a suitable transverse section of Z containing {p} x V, where V is
an open neighbourhood of K on B (note that (Zf)({p} x B) = 0 which implies
df =0on {p} x V).

Now suppose that proposition 4.2 holds up to the dimension m — 1 for any

scalars a, c.

Lemma 4.3. Given a function h : A x B — K such that dh(KerH) = 0
and d(dh o H) = 0, then there exist a product open set U x V. C A x B, which
contains {p} x K, and a function ¢ : U x V. — K such that:

(D) dp o H = dh and d(dg o H) =0,
(II) p({p} x V) =0 and dp(p,u) = 0 for every uw € V such that dh(p,u) = 0.

Proof. Consider coordinates (z;), j=1,...,my, i =1,...;s, on A, constant
linear combination of (21, ..., 2 ), such that H = 320 S5 1(8/02) ) @ dz;
that is dzj, o H = dzj,_, if k > 2 and dz} o H = 0. Therefore dh/dz}, =0,
i=1,...s, and S o H = dh where 8 = > 7, Zzzl_l(@h/az,i)dz,i_ﬂ. On the
other hand, after shrinking A, we may suppose that in these coordinates A is a
polycylinder.

Now from lemma 1.1 follows that 57,y is closed; therefore there exists a
function ¢ : A x B — K such that (d¢) — §)|1mm = 0, whence dp o H = dh. Let
¢ be the function given by (z,u) = S35, (24 — 2 (p)) (89 /921 (p, u) + (p, u);
then ¢ = ¢ — ¢ satisfies (I) and (IT). O

Let us resume the proof of proposition 4.2. Since d(dg o H) = 0, after
shrinking A if necessary, there is a function g : A x B — K vanishing on {p} x B
such that dg = dg o H; moreover by lemma 1.1 d(dg o H) = 0. The equation
Zf = (a + ¢)f + § has some solution satisfying (IT) and (IIT) and such that
df(KerH) = 0. Indeed, project Z, H and g on the quotient (A/KerH) x B,
apply the induction hypothesis and then pull-back a suitable solution. Note
that ]"’v is defined on a product open set containing {p} x K and which we will
call A x B for simplifying.

Let ¢ : U x V — K be a function given by lemma 4.3 applied to ]? Set
go = g+ ap — Zy; then go({p} x V) = 0 and dgo o H = 0 since (Lzdyp) o
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H = Ly(dpo H) — cdp o H. In turn, the equation Zfy = afy + go has some
solution satisfying (II) and (IIT). Indeed, project Z, H and go on the quotient
(U/ImH) x V and reason as before. Now it suffices to set f = fo + ¢ for

finishing the proof of proposition 4.2.

5. The non-real eigenvalue case

In this section K = R and the manifolds considered will be real unless another
thing is stated. Let (F,¢,w,w;) be a Veronese flag on a manifold P or at some
point of P, A the foliation of the largest ¢-invariant vector subspace (see section
1) and 7 : P — N a local quotient of P by A. Set codimF = r, dimA = 2m
and dimN = n. Recall that N is endowed with a r-codimensional Veronese web
whose limit when ¢t — co equals the quotient foliation 7/ = F/A and £ projects
in the morphism ¢’ associated to this Veronese web.

Suppose that the characteristic polynomial ¢ of /4 equals (t? + ft+g)™
where f2 < 4g, that is ¢ has no real roots. Set g = trace((¢4)*); by lemma
1.2 one has kdgi+1 = (k + 1)dgr o £ on F.

When df| 4(,) # 0 and the algebraic type of £| 4 is constant about p, one may
construct the symplectic reduction of the Veronese flag as follows. First observe
that each gy is function of g1, g2 since f, g are the only significant coefficients of
the elementary divisors, g1 = —mf, go = m(f? — 2g) and dga = 2dg; o £ on F.
Therefore Xy, = 20X, and (dg1 A dg2)|a¢p) 7 0, otherwise (Xy, A Xg,)(p) =0
and ¢ has an eigenvalue on A(p) — {0}. Thus X, ,X,,, X, ... give rise to a
{-invariant vector sub-bundle E of dimension two.

On the other hand w(Xy,, X,,) = 2w(Xy,,€X,,) = w1(Xg, Xy ) = 0 and
w1(Xg,, Xg,) = 2w(lX,,,0X,) =0. Hence Xg,01 = Xg,92 = Xgo01 = Xg, 02 =
0 and [X,,, X,4,] = 0; in particular E is a foliation. Besides Lx, {=1Lx, (=0
since kdgg+1 = (k+ 1)dgg o £ on F.

Denoted by P and 7 : P — P, respectively, the local quotient of P by E and
its canonical projection. Consider coordinates (y,2z) = (Y1, ..oy Un, 215 -5 22m)
around p such that dy; = ... = dy, = 0 defines F, dy; = ... = dy,, = 0 the folia-
tion A, g1 = zam—1, 92 = 22m, Xg, = —0/0%2m—3 and Xy, = —0/0z2m—2. Thus
(y1, .., Yn) can be regarded as coordinates on N, (Y1, .., Yny 21, -y 22m—ds 22m—1, 22m)
as coordinates on P and g1, g2 as functions on this last manifold. Now it is ob-

vious that Ker(dg) A dgs) and F N Ker(dg: A dgz) project in two foliations F;
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and F on P, respectively, and Y FnKer(dgindg,) does in a morphism 0 F — Fi;
moreover (F,f) is a weak Veronese flag along F; (locally any extension of £
can be lifted to an extension of £), whose foliation A of the largest f-invariant
vector subspaces equals the projection of AN Ker(dg; Adgs), P/A is identified
to N x B, where B is an open neighbourhood of (g;(p), g2(p)) on R?, and F;
projects in the foliation of IV x B by the first factor. Besides, the Veronese web
induced by (F, ) on each leaf N x {b} of this last foliation equals the pull-back,
by the first projection 1 : N X B — N, of that induced by (F,¢).

On the other hand, since ixglw, z'Xg2w, ixglwl and z'Xg2w1 are functional
combination of dgi| 4, dg2 4 (recall that every gj is function of ¢1,¢2 and
kdgri1 = (k +1)dgy o £ on F) one has Ker(wjanker(dg, rdgs))
= Ker(wijanKer(dgi rdgs)) = E- Therefore wjanker(dgi Adg) a0 W1 AnKer(dgy Adgo)
project in two symplectic forms @, @; along A; moreover @; = @(¢, ). The fam-
ily (F,0,@,@;) will be called the symplectic reduction (near p) of (F,{,w,w:).
As in section 3, for proving that this family is a Veronese flag it suffices to check
the third condition of its definition.

On N consider coordinates (21, ...,z,) and a (1, 1)-tensor field

J =30_1a;(0/0x;) ® dxj where ai, ..., a, are real numbers.

Theorem 5.1. In the real analytic category consider a (1,1)-tensor field
G, which extends ¢ and projects in J, defined around a point p of P such that
(F,l,w,wy) is a Veronese flag at this point. Assume that:

(a) the characteristic polynomial of €| 4 equals (t* + ft 4+ g)™ where f* < 4g,
(b) p is a reqular point of £| 4,
(c) if df| o) = 0 then f is constant close to p,
(d) if dfup) # O then the symplectic reduction of (F,{,w,w1) is a Veronese flag
at 7(p),
then around p there exist a (1,1)-tensor field G' extending £ and projecting in
J and functions z1, ..., zom such that (x,z) = (21, ..., Tn, 21, ..., Z2m) S a system
of coordinates,

G =31 a;(0/0w;) @ du; + Y75 hi(2)(0/02;) @ dz
and w,wy are expressed relative to dz1|A, ---,d22m|,4 with coefficient functions

only depending on z.
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Before proving this result, let us recall a few facts on the relationship between
complex and real manifolds. Let @ be a real manifold of dimension 2k endowed
with a complex structure H, which allows us to regard ) as a complex manifold
of dimension k. A real tangent vector field at ¢ € @) is a linear derivation of the
algebra of germs at this point of differentiable functions; therefore it acts too
on the germs at g of holomorphic functions and it can be regarded as a complex
tangent vector at this point. In other words, the real and the complex tangent
vector space at the same point may be identified in a canonical way.

In turn, if X is a real vector field then Lx H = 0 if and only if the (infinites-
imal) action of X sends holomorphic functions into holomorphic functions. In
terms of complex coordinates z; = x1 + 1y, ..., Zkx = X + 1yx and the associ-
ated real coordinates (x1,y1, ..., Xk, Yk ), if X = Z?Zl(gpja/ﬁx]— +1;0/0y;) then
Lx H =0 if and only if @1 + 21, ..., o + 1), are holomorphic functions of z =
(21, ..., Zk); in this case from the complex viewpoint X = Zle(goj +11);)0/0z;
(warning this identification only works for the action of X on holomorphic func-
tions but not for any complex-valued function). This kind of vector fields are
named holomorphic.

A complex k-form [that is of type (k,0)] B decompose into a sum 8 =

B1 + 182, where 31, 82 are real k-forms such that G1(H, .., )= —p2 and
ﬂ?(Hv PEREY )Z/BI [Wthh 1mphes /BJ(Ha PERY )Z/BJ( aHa"'a )
=6;( , ,..,H),j=1,2], and conversely. Besides j is holomorphic if and

only if regarded from the real viewpoint £;(X1,..., Xz) + ¢f62(X1, ..., X3) is a
holomorphic function whatever X1, ..., X3 are holomorphic vector fields. In par-
ticular if B is a complex k-form and its real part is closed then f is holomorphic
and closed.

Finally, a holomorphic (1,1)-tensor field regarded from the real point of
view is just a real (1,1)-tensor field that commutes with H and transforms
holomorphic vector fields into holomorphic vector fields.

Until the end of this section one works in the analytic category, in which
theorem 5.1 will be deduced from the complex case of theorems 2.1 and 3.1.
We start constructing a complex structure along 4. Shrinking P if necessary,
one may suppose that the algebraic type of £ 4 and that of £| 4nker(dafrag) are

constant. Set Ho = (4g — f2)71/2(2¢, 4 + fI); then (H3 + I)™ = 0. Therefore
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Hy is 0-deformable. Let H be its semi-simple part; by construction H? = —I
and there is a polynomial ¢ (t) with real coefficients such that H = ¢(Hp), so
H= 1/;(6‘,4) for some polynomial ¢ € Rp[t]. From section 6 of [I3] applied on
each leaf of A follows Ny = 0; in other words H is a complex structure along A.
Moreover w(H, )=w( ,H)and wi(H, )=wi( ,H)since H=14(l ).

Thus the 2-forms @ = w + w and Q1 = w; + wy, where W(X,Y) =
—w(HX,Y) and 01 (X,Y) = —w1(HX,Y), are holomorphic and closed because
dw = dw; = 0. Observe that (2 and 2y are symplectic, |40 H = H o (| 4 and
N =Q{4, ),somiseven and £| 4 is holomorphic along A.

As H is the semi-simple part of Hy the tensor field Hy — H is nilpotent
and commutes with H; therefore (Hy — H)™ = 0. Hence ({4 + 3[fI — (49 —
f2)2H])™ = 0. In other words the complex polynomial (t+h)™ where h = if-
(49— f2)2] annuls ¢ |4, which implies that (t4h)™ is the complex characteristic
polynomial of the holomorphic tensor £, 4. In particular A is holomorphic along
A and Kerdh = Kerdf N Kerdg = Kerdg, N Kerdgs.

Shrinking P allows us to suppose that the elementary divisors of £| 4 on this
manifold are (t2 + ft + g)™,..., (#* + ft + g)%. Consider any point q € P
and a cyclic decomposition A(q) = B® ... © By associated to these elementary
divisors. Then HB; = B; since ¢B; C Bj; that is each B; is a cyclic complex
vector subspace. Now reasoning as before on every B; at each g € P shows
that (t 4+ h)*,..., (t + h)* are the complex elementary divisors of £ 4. By the
same reason if (12 4+ ft + g)b ..., (t> + ft + g)® are the elementary divisors of
U ankeran then (& + h)%...., (t + h)’ are the complex elementary divisors of
b anKerdn-

The analytic complex Frobenius theorem yields functions zi, ..., z2,, such
that (21, ..., Tn, 21, ..., Z2m) 1S a system of coordinates around p and
H= Zizl ((0/0z21) @ dza—1 — (0/0z2p—1) @ dzar )| 4. Now we may consider the
complex coordinates v1 = 21 + 122,..., Um = Zom—1 + 122, and, after shrinking,
identify P to a product open set A x B C R"™ x C™. In complex notation H
equals ¢ on A.

Moreover functions z1, ..., 22, can be choose in such a way that Q = (dv; A
dva + ... 4+ dvpm 1 Advp )| 4, and h = vy, if dfj 4y # 0. Indeed, consider complex

variables u1 = 1 + wW1,..., U, = T, + 2y, on an open set A’ C C™ such that
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A'NR"™ = A and by means of the analyticity extend A, € and h, in the obvious
way, to an open neighbourhood of (p,0) on A’ x B. Then apply the Darboux
theorem for obtaining suitable coordinates (u1,...,un,1,...,0my) and, finally,
restraint functions vy, ..., 0, to P = A x B.

On the other hand G' = 377, a;(0/0x;) @ dx; + Z??};Zl 9jk(0/025) @ dzi, +
> =1 Xj @ dxj where Xy, ..., X, € A.

After changing the other of variables x1,...,x, and shrinking A, we may
assume that dzq A ... Adxp—_r Aoy A ... A o, has no zeros. Set T = Z?Zl X; ®
dzj. Since it is enough proving theorem 5.1 for some G + >, _; Y ® a, where
Yi,...,Y, € A, one can suppose X,—_r4+1 = ... = X, = 0. Thus there exist
vector fields X7, ..., X} € F functional combinations of 9/0x1, ..., d/0x,, whose
coefficients do not depend on z such that TXJ’- = X;, j=1,...,n. Observe that
Ly H =0.

But N¢(F, F) = 0so Ng (X}, A) = 0, whence GoLx; (G'A)_L(.]X§+Xj)(G‘A) =
0 that is Lx,(Gj4) = G o Lx/(Gja) — Lyx;(Gla). As JX] is a functional
combination of 9/9x1, ...,0/0x, with coefficients only depending on x one has
LJX;H = 0. By construction G|4 and H commute, therefore Lx;,(G|A) and
L jx1(G)a) commute with H and from the expression above follows that Lx, (G)4)
does too.

On the other hand H = J(G‘A) so Lx;H equals a polynomial in G|4 and
Lx;(G)), which implies that H o Lx,H = (Lx;H)o H. In turn from H?2=-]
follows Ho Lx,H = —(LXj H)o H, therefore Lx, H = 0 since H is invertible. In
short, we may assume X1, ..., X;, holomorphic without loss of generality. Now
in complex notation one has G = 377, a;(9/dx;) @dx; + > 7 ) hj(9/0v)) @
dvg + 3271 (305, W0/ Ovk) @ daj where hyj, and bl are holomorphic along
A.

If as before we consider complex variables u; = x1 + wW1,..., Un = Ty, + Wn
on an open set A’ C C™ such that A’ "R™ = A, then through the analyticity
aty ..o Fol A, Q, Qp and G may be extended to similar holomorphic objects
Qs eney Oy f, Z, JZ, f~2, Q; and C:', which are defined on an open neighbourhood
Pofp= (p,0) on A’ x B. In particular &y, ..., &, defines F,duy = ... =du, =0
defines A and Q = (dvy A dvy + ... + dvp—1 A dvm)‘j. After shrinking P if

necessary, it is easily checked that (]t" , Z, ﬁ, (~21) verifies the two first conditions
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of Veronese flag.

Observe that given a holomorphic function 1 = p1 -+ then its Q-hamiltonian
X, equals the wg-hamiltonian of y1; where wg is the real part of Q (note that
wr = w on P). On the other hand if u is defined around p and g*du is closed on
F, that is & A...Ad, Ad(duoG) = 0, then ay A... Aoy Ad(dp1 0G) = 0 on P which
implies a1 A... Ao, ALx, G = 0 around p on P; therefore a; /\.../\&T/\LX#(? =0
since this last tensor field is the extension of o A..NapANLx, G. Hence LX”Z: 0
near p; in other words (]?, Z (~2, 51) is a Veronese flag at p.

Set G = Y a;(0/0u;) @ duj+ STy hjr(0/0v)) @ dv + Y1, X; ® du;.
Then Ejk is the prolongation to P of hjr and )N(j that of X;. Consider the
m x m matrix M = (h;i) + hI and its prolongation M = (E]k) + hI where h
is the prolongation of h, which equals v, when h is not constant. Recall that
(t+h),..., (t+h)* are the complex elementary divisors of £| 4 on P; since these
elementary divisors up to change of order are determined by dimKer(¢| 4 +hI)?,
a =1,...,m, these dimensions have to be constant, that is to say each function
rankM®, a = 1,...,m, is constant on P. This fact implies that Tanka“,
a=1,...,m, is constant near p on P and equals rankM*®.

Indeed, as M(p) = M(p) one has rankM® > rankM®. Let 5 be a minor of
M and p the similar one of M®. Then p is the prolongation of p, so p vanishes
on P if p does on P. Therefore rankM® < rankM®. Thus dimKer(‘lijJrl;I)a =
dimKer({j 4+ hI)*, a = 1,...,m, and consequently (¢ + E)“l,..., (t+ E)“ﬁ are
the elementary divisors of ZI 7 closed to p.

A similar argument shows that (t 4+ h)**,..., (t + h)’ are the elementary

divisors of ¢ closed to p. In short, the point p is regular for Z| I

|ANKerdh

When h is not constant, in coordinates (u,v) one has h = VU and Q=
(dvi Advg + ... + dvg—1 A dvm)‘j; in particular w = Z;n:/f(dZAU',g Adzgj—1 —
dz4j—2 Ndzy;) 4. Thus the symplectic reduction of (]?, EN, (~2, 51) can be identified
to the extension by means of complex variables u; = x1 + W1,..., Un = Tn +
1y, of the symplectic reduction of (F,¢,w,w1). Indeed, g1, g2 are function of
Z9m—1, Z2m only so E is spanned by 0/0z9,—3,0/0z2m—2 and from the complex
viewpoint it is the foliation spanned by 9/0v,,—1. Since the symplectic reduction
of (F,¢,w,w1) is a Veronese flag at 7(p), the symplectic reduction of (.7?, 7,9, Q)
is a Veronese flag at (7(p),0), which is the image of p = (p,0) by the canonical
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projection [just adapt the argument showing that (f , Z, ﬁ, (~21) verifies condition
3’) at pJ.

Since h(p) ¢ R from theorems 2.1 and 3.1 follow the existence around p
of a (1,1)-tensor field G’ extending ¢ and projecting in Z?:l a;(0/0u;) @ duy
and functions wy, ..., wy, such that (u,v) = (u1, ..., Un, W1, ..., Wy, is a system of
coordinates,

G =301 a;(0/0u;) @ duj + 3T 055 (w)(9/0w;) ® duwy,
and ﬁ, O 1 are expressed with coefficient functions only depending on w (constant
when h is constant).

Finally, set wy; = 2 +122,..., Wy, = 22m_1+ 122, and observe that é'(TP) -
TP; therefore the restriction to P of G’ defines a (1,1)-tensor field G’ which
projects in J and extends ¢. Now for finishing the proof of theorem 5.1 it is

enough considering G’ and functions 21, ..., Z2.m,.

6. The blocks of a Veronese flag

The aim of this section is to reduce the local study of Veronese flags to
the case where their characteristic polynomial is a power of an irreducible one.
Let (F,¢,w,w;) be a Veronese flag on a manifold P or at some point of P, A
the foliation of the largest vector subspaces and 7 : P — N a local quotient
of P by A. Set codimF = r, dimA = 2m and dimN = n. On N consider
coordinates (z1,...,2,), closed 1-forms aq,...,, and a (1,1)-tensor field J =
Z?Zl(a/axj) ® dz;, where a,...,a, € K, such that the associated Veronese
web is given by J, a1, ..., and dxq A ... Adznp—r A a1 A ... A i never vanishes.

Assume that on an open neighbourhood of a regular point p of £ 4 the char-
acteristic polynomial ¢ of £, 4 is the product of two monic relatively prime poly-
nomials 1 and @2. Then Imp1(€4) = Kerpa(€)4), Impa(£4) = Keroi(£).4)
and A = Imp1(£)4) © Impa(£).4); moreover Impy(f)4) and Impa (£ 4) are fo-
liations because Ny = 0 (apply lemma 2 of [I3]). Thus around p there exist
coordinates (2,2,2) = (Z1,..., Tn, 21, s Zm/, 21, -y 2m) such that Imepq(£)4) is
spanned by 0/0z1, ...,0/0zm and Imga (£ 4) is spanned by 9/071, ..., 0/0%g.

On the other hand wi(Imei(£a), Impa(£)4)) = we(Ime(la), ) =0, k=
0,1, where by definition wy = w. Hence

W = Lrcicjam Jiah (@ 2)d2i Az + 31 i s Fign (@, 2)dZ A dZ;

because dwy = 0. In particular m’ and m are even since wy is symplectic.
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Therefore if G is a (1, 1)-tensor field extending ¢ and projecting in J one
has G = J + Y7y hyk(,2)(8/02) @ dzi + X7y hyk(2,%)(9/0%)) © dZi +
> =1 Xj @ dxj where X1, ..., X, € A.

Let us see that G may be chosen in such a way that Xy, ..., X,, are foliate
both for I'my1 (G| 4) and Impz(G4). Set T' = Z?Zl X, ® dz;. By considering
G+ 2;21 Y; ® aj instead of G' where Y7, ..., Y, are suitable vector fields tangent
to A, we can suppose X,_r4+1 = ... = X,, = 0 without loss of generality. Thus
locally there exist X7, ..., X/ € F functional combinations of 0/0x1,...,0/0x,
with coefficients only depending on x such that TXJ’» =X;,j=1,..,n.

As Imp1(G)4) is spanned by 0/0z1,...,0/0zm and Kerp:(Ga) by 0/0%1,
<.y 0/0Zgz, the morphism ¢1(G4) : Imp1(Ga) — Imp1(G)4) is in fact an
isomorphism whose inverse equals ¢(¢1 (G| 4)) for some polynomial 4 (t) [indeed,
if ¢ ZT:/S ! g;t’ is the characteristic polynomial of ¢1(G|4) restricted to
Imp1(G)4) set ¥(t) = —gg L™ 1 +Z;":/1_1 g;t"~1)]. Therefore Z;":/l(a/@zj)éa
02,4 = p(G1.4) where p(t) = 91(8) - Y1 (1)).

Analogously there is a polynomial p(t) such that )" | (8/0%Zx) ® dZgxja =
AGla)- Set H = Y7 (9/02)) ® dzjy 4 — Sopey (0/0%k) ® dZry4; then H =
¥1(G|a) where ¥1(t) = p(t) — p(t). Observe that Lx H = 0 for any vector field
X such that X =377, f;(2)0/0x;.

As in section 5, from Ng(F,F) = 0 follows Lx,;(Gj4) = G o Lx; (Gla) —
Lyx; (G)4); therefore Lx; (G| 4) and H commute since Lx:H=L,x:H=0and
(Gia)oH = Ho(G)4) because H = 91(G|4). Inturn Lx, H = Lx,(¢1(G|4)) is
a polynomial in G| 4 and Lx,(G|4), which implies that H and Lx, H commute.
On the other hand since H?> = I one has H o Lx,H = —(Lx,H) o H, so H o
Lx,;H =0 and finally Lx, H = 0. Therefore each X is foliate for I'm:(G|4) =
Im(H + I) and Imps(G4) = Im(H — I), that is X; = > fii(x, 2)0/0z +
Sy Fin(w, )0/ 0%

Now in variables (x, z) we can consider the foliation 7’ defined by aq, ..., o,
the (1, 1)-tensor field

G = T+ Yy by, 2)(9/02)) @ dax+ X1 (S0 fi(w, 2)8/02:) @ da,
and its restriction ¢’ to F', the 2-forms w' = 37, fijo(x, 2)dz A dzj,
Wi = Y i<icjems fij1 (@, 2)dzi Adz; (more exactly their restriction to Imep1 (G )

but we omit it for simplifying the notation) and the point p’ corresponding to
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p. It is easily checked that (F',¢ w’ ,w}) is a Veronese flag, respectively a
Veronese flag at p’, if that was the case of (F,¢,w,w1). Similarly in variables
(x,Z) one may consider the foliation F defined by ar, ..., o, the (1,1)-tensor
field G = J + 37y by, 2)(0/0%) ® 2, + S5, (S fix(2,2)0/0%) @
dx;, and its restriction { to f, the 2-forms w = Zlgiqgiﬁ ﬁ-jo(z, Z)dz; A dzj,
W1 = Yicici<m ﬁjl(z,adz A dZz; and the point p corresponding to p; then
(]T', Z, W, w1 ) is a Veronese flag or a Veronese flag at p'if that is case of (F, £, w, w1).

Moreover p’ is regular for ET 4 and p for Z‘ 1 since p was regular for £) 4, @2 is
the characteristic polynomial of ET 4 and ¢ that of Z‘ 4+ In amore technical way
we will say that, around p, (F,¢,w,w;) is the fibered product over N, around
p’ and p, of (F',¢',w',w}) and (.7?,[7,@,@1).

Obviously one may reiterate the process until the characteristic polynomial

of each factor is power of an irreducible one, which thus becomes the only case

to take into account.

7. The local product theorem

In this section is showed that, around every point of some dense open set,
an analytic bihamiltonian structure decomposes into a product of a Kronecker
bihamiltonian structure and a symplectic one if a necessary condition stated
later on holds (see [18§]).

Consider a bihamiltonian structure (A, A1) on a real or complex manifold
M of dimension m. The set of all p € M such that rank(A, A1) is constant
about p is open (obvious) and dense. Indeed, first recall that at any ¢ € M
rank((1—t)A+tA1)(¢) = rank(A, A1)(q) except for a finite number of scalars ¢,
which is < m/2 (see section 1.2 of [I7]). Now choose non-equal scalars by, ..., b
with & > (m/2) + 2; then the set of all p € M such that the rank of each
rank((1 —b;)A +b;A1), 7 =1, ..., k, is locally constant at p is dense, open and
contained in the foregoing open set.

For simplicity sake suppose r = corank(A, A1) locally constant. Since our
problem is local, by considering rank((1—b;)A+b;A1) and rank((1—b;)A+byAq)
for suitable indices j, j instead of A, A1, we may assume maximal (A, Aq), that
is r = corankA = corankA; = corank(A, A1), without loss of generality.

As in sub-section 1.1, for each p € M let A;(p) be the intersection of all
vector subspaces Im(A + tA1)(p), t € K, such that rank(A + tA1)(p) = m —r.
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From the algebraic model follows that the dimension of the symplectic factor
at p equals 2dimA; (p) + r — m. But if ¢1, ..., ¢, are different scalars such that
rank(A +cjA1)(p) = m —r, j = 1,..,m, then A;(p) = N7, Im(A + c;A1)(p)
[see section 1.2 of [17] again]. By continuity .A;(q) = N2 Im(A+c;A1)(g) when
q is close to p therefore dim.A; is a locally decreasing function, which implies
that the dimension of A4; and that of the symplectic factor are locally constant
on a dense open set.

Observe that if (A, A1) decomposes into a product near p, then the dimension
of the symplectic factor has to be constant close to p.

In short, suppose that on an open set M’ C M the bihamiltonian structure
is maximal and its rank and the dimension of the symplectic factor are constant.
Then, following sub-section 1.1, set m = 2m’+2n—r where 2m’ is the dimension
of the symplectic factor and consider the Veronese flag (F, ¢, w,w1) on the local
quotient P of M’ by the secondary axis As.

Given a (linear) symplectic form 7 and a 2-form 71 on an even dimensional
vector space V', let K be the endomorphism of V defined by n = 7(K, ).

By definition the characteristic polynomial of (r,71) will be that of K. Let

=1 437

factor of (A, A1) on M’, that is 2™ + 2530’—1% (p)t?, for each p € M, is the

:é_lﬁjtj be the characteristic polynomial of the symplectic

characteristic polynomial of the symplectic factor of (A(p), A1(p)) when regarded
as a couple of (linear) symplectic forms.

On the other hand let ¢ = g2m’ 4 Z?Z(;_l h;t? be the characteristic polyno-
mial of /| 4. By means of the algebraic model of (A(p), A1(p)) it is not hard to see
that the symplectic factor of (A(p), A1(p)) is isomorphic to (w(mp(p)), w1 (wp(p))).
Thus the characteristic polynomial of (£ 4)(7p(p)) equals @(p), that is locally
lsz =hjonmp, j =0,..,2m' — 1, which in particular shows the differentiability

of TL(), ...,’}VLlefl.

Proposition 7.1. The functions 7L0, ...,Egm/_l are in involution both for A

and Ay. Moreover {A(dﬁj, )(P)}j=o0.....2m'—1 and {Al(leLj, )(P)}i=0....2m"—1

..........

span the same vector subspace of Tp,M' for any p € M'.

Proof. Let { , }, be the Poisson structure on P defined by (A, w) and
{ , }u that defined by (A,w1). Recall that { , }, is the projection of A
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and { , }., that of A;. Thus for proving the involution of EO, vy iNLgm/,l it is
enough showing that hg, ..., ha;/—1 are in involution with respect to { , }.
and { , }o,.

On the other hand by lemma 1.2, kdgp+1 = (k + 1)dgi o £ on F where
gi. = trace(£ )%, k > 0, whence (k +1)£X,, = kX,,,,. Therefore if 1 <k <k
one has w(X,., Xy, ) = C(k, k) ~w(€E_ngk,ng) = 0 since w(ﬁg_k, ) is a 2-
form on F; so {9, gx }» = 0. But ho, ..., hopms—1 are function of gi, ..., gr, ... (see
section 3) therefore {h;, h;}., = 0.

As it was pointed out in sub-section 1.1, from the algebraic model fol-
lows that Aq(np€*8, ) = A(npB, ) for any 8 € T;P(q)P and ¢ € M.
Thus in our case kdgr+1 = (k + 1)dgr o £ on F implies A(d(gy o mp), ) =
k(k+1)"'A1(d(gry1 omp), ). Since hg, ..., hom/—1 are function of g1, ..., gk, ...
and the traces are function of hy, ..., ha,r—1 (see section 3 again), the same thing
happens with 7L0, ...,Egm/_l and g1 o7p, ..., gk © Tp, ... Therefore the vector sub-
space spanned by {A(dl;j, )(P)}i=o
{A1(dhj, )(P)}i=o, .. 2m—1.

For finishing the proof it is enough inverting the roles of A and A; because

om/—1 1 contained in that spanned by

.....

the characteristic polynomial of the symplectic factor of (A1, A) equals 2m’ 4

S 2 R —h '+ Byt O

Now assume that (M’, A, A1) is diffeomorphic to a product of a Kronecker bi-
hamiltonian structure and a symplectic one (M7, A’, A}) x (Mo, A", AY). Let By
and Bs be the foliations given by the first and second factor respectively. Then
A1 D By and 710, ...,lNzgm/,l are Bp-foliate functions; therefore the dimension of
the vector subspace of Ty M’ spanned by dﬁo(q), s dﬁgmr_l(q) equals the di-
mension of the vector subspace of A7 (q) spanned by dﬁo‘Al(q), s dﬁ2m’—1|A1(q)
whenever g € M.

Thus the foregoing property is necessary for the existence of a local decom-
position into a product of a Kronecker bihamiltonian structure and a symplectic
one.

A point p of M is called regular for (A, Ay) if the three following conditions
hold:

1) The rank (A, Ay) is constant on an open neighbourhood M’ of this point.

Observe that this first condition allows assuming maximal (A, Aq) by replac-
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ing (A, A1) by (1 —b)A+bA; and (1 —b")A + b’ A4, for suitable scalars b, b’, and
shrinking M’. Then:

2) The dimension of the symplectic factor is constant near p, that is on M’ by
shrinking this neighbourhood again if necessary.

3) The point 7p(p) is regular for /) 4.

Obviously there are many choices of scalars b, b’ such that ((1—b)A+bA4, (1—
b')A + b A1) is maximal around p, but it is easily checked that conditions 2) and
3) do not depend on them.

Since the set of regular points of ¢4 is open and dense and the projection
mp is a submersion, the set of regular points of (A, A1) is dense and open on M;

it will be named the reqular open set.

Theorem 7.1. Consider a real analytic or holomorphic bihamiltonian struc-
ture (A, A1) on M and a regular point p. Let g = t2™ + Z?:&flﬁjtj be the
characteristic polynomial of the symplectic factor of (A, A1) near p. Assume
that when q 1is close to p the vector subspace spanned by leLO(q), ...,dﬁgm/,l(q)
and that spanned by leLO‘Al(q), e dﬁ?m’fl\Al(q) have the same dimension. Then,
around p, (A, A1) decomposes into a product of a Kronecker bihamiltonian struc-
ture and a symplectic one.

Moreover, if o(p) only has real roots then in the C*° category (A, A1) locally

decomposes into a product Kronecker-symplectic.

Let us prove theorem 7.1. Shrinking M we may assume that the hypothesis
of theorem hold for every point of this manifold. Around 7y (p) consider coor-
dinates (x1, ..., T, ), scalars aq, ..., a,, the tensor field J = 2?21 a;(0/0x;) @dx;
and closed 1-forms aq, ..., o, such that aq, ..., a, are not roots of the character-
istic polynomial p(7p(p)) of ({|4)(7mp(p)) and ax, ..., ay,J define the Veronese
web associated to the Veronese flag (F, ¢,w,w1) on P induced in turn by (A, Aq).
Now shrinking P allows supposing that a, ..., a,, never are roots of the charac-
teristic polynomial ¢ of £ 4.

The next aim will be to show the existence near wp(p) of functions z1, ..., zom/
and a (1, 1)-tensor field G extending ¢ such that (z,2) = (21,..., Tn, 21, .-y 22m/)
is a system of coordinates, G = Y°7_, a;(0/0x;) @dx;+>77 ) hj(2)(0/92) @

dzr and w,w; are expressed relative to dzl| Aoy dzgm/‘ A with coefficient func-
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tions only depending on z.

First, around 7p(p), consider a (1,1)-tensor field Gy extending ¢ and pro-
jecting in J. Taking into account section 6 one may suppose G adapted to
the blocks of (F, ¢, w,w1), where each of them has a characteristic polynomial
power of an irreducible one. Therefore it suffices dealing with the problem in
every block (F', ¢ w’',w]). Observe that the corresponding point p’ is regular
for ET o

On the other hand each i~Lj = hj omp and the foliation .A; projects in A,
therefore at every point the vector subspace spanned by dho, ..., dhom,—1 and
that spanned by dho‘A, e dhgmr_llA have the same dimension. Thus since ¢ is
the product of the characteristic polynomial of the blocks one has the following
two cases:

(1) If (t— f)2™" is the characteristic polynomial of ﬁi 4 then fis either constant
or (df|a/)(p') # 0; besides f never takes the values a1, ..., a,.

(I1) If (2 + ft + g)™", where K = R and f? < 4g, is the the characteristic
polynomial of 4«4/ then f is either constant or (df|4/)(p’) # 0.

When f is constant theorems 2.1 and 5.1 give us the required coordinates
and the (1, 1)-tensor field. If (dfj4/)(p") # O these objects are given by theorems
3.1 and 5.1, provided that we are able to show that the symplectic reduction
is a Veronese flag or, more exactly, to check the third condition of this no-
tion. Let (F',¢',&' @) be the symplectic reduction of (F',¢,w’,w}) and 7’ its
corresponding canonical projection. Consider a function h on an open set of
the symplectic reduction such that (¢)*dh is closed along F’. Then regarded
as a function on an open set of P in the obvious way (that is first compose
with 7’ and then extend from the block to P) ¢*dh is closed along the foliation
F N Kerdf or F N Kerdf N Kerdg. By lemma 1.6, at each point Lx ¢ sends
F N Kerdf, respectively F N Kerdf N Kerdg, into the vector space spanned by
Xy, respectively Xy, X,.

But X}, is tangent to the block corresponding to (F’,¢',w’,w]) since h only
depends on the variables of this block. Therefore L X}E’ sends F' N Kerdf or
F' N Kerdf N Kerdg into the vector space spanned by X} or X%, X, where
X7, X}, X, are the w'-hamiltonians of h, f, g respectively.

On the other hand X}h = X h = 0, therefore X} f = Xj g = 0; that is to
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say X is tangent to A’ N Kerdf or to A’ N Kerdf N Kerdg. Moreover by 7’
the vector field X, projects in the @’-hamiltonian X}, of h, whereas U\ FraKerdf
or U\ Finkerafnicerdg do in £'. Thus Lx; ' restricted to F' N Kerdf or to F' N
Kerdf N Kerdg projects in LX}QE', whence LX;LE/ = 0. In short, the symplectic
reduction is a Veronese flag.

We need the following lemma whose proof is an exercise on Poisson structures

(see [20]).

Lemma 7.1. On a manifold M consider a Poisson structure A and a 2i-
codimensional foliation G. Assume that:
(a) The bracket of any two foliate functions is a foliate function.
(b) The hamiltonians of the foliate functions give rise to a 2m-dimensional

vector sub-bundle 5 of TM.

Then G is a foliation, TM = GG and, in coordinates (U, 0) = (UL eery Uy V4 -

such that G and G are defined by dvy = ... = dvg, =0 and duy = ... = dug =0

respectively, one has

A =3 cicyan i (W) (0 0us) A (D/uj) + 321 <z jngn 003 (0)(9)D0i) A (D) Dvy).
Moreover 371 <, j<om 6~’ij (v)(9/0v;) A (8/0v;) is a symplectic Poisson struc-

ture in variables (v1, ..., Vo).

By means of mp functions zi, ..., 29,y may be regarded as functions defined
around p on M; since wp is a submersion Gy = Ker(dz; A ... A dzopy) is a
2m/-codimensional foliation about p. On the other hand, since {z;, z;}. and
{#i, 2j}w, are only function of z and A, Ay project in the bivectors associated to
(A, w) and (A,wn) respectively, the functions A(dhy,dhs) and Ay (dhy,dhs) are
Go-foliate whenever hqy, ho are Gy-foliate. Besides, near p, the A-hamiltonians
of the Gy-foliate functions give rise to a vector sub-bundle G; of dimension 2m/’
because w is symplectic on A. In the same way, the Aj-hamiltonians of the
Go-foliate functions give rise to a vector sub-bundle G’; of dimension 2m/. But
M(mpltp, ) = AMrapB, ), dzj oG = Zi’;ﬂ hjk(2)dz, 5 = 1,...,2m/, and
{4 = G| 4 is invertible; therefore G =0G;.

By lemma 7.1 applied to A, A; and Gy, the vector sub-bundle G, is a foliation
and locally TM = Gy & G1. Thus around p there exist functions w1, ..., Um—2m

such that (u,2z) = (U1, ..., Umn—2m/, 21, -, Z2m’) 1S & system of coordinates, Gy is
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defined by dz; = ... = dzo,y = 0 and Gy by du; = ... = duy_2m = 0. Now from

lemma 7.1 follows that

A =3 "1cicijcm—om i3 (w)(8/0ui) A (8] Du;)
+ Cicicycom 003 (2)(0/02) 1 (9/0)
A =3 cicjcm—am i (w)(9/0u;) A (0] Ouy)
+ Xncicjcam 0113 (2)(0/02:) A (0/02))
which decomposes (A, A1) into a product of a Kronecker bihamiltonian structure

[variables (w1, ..., Um—2m/)] and a symplectic one [variables (z1, ..., 22,,/)] and

finishes the proof of theorem 7.1.

8. A counter-example

In this section one will give an example, in the C'*° category, of a bihamil-
tonian structure for which theorem 7.1 fails (see [19]); more exactly one will
show that the partial tensor field ¢, of the associated Veronese web, cannot be
extended to a (1,1)-tensor field with no Nijenhuis torsion. In our example the
bihamiltonian structured considered defines a G-structure and the Lewy’s result
[7] prevents us to find an extension of ¢ with vanishing Nijenhuis torsion, which
clearly contradicts theorem 7.1 (the reader interested in a classic example of
non-equivalent G-structures may see [6]).

First let us establish some auxiliary results. Consider on a manifold P
endowed with coordinates (x,y) = (1, ..., Tn, Y1, ---, Ym ), for example on an open
set of K"*™  the foliation A given by dx; = ... = dz, = 0, and in coordinates
x = (z1,...,Zn), that is on the quotient of P by A, a Veronese web defined by
J =377 a;(9/9z;) @ dxj where ai,...,a, € K — {0} and the closed 1-forms
a1, ..., . Recall that in this case a1 A ... Aay Ad(ajoJ)=0,5=1,..,r, and
Qi, ..., qp, J* span, at each point, the same vector space that dx1,...,dx,. In
the obvious way J, ay, ..., , will be regarded as objects on P too. On the other
hand, assume that the n-form dz; A ... Adz,_. AN a1 A ... A o, never vanishes.

On Plet G =J+H+ Z?;fXJ ® dx; where Xq,...,Xpn—r € A, H =
> k=1 @ik (y)(9/0y;) ® dyi, and the Nijenhuis torsion of H|4 vanishes.

Lemma 8.1. One has:
(a) If Noe Nai A ... Nay. =0 then (Lx,; H)
(b) If (LX].H)‘A =0,7=1,..,n—r, then Ng(A, )=0.

=0,5=1,...,n—r.
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Proof. (a) From the formula Ng(X, )= LexG — GLxG straightforward
follows Ng(9/0x;, A) = 0,1 = n—1r+1,...,n. But Ng(9/0yx, )ANar A
wNap =0, k =1,...,m, so Ng(0/9yr, ) = 0 since the 1-forms aq,...,
restricted to dr; = ... = dx,,—, = 0 are linearly independent everywhere. Thus
N¢(0/0xj, A) =0, j =1,...,n — r, which implies (LXjH)lA =0.

(b) Clearly Ng(A, A) = 0 and Ng(9/0z;, A) = 0 when ¢ runs from n—r+1
to n. On the other hand N¢(0/0x;, A) = (Lx; H)(A)ifj=1,...,n—r. O

Lemma 8.2. Consider a tensor field G” = J + H + Y_7_, X; ® dz; where
Xy, .., X, €A If Ng» =0 then (LX]'H)LA =0,7=1,...,n.

Proof. Now (Ly/p,,G")(A) = 0 whereas (Lx; H)(A) = (Lar(a/92,)G")(A) =
0.0

Hereafter n = 3 and J = Z?Zl a;(0/0z;) @ dx; where a1, as,as are non-
equal and non-vanishing real numbers. Besides one will replace m by 4m, that
is we will consider coordinates (z1, 2,3, Y1, ..., Yam), and P will be an open
set of R¥™*3, On the other hand one will set r = 2, oy = dx; — dxs and
oo = xodxo — drs. Then ay, as, oy o J and ag o J are closed. It is easily
checked that oy, as, J define a Veronese web of codimension two in variables x
and dxq1 A a1 A ag = drq A drg A des.

For making calculations easy, we introduce a complex structure along A
by means of the complex variables (z,u) = (21,...; Zm, U1, ..., U ), Where z1 =
Y1+ w2, U1 = Y3 + Wayey Zm = Yam—3 + Wam—2, Um = Yam—1 + Wam. Set H =
07 (P +Z;n:1(8/8zj) ®duj where I(, ) = ZT:1 [(0/0z)®@dzj+(0/0uj) ® duy).

From the real viewpoint H is a (1,1)-tensor field with constant coefficients
and minimal polynomial #(¢2 4 1)2, whose semi-simple and nilpotent parts equal

(2 and 3270 (9/0z5) @ duy respectively.

Lemma 8.3. Consider the (1,1)-tensor field G' = J + H and a complex
valued function f(x,u) holomorphic along A. If d(df o G') A ay A e = 0 then,
locally, there exists a complex valued function g(x,z,u) holomorphic along A

such that d(dgo G') Nax ANag =0 and (dg o (H — ZI(Z7U)>>|A =df |4

Let us prove this result. First consider the basis of the cotangent bundle,

with respect to variables z, {dxi,a1,as} and its dual basis X = 9/0x1 +
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0/0xa+x20/0x3, X1 = —0/0x9—220/0x3, X9 = —0/0x3. Taking into account
that dh = X (h)dxy + X1 (h)ay + Xa(h)ag + 327 [(Oh/z5)dz; + (Oh/du;)du,]
when h is holomorphic along A, a calculation shows that d(df o G') A ay A
ay = 0 if and only if (JX —1X) - (98f/0u;) =0, j = 1,...,m. On the other
hand (dg o (H = tI(:u))), 4 = df 4 means that g = doity 20f [Ouj + p(x, u).
Therefore we have to find a function ¢(x, u) holomorphic along A in such a way
that d(dg o G') A ax A ag = 0. But again a calculation shows that this last
condition is equivalent to the equation (JX —:X) - (0p/0u;) = X - (0f /0u;),
j=1,...,m [observe that d(d(0f/0ur) o G') Aay ANag =0, k = 1,...,m, since
d(df o G') Nay AN ag = 0.

Now consider a function ¢ (z,u) such that (JX —2X)-¢ =0 and set Y =
(a1 —2)"1210/0z1 + (a2 —1) " 1220/0x2+ ((a2 —2) 1 + (a3 —1) "1)230/0x3. Then
[JX —X,Y] = X, which implies (JX —1X)-h =X ¢ where h=Y -.

Since Y commutes with 8/du;,9/0%;,0/0u;, j = 1,...,m, it suffices to set
p =Y - f for finishing the proof of lemma 8.3.

Now let G = J + H + Z @ dxy where Z = 37" | fj(x,u)0/0z; and each
f; is holomorphic along A. Then (LZH)‘A = 0 and, by lemma 8.1, one has

Ng(A, ) =0; thus Ng A a3 A as = 0 since there are only three variables .

Theorem 8.1. There exists a complex valued function f(z), © € R3, such
that, if one sets fi = uif, then the Nijenhuis torsion of the (1,1)-tensor field

G = G+ Z1 a1+ Za®as never vanishes around any point whatever Z1, Zs € A.

Proof. The real characteristic polynomial ¢ of G equals 11 - ¥ where
VY1 = (t —a1)(t — az)(t — as) and ¢y = (t* + 1)*™. Assume Ng = 0 for some
71, Zy € A. Then locally G decompose into a product of two manifolds endowed
each of them with a (1, 1)-tensor field whose real characteristic polynomials are
11 and s respectively. Both factor tensor fields are flat because the first one
can be identified to J and the second one to the restriction of G to a leaf of
the foliation A and, obviously, this restriction is flat (in fact the foliation by the
second factor equals A).

Note that the complex structure along A is given by the semi-simple part

of G| 4. So there exist coordinates (z,z,u) = (T1,T2,23, 21, .+, Zms UL, vy U ),
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where T1 = x1, T3 = X2, T3 = x3, such that dry = dZs = dz3 = 0 defines
A, oy = di1 — dTs, ag = TodTo — dI3, Z1,..., Zm, UL, ..., Uy, are holomorphic
along A and G = J 4+ H where J = 2?21 a;(0/0%;) ® di; and H = Iz +
ST (0/0%) & i

Clearly d(duy o G) A oy A ap = 0 [calculate it in coordinates (z,z,u)]. Be-
sides in coordinates (Z,Zz,u) function u; does not depend on Z since it is fo-
liate with respect to the foliation Ker((G — ol )ja)- Therefore from lemma
8.3 applied, in coordinates (Z,z,u), to u; and G follows the local existence

of a function g holomorphic along A such that d(dg o é) Aa; Aag = 0 and
duy |4 = (dg o (H =11z )

a But (H — ’Ll(gﬂ))‘A = (H - ll(zvu))l.A since this

object is the nilpotent part of é‘A, s0 duyjq = (dgo (H —1l, )), ,; moreover

yt
d(dg o G) Ay A g = 0 because (G — G) A ay Aag = 0. The ﬁrlst condition
implies that g = 21 + p(x, u) where p is holomorphic along A.

Now take f1 = uyf(x); then 0 = (d(dg o G) A ag A a2)(X, X1, X2,0/0u1) =
d(dg o G)(X,0/0u1) = X(dg(G0/du1)) — 0/0u1(dg(GX)), which yields the
equation

(*)  (JX —uX)- (0p/0ur) + [ = 0.

Let X = [JX,—X]. Then X = (a3 — a2)d/dxs # 0 since as # as. Regarded
on R3, the vector fields JX, — X, X , which are linearly independent everywhere,
define a 3-dimensional Lie algebra whose center is spanned by X. Moreover
biJX — by X + b3 X is complete for any by, ba, b3 € R.

On R3 endowed with coordinates y = (y1, 92, y3) set Y1 = —9/0y1—2y20/0ys,
Yo = —0/0y2 + 2y10/0ys and Y = [Y1,Y2] = —40/0ys; note that Vi, Ys, Y
are linearly independent everywhere and define a 3-dimensional Lie algebra
whose center is spanned by }7; moreover b1Y; + baYs + bgi; is complete for
any by, by, bz € R. As R3 is simply connected there is a diffeomorphism of this
space transforming JX, — X, X in Y1,Ys, Y respectively.

From the Lewy’s example (see (5) of page 156 of [7]) follows the existence
of a C* function F' : R?® — C such that the equation (Y; + ng)ﬁ = I has
no solution in any neighbourhood of any point of R3. Pulling-back —F gives
a function f for which equation (*) has no solution at all (regard 9p/du; as a
function of z and uy, ..., u,, as parameters); in other words if one takes f1 = uy f

then Nz never vanishes around any point. [

68



The next step will be to apply the construction of sub-section 1.2 to a fo-
liation and a particular (1, 1)-tensor field on R7. More exactly, set m = 1 and
S=J+4+H+u f(x)(0/0z1) ® dx;y or in real notation S = 2?21 a;(0/0z;) ®
da;+ 35, [(0/0ys;) @ dya; 1 — () Dyzj—1) @ dys;) + (9/0yr) @ dys + (9/Dys) @
dys + [(y391 — ¥492)(9/0y1) + (y392 + ¥491)(9/0y2)] ® dxy where f = g1 + 1g2.

Note that, as it was pointed out before, Ng A a3 A aog = 0. Moreover, if «
is a closed 1-form such that Kera D Ker(ay A az) then a3 Aas Ad(ao S) =0
since o = 2?21 hi(z)dzi. In other words the construction of sub-section 1.2
applies to S and G = Ker(ag A az).

Let (z,y,2,9) = (21, 22,3, Y1, -, Y4, T1, T2, T3, 1, -.., Y4) be the coordinates
of T*R" associated to (v,y). Then w = Z?:l dz; A dz; + 2?21 dg; A dy;,
w1 =w(S*, ) and
S* =301 a;((0/0x5) @ dxj + (0/0i;) @ di;]

+ 3071 1(0/0y2;) ® dya;j 1 — (0/0ya;j—1) ® dys;

+(0/0%92j-1) @ df2j — (0/0%2;) @ dij2;—1]

+(0/0y1) ® dys + (0/9y2) ® dys + (0/0y3) ® dyr + (9/0ya) ® dy2

+[(ys91 — y492)(0/0y1) + (y392 + y491)(9/Dy2)

— (5191 + 9292)(0/093) + (§192 — §291)(9/0Fa)] ® dz:

+3°0_1(0/0%) @ B
where (1, 82, B3 are functional combinations of dx1, dxs, dxs, dys, dys, dy1, dys.

Recall that in our case Gy is a 2-dimensional foliation, isotropic and symplec-
ticly complete for w and w1, spanned by the w-hamiltonians of a0 J ™1, agoJ !
or by the wi-hamiltonians of a1, ap, when oy, as, a1 0J ! agoJ ! are regarded
as 1-forms on T*R7 in the obvious way.

Therefore by projection the Poisson structures A, and A, give rise to a bi-
hamiltonian structure (A, A1) on the global quotient M = T*R” /G, (proposition
1.4).

Since the w-hamiltonians of a0 J =1, agoJ ! equal —a; *0/0%; +ay '0/0i,,
—aglma/a@ + agla/&fcg, the submanifold of T*R7 defined by &3 = #3 = 0 is
transverse to Gg, which allows us to identify it with M endowed with coordinates
(x1,22,23,Y1, -, Y4, Z1, Y1, ---, Y1), whereas A, A; are given by the restriction to
Mofajod 1 asoJ 1 wand o, as, wi respectively.

In general (see the proof of proposition 1.4) A+tA; is defined by the restric-
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tion to M of ayo(S*+tI)™ L = ayo(J+tI)™, ago(S*+tI) L =ajo(J+tI)~!
and w((I+t(S*)~1)~1, ). Therefore the rank of (A, A1) equals 10, the primary
axis of (A, A1) is the foliation dxq = dzg = dzs = 0 and the secondary one the
foliation spanned by 9/0%1; in particular the dimension of the symplectic factor
is 8 everywhere and 4 that of the Kronecker factor. Thus the global quotient of
M by the secondary axis is identified, in a natural way, to the submanifold P’
of T*R” defined by the equations 1 = 22 = 3 = 0 endowed with coordinates
(z,y,7), while the foliation A of the Veronese flag on P’ induced by (A, A1) is
given by dr; = dxe = dxs = 0, and the Veronese web is defined in variables
x = (21, 22,23) by J, a1, as.

On the other hand, as w; = w(S*, ) and S* projects on P’ in the (1,1)-
tensor field
G =Y, 0a;(0/0z;) ® da;

+ 3071 1(0/0y2;) ® dya;j 1 — (0/0yaj—1) ® dys;

+(0/092j-1) @ df2j — (0/0%2;) @ dij2;—1]

+(0/0y1) @ dys + (0/9y2) ® dys + (0/0y3) ® dir + (9/0ya) ® dy2

+(y391 — y492)(0/0y1) + (y3g2 + yag1)(0/0y2)

— (5191 + 9292)(0/993) + (9192 — §291)(9/0F4)] ® d1,
this last one is a prolongation of the partial (1,1)-tensor field ¢ : F — TP,
which projects in J.

Since £|4 = G|4 is 0-deformable because it is written with constant coef-
ficients, the algebraic model of the symplectic factor of (A, A1), which is com-
pletely determined by £) 4, does not depend on the point considered. In particu-
lar its characteristic polynomial equals (#2 + 1)* and the hypothesis of theorem
7.1 on the coeflicients of this polynomial automatically holds.

Note that the algebraic model of the Veronese web in variables x does not
depend on the point as in dimension three and codimension two there is only
one model. Thus the algebraic model of the Kronecker factor is independent of
the point, (A, A1) defines a G-structure and M is the regular open set of (A, Ay).

Assume that, around some point ¢ of M, the bihamiltonian structure (A, A1)
decomposes into a product Kronecker-symplectic. Then considering the local
quotient by the secondary axis on each factor separately implies the existence

about of some point p € P’ of a (1,1)-tensor field é, which prolongs ¢ and
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projects in J, whose Nijenhuis torsion vanishes. In other words, around p there
exist two vector fields Z1, Z2 € A such that Nz = 0 where G=G+ Z1®ay +
Zo ® .

Now set y5 = ¥s3, Y6 = —Y4, Y7 = Y1, Ys = —¥y2 and consider complex
variables z1 = y1 + wo, u1 = y3 + w4, 22 = Y5 + 1yg and us = y7 + 1ys. Then
G=J+4+H+Z ®dx, where Z = uy f0/0z1 — uaf0/0z2 and f = g1 + 1g2.

By theorem 8.1 one may choose function f in such a way that the Nijenhuis
torsion of G never vanishes about any point, which implies that (A, A1) does
not decompose into a product Kronecker-symplectic around any point.

In short, one has constructed a counter-ezample to theorem 7.1 in the C*

case.

Appendix: A splitting property for (1,1)-tensor fields

Nowadays it is well known, and belongs to the mathematical folklore, that
a (1, 1)-tensor fields whose Nijenhuis torsion vanishes locally follows the decom-
position of its characteristic polynomial (see [2]). Nevertheless, and for making

our text more self-contained, we will prove this result here. More exactly:

Proposition A.1. Consider a (1,1)-tensor fields G on a n-manifold M.
Let ¢ be its characteristic polynomial. Assume that:
(1) Ne =0,
(2) ¢ = 1 @2 where ¢1,pa are monic polynomials, of respective degrees nq
and na, relatively prime at each point.

Then, around every point, (M,G) decomposes into a product (My,G1) X
(M, G2), where dimMy = nq, dimMs = na, Ng, = Ng, =0, @1 is the charac-
teristic polynomial of G1 (more exactly o1 is the pull-back of the characteristic

polynomial of Gy by the first projection) and 2 that of Ga.

Let us prove proposition A.1. Set H; = ¢2(G) and Hs = ¢1(G). By
algebraic reasons KerH; = ImHy, KerHs = ImH;, ImH; and ImH, are
vector sub-bundles of dimension n; and ny respectively and TM = ImH; &
ImH,. Moreover ImH; and ImH are G-invariant, ¢1(H1) = @2(Hz) = 0, and
Hiy,p2(Hy) : ImHy — ImHy, Ha,p1(Hz) : ImHy — ImHy are isomorphisms.

Since Ng = 0 one has (Lgrx(G"))Y = (G¥Lx(G"))Y for any vector fields
X,Y and natural numbers k,r. Recall that if His a (1,1)-tensor field then
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szﬁ = fLzH+ (HZ)®df — Z® (df o H). Now a straightforward calculation

shows:

Lemma A.1. Consider functions hg, ..., hs and set H = ZZ:O hiGE. Then
Ny (X,Y) = 27:_01 [0 (X)G'Y — o;(Y)GI X]| where each «; is a 1-form func-
tional combination of dhy o G", k=0,...,s, r=0,....,n— 1.

In particular Ng = 0 if hg, ..., hs are constant.

By definition of Nijenhuis torsion [H1X, H1Y] — Ny, (X,Y) is a section of
ImH;. Therefore given vector fields X,Y € I'mH;, since GF (ImHy) C ImHy,
from lemma A.1 follows that [H1 X, H1Y]| € ImH,. But the vector fields H;Z
such that Z € ImH; span ImH,, so ImH; is involutive; in turn and by a
similar reason I'mHs is involutive too.

In other words, locally, M can be regarded as a product My x M, associated
to the decomposition of the tangent bundle TM = ImH; & ImH,; moreover
G(TM; x {0}) € TM; x {0} and G({0} x TMs) C {0} x TMs. Thus there
exist two (1, 1)-tensor field Gy : TMy — T My, perhaps depending on Ms, and
Gs : TMy — T M,, perhaps depending on M, such that G = G1 + G when
G1,Gs are considered on TM in the natural way (that is G1({0} x TM3) =0
and G2(TM; x {0}) = 0). The proof will be finished if we are able to show that
G1,G2 do not depend on Ms and M; respectively, since in this case Ng = 0
obviously implies Ng, = Ng, = 0.

We start dealing with the case where there exist a symplectic form w and a
closed 2-form wy such that w; = w(G, ); recall that w(G, )=w( ,G). Then
w(ImHy, ImHz) = w(Im(p2(G)), Im(¢1(G))) = w(Im(e1(G) e 2(G)), TM) =
0; in a analogous way one has wy(ImH,,ImHs) = 0. Now consider coordinates
(z,y) = (1, .oy Tnyy Y1y oo Yny) o0 M such that 9/0xq,...,0/0x,, span ImH;
and 8/0y1,...,0/0yn, span ImHy. Then w = W' + &’ and w; = Wj + WY
where w’ =37, ;o fij(@)dz; Ndrg, W' =370 e, 9i5(Y)dys A dyj, wi =
Di<ici<n fij(x)dz; A dzj and Wi = Y i<icj<n, 9ij (Y)dy: A dyj, because dw =
dw; = 0 and w(9/0xk,d/0y,) = w1(0/0xk,0/0y,) = 0, k = 1,....,n1, T =
1,...,ng. Thus wj =w'(Gy, ) in coordinates (z1,...,2,,) regarded on M; and
wf = w"(G2, ) incoordinates (yi, ..., Yn,) on Ma; whereby G only depends on

(21, ..., Zn, ) and Go2 on (y1, ..., Yn, ), which proves proposition A.1 in this case.
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In the general case consider the prolongation G* of G to T*M (see sub-
section 1.2) whose characteristic polynomial equals 2, or more exactly the
pull-back of ©? by the canonical projection 7 : T*M — M. Now Ng- = 0, ¢? =
©? - 03 and, since on T*M there exist w and w; as before, G* decomposes into a
sum G* = G;+G3 in such a way that ImG} = Imp3(G*), KerG; = Imp?(G*),
ImG3 = Impi(G*) and KerGs = Imp3(G*). Moreover Ng: = Ngz = 0 as
Ng- = 0.

Again, consider coordinates (z,y) = (1, ..., Tny, Y1, -y Yny) o0 M such that
0/0x1,...,0/0x,, span ImH; and 8/0y1,...,0/0yn, span ImH,. Identify M
to the zero section Sy of T*M. If (x,y,Z,7) are the associated coordinates on
T*M, in which the zero section is given by £ = 0, g = 0, from the formula of
the prolongation given in sub-section 1.2 easily follows that G*(T'Sy) C T'So,
G%(TSp) C TSy and G3(TSo) C T'Sp. Besides (Imp3(G*)) NTSy = Imp2(G),
(Imp?(G*)) N TSy = Imp1(G), Gls, = G, Gijg, = G1 and G55 = G [it is
just an algebraic verification at each point of Sp]. Thus Ng, = Ng, = 0 on
M. In particular from Ng, (0/0y,, )= 0follows L(y/s,,)G1 =0,7=1,...,n2,
that is G; does not depend on Ms. Analogously one shows that G2 does not
depend on M. Therefore the proof of proposition A.1 is finished.
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