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Abstract

In this work one proves that, around each point of a dense open set (regular

points), a real analytic or holomorphic bihamiltonian structure decomposes into

a product of a Kronecker bihamiltonian structure and a symplectic one if a

necessary condition on the characteristic polynomial of the symplectic factor

holds. Moreover we give an example of bihamiltonian structure for showing

that this result does not extend to the C∞- category.

Thus a classical problem on the geometric theory of bihamiltonian structures

is solved at almost every point.

Introduction

Given two Poisson structures Λ,Λ1 on a real (at least C∞) or complex (holo-

morphic) manifoldM , following Magri [9] one will say that (Λ,Λ1) is a bihamil-

tonian structure (or that Λ,Λ1 are compatible) if Λ +Λ1 is a Poisson structure

as well. Bihamiltonian structures are a useful tool for dealing with some dif-

ferential equations many of them with a physical meaning; besides they are

interesting from the geometric viewpoint too that will be the case here.

The algebraic classification of the pairs of bivectors on a finite dimensional

real or complex vector space was given by Gelfand and Zakharevich in [4].

Essentially each pair decomposes into the product of a Kronecker pair and a

symplectic one (see [4, 17]). Therefore it is natural to ask whether this de-

composition into a product Kronecker-symplectic holds, at least locally, for

bihamiltonian structures as well, which would be an important steep toward

their classification. One recalls that Kronecker bihamiltonian structures are in-

timately related to Veronese webs (see [17] for an exposition of the local theory

of Veronese webs and its relationship with Kronecker bihamiltonian structures),
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whereas the local classification of symplectic bihamiltonian structures, that is

of pairs of compatible symplectic forms, is known at almost every point (see

[12, 13]).

The chief goal of this work is to show that, around every point of a dense

open set (regular points), a real analytic or holomorphic bihamiltonian structure

decomposes into a product Kronecker-symplectic if a necessary condition on the

characteristic polynomial of the symplectic factor holds (theorem 7.1). Moreover

we exhibit an example of C∞- bihamiltonian structure for which this result fails.

These results have been annoced in [18, 19].

As main tool for this purpose, to any bihamiltonian structure we associate a

new object called a Veronese flag, which generalizes the notion of Veronese web

introduced by Gelfand and Zakharevich in [4] (codimension one) and later on

by others authors [10, 16] (higher codimension). Roughly speaking the crucial

point is to show that, about each regular point, a Veronese flag is the product of

a Veronese web and a pair of compatible symplectic forms. For that one has to

prove, in a indirect way, the existence of solutions of some differential equations

not explicitly formulated. In the complex case they are always ordinary whereas

in some real cases we have to deal with systems of partial derivative equations,

which may contain the Lewy’s example [7] as sub-system; thus the result fails

in the C∞ category. In the real analytic case a method of complexification

transforms the real problem on a complex one. Once the decomposition of

Veronese flags established, that of bihamiltonian structures follows from it with

a little extra-work.

The study of bihamiltonian structures at not regular points rather belongs

to the theory of singularities and, in spite of its great interest, will be not

considered here.

The present text consists of eight sections plus an appendix. In the first one

the Veronese flag, as quotient of a bihamiltonian structure, and the bihamil-

tonian structure over a (1, 1)-tensor field and a foliation, which gives a simple

method for constructing bihamiltonian structures, are introduced.

Sections 2, 3 and 4, this last one rather technical, are devoted to prove a

local decomposition theorem for Veronese flags with only one eigenvalue. In

section 5 real Veronese flags, without real eigenvalue, are dealt with by reducing
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them to holomorphic ones through the analyticity.

In section 6 one shows that, locally, Veronese flags are the fibered product

of those with just one eigenvalue, and in section 7 we prove the theorem of local

decomposition for real analytic or holomorphic bihamiltonian structures. A C∞

counter-example to this last result is given in section 8.

Finally, in the appendix one proves a well known result on (1, 1)-tensor fields

belonging to the folklore but without many accessible proofs.

1. The quotient of a bihamiltonian structure

As it well known to any Kronecker bihamiltonian structure one may associate

a Veronese web on the local quotient of the support manifold (see [3, 10, 16]).

Here we will associate a new structure, called a Veronese flag and defined on a

local quotient of the support manifold also, to a very large class of bihamiltonian

structures.

From now on all structured considered will be real C∞ or complex holomor-

phic unless another thing is stated.

1.1. The main construction.

On a manifold P consider a foliation F (that is an involutive distribution)

of positive codimension and a morphism of vector bundles ℓ : F → TP . If α is

a s-form on an open set B of P , then ℓ∗α ( we will write α ◦ ℓ as well) can be

regarded as s-form with domain B on the leaves of F . Let G : TP → TP be a

prolongation of ℓ; then (G∗α)|F equals ℓ∗α. On the other hand if ℓ∗α is closed

on F for every closed 1-form α such that Kerα ⊃ F , then the restriction of the

Nijenhuis torsion NG of G to F does not depend on the prolongation G of ℓ (see

lemma 2.2 of [17]) and it will called the Nijenhuis torsion Nℓ of ℓ.

Let A(p), p ∈ P , be the largest ℓ-invariant vector subspace of F(p).

We will say that the pair (F , ℓ) is a weak Veronese flag if the following three

conditions hold:

1) ℓ∗α is closed on F for every closed 1-form α such that Kerα ⊃ F ,

2) Nℓ = 0,

3) dimA(p) does not depend on p.

First of all let us see that the distribution A = ∪p∈PA(p) is a foliation

when (F , ℓ) is a weak Veronese flag. Given any point q ∈ P the morphism ℓ :
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F(q) → TqP projects in a morphism ϕq : F(q)/A(q) → TqP/A(q) without non-

zero ϕq-invariant vector subspace. Thus (F(q)/A(q), ϕq) defines an algebraic

Veronese web wq on TqP/A(q) of codimension ≥ 1 by setting wq(t) = (ϕq +

tI)(F(q)/A(q)), such that wq(∞) = F(q)/A(q). Moreover, as it is well known, if

a1, ..., ak, k = dim(TqP/A(q)), are non-equal scalars then wq(a1)∩...∩wq(ak) =

{0}, so A(q) = ∩kj=1((ℓ + ajI)F(q)).

On the other hand, if Ker(ℓ + aI) = {0} on an open set then (ℓ + aI)F

is involutive on this set. For showing this last assertion we need the following

result transcription of lemma 2.1 of [17].

Lemma 1.1. Consider a 1-form ρ, a (1, 1)- tensor field H and two vector

fields X,Y on a manifold, then (d(ρ ◦ H))(HX,Y ) + (d(ρ ◦ H))(X,HY ) =

dρ(HX,HY ) + d(ρ ◦H2)(X,Y ) + ρ(NH(X,Y )).

Let G be a (local) prolongation of ℓ. If µ is a closed 1-form and Kerµ ⊃ F

thenKer(µ◦(G+aI)−1) ⊃ (G+aI)F and by lemma 1.1 applied to µ◦(G+aI)−1

and (G+ aI) one has d(µ ◦ (G+ aI)−1)((G+ aI)F , (G+ aI)F) = −d(µ ◦ (G+

aI))(F ,F)−µ(NG(F ,F)) = 0 therefore d(µ ◦ (G+ aI)−1)|(G+aI)F = 0, whence

the involutivity of (G+ aI)F .

Since whichever p ∈ P always there exist non-equal scalars a1, ..., ak such

thatKer(ℓ+ajI)(p) = {0}, j = 1, ..., k, around this pointA = ∩kj=1((ℓ+ajI)F);

so A is a foliation, called the axis of the flag (F , ℓ) from now on.

Let π : P → N be a local quotient of P by A; then w̄(t) = π∗((ℓ + tI)F)

is a foliation whose codimension equals that of F and w̄ = {w̄(t) | t ∈ K} is

a Veronese web on N . Indeed, given q ∈ P and q̄ ∈ N such that π(q) = q̄

then w̄(q̄) = {w̄(q̄)(t) | t ∈ K} is the algebraic Veronese web defined by

(F(q)/A(q), ϕq) when TqP/A(q) is identified to Tq̄N ; so w̄ is an algebraic

Veronese web at each point of N . Moreover w̄(∞) = π∗(F), which is a foli-

ation; therefore by proposition 2.1 of [17] the family w̄ is a Veronese web.

Thus if ℓ̄ : F̄ → TN , where F̄ = π∗(F), is the morphism canonically associ-

ated to w̄ then (F̄ , ℓ̄) is the projection of (F , ℓ).

Lemma 1.2. Consider a weak Veronese flag (F , ℓ) and for every integer

k ≥ 0 set gk = trace((ℓ|A)
k). Then kdgk+1 = (k + 1)dgk ◦ ℓ on F .
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Proof. As the problem is local one may extend ℓ̄ to a flat diagonalizable

tensor field J and consider an extensionG of ℓ projecting in J . Then ImNG ⊂ A

and trace(Gk) = gk + ck where ck ∈ K. Since trace(H1 ◦H2) = trace(H2 ◦H1)

for every vector field X one has: kd(trace(Gk+1))(X) = k(k + 1)trace(Gk ◦

LXG) = k(k + 1)trace(Gk−1 ◦ LGXG) − k(k + 1)trace(NG(X, )) = (k +

1)d(trace(Gk))(GX)− k(k + 1)trace(NG(X, )).

But trace(NG(X, )) = 0 whenX ∈ F becauseNG(F ,F) = 0 and Im(NG(X, )) ⊂

A ⊂ F . �

Now let ω, ω1 be a couple of 2-forms defined on A. One will say that

(F , ℓ, ω, ω1) is a Veronese flag on P if:

1) (F , ℓ) is a weak Veronese flag.

2) ω is symplectic on A, ω1 closed and ω1 = ω(ℓ, ) [that is ω1(X,Y ) =

ω(ℓX, Y )].

3) Whenever f is a function on an open set of P such that ℓ∗df is closed on F ,

then LXf
ℓ = 0 where Xf is the ω-hamiltonian of f along A.

Remark. Given, on a manifold, a foliation G, a tensor field T defined along

G and a G-foliate vector field X , then the Lie derivative LXT is defined as a

tensor field along G; moreover the flow of Xpreserves T if and only if LXT = 0.

In condition 3) above Xf is tangent to A ⊂ F so F -foliate. Obviously this

condition implies LXf
ω1 = 0.

When A = 0, Veronese web and Veronese flag are equivalent notions.

By technical reasons we need the following definition. Given p0 ∈ P we will

say that (F , ℓ, ω, ω1) is a Veronese flag at point p0 when 1) and 2) hold but 3)

is replaced by:

3’) for any function f defined on an open set p0 ∈ B ⊂ P such that ℓ∗df is

closed on F , then LXf
ℓ = 0 on an open set p0 ∈ B′ ⊂ B.

Let us recall some facts about pairs of bivectors on real or complex vector

spaces (see [4] and section 1.2 of [17]). Consider a pair of bivectors (λ, λ1) on

a finite dimensional vector space W . By definition the rank of (λ, λ1) is the

maximum of the ranks of (1 − t)λ + tλ1, t ∈ K, and one has rank(λ, λ1) =

rank((1− t)λ+ tλ1) except for a finite number of scalars t, which is ≤ dimW
2 . A

pair (λ, λ1) is called maximal when rank(λ) = rank(λ1) = rank(λ, λ1). Given

an odd dimensional vector space U , the action of GL(U) on (Λ2U) × (Λ2U)
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possesses one dense open orbit, whose elements are namedKronecker elementary

pairs; they are maximal and their rank equals dimU − 1. According to the

classification by Gelfand and Zakharevich (see [4] and propositions 1.4 and 1.5

of [17]), every maximal pair decomposes into a product of Kronecker elementary

pairs (Uj , µj , µ1j), j = 1, ...r, where r = corank(λ, λ1), and a symplectic pair

(U ′, µ′, µ′
1); moreover these factors are unique up to isomorphism or change of

order.

A bihamiltonian structure on a manifold is called Kronecker when at each

point its algebraic model is a product of Kronecker elementary pairs only, and

symplectic if at every point its algebraic model only has the symplectic factor.

On a real or complex m-manifold M consider a bihamiltonian structure

(Λ,Λ1) such that:

1) (Λ,Λ1) is maximal, that is every (Λ(p),Λ1(p)), p ∈M , is maximal,

2) the rank of (Λ,Λ1) and the dimension of the the symplectic factor at each

point are constant.

As before set r = corank(Λ,Λ1) and let 2m′ be the dimension of the sym-

plectic factor. Since r is the number of Kronecker elementary factors, m+ r is

even and one may set m = 2m′ + 2n − r. Note that, at every point, 2n − r

equals the sum of the dimensions of the Kronecker elementary factors (warning

these last dimensions could depend on the point).

Our next aim is locally to associate a Veronese flag in dimension 2m′ + n to

(Λ,Λ1). For each p ∈ M let A1(p) be the intersection of all vector subspaces

Im(Λ+ tΛ1)(p), t ∈ K, such that rank(Λ+ tΛ1)(p) = m−r. From the algebraic

model follows that dimA1(p) = m− n = 2m′ + n− r, which defines a foliation

A1 called the (primary) axis of (Λ,Λ1). Indeed, given p ∈ M one can chose

non-equal scalars t1, ..., tn such that rank(Λ+ tjΛ1)(p) = m− r, j = 1, ..., n; in

particular ∩nj=1Im(Λ+tjΛ1)(p) = A1(p). By continuity rank(Λ+tjΛ1) = m−r,

j = 1, ..., n and ∩nj=1Im(Λ + tjΛ1) = A1 around p.

It is not hard to see that A1 ⊂ ImΛ1 and dim(Im(Λ+ tΛ1) +A1) = m− r,

t ∈ K. Set w̃(t) = Im(Λ+ tΛ1)+A1, t ∈ K; then w̃ = {w̃(t) | t ∈ K} is a family

of foliations of codimension r whose limit at each point, when t→ ∞, is ImΛ1.

Indeed, given p ∈ M and t0 ∈ K consider functions f1, ..., fk and vector fields

X1, ..., Xm−r−k tangent to A1, all of them defined around p, such that {(Λ +
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t0Λ1)(df1, ), ..., (Λ+ t0Λ1)(dfk, ), X1, ..., Xm−r−k} at p is a basis of w̃(t0)(p).

By continuity {(Λ + tΛ1)(df1, ), ..., (Λ + tΛ1)(dfk, ), X1, ..., Xm−r−k} is a

basis of w̃(t)(q) when (q, t) is close to (p, t0) on M × K, so w̃ is a family of

distributions. But the set D = {(q, t) ∈ M × K | rank(Λ + tΛ1)(q) = m − r}

is dense and open and, obviously, w̃ is a family of foliations on D, therefore

w̃ is a family of foliations on M × K. Finally note that A1 ⊂ ImΛ1 and

Im(Λ + tΛ1) = Im(sΛ + Λ1) when s = t−1.

Let N be the local quotient of M by A1, which is a n-dimensional manifold,

and πN : M → N the canonical projection. Then w̄ = {w̄(t) = (πN )∗w̃(t) |

t ∈ K} is a Veronese web on N of codimension r. Indeed, the algebraic model

shows that, at each point ofN , the family of foliations w̄ is an algebraic Veronese

web. On the other hand its limit when t → ∞ equals (πN )∗(ImΛ1), which is a

foliation too; so w̄ is a Veronese web (see proposition 2.1 of [17]).

The Poisson structure Λ is given by a symplectic form ω̃ defined on ImΛ

while Λ1 is given by a symplectic form form ω̃1 on ImΛ1. Therefore the re-

stricted 2-forms ω̃|A1
and ω̃1|A1

are closed; besides (see proposition 1.4 of [17])

Ker(ω̃|A1
) = Ker(ω̃1|A1

) = Λ(A′
1, ) = Λ1(A

′
1, ) where A′

1 is the annihila-

tor of A1 and dim(Ker(ω̃|A1
)) = n− r. Thus A2 = Ker(ω̃|A1

) is a foliation of

dimension n−r, which will be called the secondary axis of (Λ,Λ1), and A2 ⊂ A1.

Let P be the local quotient of M by A2 and πP : M → P the canonical

projection; then dimP = 2m′+n, A1 projects into a 2m
′-dimensional foliationA

and ω̃|A1
, ω̃1|A1

in two symplectic forms ω, ω1 on A. Moreover Λ projects in the

Poisson structure defined by A and ω, whereas Λ1 does in the Poisson structure

defined by A and ω1. Let F be the r-codimensional foliation on P projection of

ImΛ1. Obviously the local quotient of P by A is identified in a natural way to

N and π ◦ πP = πN where π : P → N is the canonical projection. In short we

have three of the four elements of a Veronese flag on P . Let us construct the

fourth one.

As Λ(A′
1, ) = Λ1(A

′
1, ) = A2 and A′

1 contains KerΛ and KerΛ1, the

Poisson structures Λ, Λ1 give rise to two isomorphisms λ̃, λ̃1 from T∗M
A′

1

to ImΛ
A2

and ImΛ1

A2
respectively, by setting λ̃([α]) = [Λ(α, )] and λ̃1([α]) = [Λ1(α, )].

Thus ℓ̃ = λ̃◦λ̃−1
1 is a monomorphism from ImΛ1

A2
to TM

A2
whose image equals ImΛ

A2
.

By construction ℓ̃ is an invariant of (Λ,Λ1) and, for every q ∈ M , there exists
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a monomorphism ϕ : (πP )∗(ImΛ1(q)) → TπP (q)P with Imϕ = (πP )∗(ImΛ(q))

that is the projection of ℓ̃(q); moreover from the algebraic model follows that

ω1(u, v) = ω(ϕu, v), u, v ∈ A(πP (q)), and Λ1(π
∗
Pϕ

∗β, ) = Λ(π∗
Pβ, ), β ∈

T ∗
πP (q)P [note that Λ1 can be regarded as a linear map from (ImΛ1)

∗ to TM

since Λ1(β̃, ) = 0 whenever β̃(ImΛ1) = 0].

For proving that, in fact, ℓ̃ projects into a suitable morphism ℓ : F →

TP we will need some extra-work, essentially local, which allows us to do it

around the points of M . Therefore, given non-equal and non-vanishing scalars

a1, ..., an−r, a we may assume the existence on N of coordinates (x1, ..., xn),

closed 1-forms α1, ..., αr and a (1, 1)-tensor field J such that dxj ◦ J = ajdxj ,

j = 1, ..., n− r, dxj ◦ J = adxj , j = n− r + 1, ..., n, Ker(α1 ∧ ... ∧ αr) = w̄(∞),

d(αk ◦ J) ∧ α1 ∧ ... ∧ αr = 0, k = 1, ..., r, and that

γ(t) = (
∏n−k
j=1 (t+ aj))(t + a)k(α1 ◦ (J + tI)−1) ∧ ... ∧ (αr ◦ (J + tI)−1)

represents w̄ (see theorem 2.1 of [17]).

By identifying τ and π∗
Nτ , any k-form τ , defined on open set of N , can be

regarded as an A1-basic k-form on an open set ofM . Thus dx1, ..., dxn span A′
1,

Kerdxj ⊃ Im(Λ−ajΛ1) whence Λ(dxj , ) = ajΛ1(dxj , ), j = 1, ..., n−r, and

Kerdxj ⊃ Im(Λ− aΛ1) whence Λ(dxj , ) = aΛ1(dxj , ), j = n− r + 1, ..., n.

On the other hand from the algebraic model at each point follows that two

functions of (x1, ..., xn) are always in involution for both Λ and Λ1, and the fam-

ilies {dx1, ..., dxn−r, α1◦J
−1, ..., αr◦J

−1} and {dx1, ..., dxn−r, α1, ..., αr} are lin-

early independent everywhere. Consequently around each p ∈M one may chose

functions y1, ..., yn−r, z1, ..., z2m′ such that (x1, ..., xn, y1, ..., yn−r, z1, ..., z2m′) is

a system of coordinates and Λ is given by α1 ◦ J
−1, ..., αr ◦ J

−1 and the closed

2-form Ω̃ =
∑n−r

j=1 dxj ∧ dyj +
∑2m′

k=1 dz2k−1 ∧ dz2m′ .

Therefore A2 is spanned by ∂/∂y1, ..., ∂/∂yn−r since Λ(dxj , ) = ∂/∂yj,

j = 1, ..., n− r, and Λ(αk ◦ J
−1, ) = 0, k = 1, ..., r.

By the same reason around each point p ∈M there exist functions y′1, ..., y
′
n−r,

z′1, ..., z
′
2m′ such that (x1, ..., xn, y

′
1, ..., y

′
n−r, z

′
1, ..., z

′
2m′) is a system of coordi-

nates while Λ1 is given by α1, ..., αr and the closed 2-form Ω̃1 =
∑n−r
j=1 dxj ∧

dy′j +
∑2m′

k=1 dz
′
2k−1 ∧ dz

′
2m′ .

But Λ(dxj , ) = ∂/∂yj and Λ1(dxj , ) = ∂/∂y′j whence ∂/∂yj = aj∂/∂y
′
j,

j = 1, ..., n−r. So expressing dy′1, ..., dy
′
n−r, dz

′
1, ..., dz

′
2m′ in terms of dx1, ..., dxn,
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dy1, ..., dyn−r, dz1, ..., dz2m′ yields Ω̃1 =
∑n−r

j=1 ajdxj ∧ dyj +Ω′
1 where Ω′

1 does

not contain any term involving dy1, ..., dyn−r and its coefficient functions do not

depend on (y1, ..., yn−r).

Now it is clear that ℓ̃ projects in a partial tensor field ℓ : F → TP since

the flow of each ∂/∂yj, j = 1, ..., n− r, preserves ℓ̃. For proving the remainder

properties of ℓ consider the product manifold M × K
r endowed with coordi-

nates (x1, ..., xn, y1, ..., yn, z1, ..., z2m′), where (yn−r+1, ..., yn) are the canonical

coordinates of Kr, and identify M to M × {0}. As before forms on N , or

on M , will be regarded, in the obvious way, as form on M × Kr when neces-

sary. On this last manifold set Ω =
∑n
j=1 dxj ∧ dyj +

∑m′

k=1 dz2k−1 ∧ dz2k and

Ω1 =
∑n−r

j=1 ajdxj∧dyj+
∑n
j=n−r+1 adxj∧dyj+Ω′

1. Then L ∂
∂yj

Ω = L ∂
∂yj

Ω1 = 0,

j = 1, ..., n.

LetH and Ωk be the (1, 1)-tensor field and the 2-form defined by Ω1(X,Y ) =

Ω(HX,Y ) and Ωk(X,Y ) = Ω(HkX,Y ), k ∈ Z, respectively (obviously Ω0 = Ω).

Then H∂/∂yj = aj∂/∂yj, j = 1, ..., n−r, H∂/∂yj = a∂/∂yj, j = n−r+1, ..., n,

and Ωk =
∑n−r

j=1 a
k
j dxj ∧ dyj +

∑n
j=n−r+1 a

kdxj ∧ dyj + Ω′
k where Ω′

k does

not contain any term involving dy1, ..., dyn and its coefficient functions do not

depend on y = (y1, ..., yn).

As (iXΩ) ◦ H = Ω(X,H ) = Ω(HX, ) = Ω1(X, ), one has dxj ◦H =

ajdxj and dyj ◦ H = ajdyj + λj , j = 1, ..., n − r; dxj ◦ H = adxj and

dyj ◦H = adyj + λj , j = n− r + 1, ..., n, where λ1, ..., λn are functional combi-

nations of dx1, ..., dxn, dz1, ..., dz2m′ whose coefficients do not depend on y. By

the same reason each dzk ◦ H , k = 1, ..., 2m′, is a functional combination of

dx1, ..., dxn, dz1, ..., dz2m′ and its coefficients do not depend on y.

Thus, if π1 : M ×Kr →M is the first projection, the tensor field H projects

in J on N through πN ◦ π1 and in a tensor field G on P through πP ◦ π1. In

turns G projects in J via π : P → N .

On the other hand if τ =
∑n
j=1 fjdxj then its Ω1-hamiltonian

∑n−r
j=1 a

−1
j fj∂/∂yj+

∑n
j=n−r+1 a

−1fj∂/∂yj equals the Ω-hamiltonian of τ ◦J−1 =
∑n−r
j=1 a

−1
j fjdxj+

∑n
j=n−r+1 a

−1fjdxj . Therefore the Ω1-hamiltonians of α1, ..., αr, or the Ω-

hamiltonians of α1 ◦ J−1, ..., αr ◦ J
−1, define a r-dimensional foliation A0 on

M × Kr transverse to the first factor, which is Ω1-symplecticly complete since

α1, ..., αr are closed and Ω-symplecticly complete because α1 ◦ J
−1, ..., αr ◦ J

−1
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regarded on N define the foliation w̄(0) (recall that a foliation is called sym-

plecticly complete if its symplectic orthogonal is a foliation too; see [8]).

Let π′ : M × Kr →
M ×Kr

A0
the canonical projection in the local quotient.

Then π′ :M →
M ×Kr

A0
is a diffeomorphism. Moreover as A0 is bi-symplecticly

complete, the Poisson structures ΛΩ and ΛΩ1
, associated to Ω and Ω1 respec-

tively, project in two Poisson structures Λ′ and Λ′
1 on

M ×Kr

A0
. But the re-

striction of of α1 ◦ J
−1, ..., αr ◦ J

−1 and Ω to M defines Λ and that of α1, ..., αr

and Ω1 defines Λ1, so π
′ : M →

M ×Kr

A0
transforms (Λ,Λ1) in (Λ′,Λ′

1) as a

straightforward algebraic calculation at each point (p, 0) shows [or apply lemma

1.4 of [17] to T(p,0)(M ×Kr), A0(p, 0), T(p,0)(M × {0}), Ω(p, 0) and Ω1(p, 0)].

This last construction only needs the properties of α1, ..., αr and J on N

but not the compatibility of Λ,Λ1, which may be expressed by means of Ω,Ω1.

More exactly:

Proposition 1.1. The Poisson structures Λ,Λ1 are compatible if and only

if α1 ∧ ... ∧ αr ∧ dΩ2 = 0.

For proving this proposition we need some auxiliary results.

Lemma 1.3. On an even dimensional manifold M̃ consider a couple of 2-

forms β, β1 such that rankβ = dimM̃ everywhere. Let K the (1, 1)-tensor field

defined by β1 = β(K, ) and set β2 = β(K2, ). Then for any vector fields

X1, X2, X3 one has:

β(NK(X1, X2), X3)+dβ(KX1,KX2, X3) = −dβ2(X1, X2, X3)+dβ1(KX1, X2, X3)+

dβ1(X1,KX2, X3).

Proof. As the foregoing formula is tensorial, one may assume [X1, X2] =

[X1, X3] = [X2, X3] = 0 without loss of generality. Then [recall that β(K, ) =

β( ,K)]:

dβ2(X1, X2, X3) = X1β(KX2,KX3)−X2β(KX1,KX3) +X3β(KX1,KX2)

dβ1(KX1, X2, X3) = (KX1)β(KX2, X3)−X2β(KX1,KX3)+X3β(KX1,KX2)−

β(K[KX1, X2], X3]) + β([KX1, X3],KX2)

dβ1(X1,KX2, X3) = X1β(KX2,KX3)−(KX2)β(KX1, X3)+X3β(KX1,KX2)−

β(K[X1,KX2], X3])− β([KX2, X3],KX1).

Therefore the right side of the formula becomes:

10



(KX1)β(KX2, X3)− (KX2)β(KX1, X3)+X3β(KX1,KX2)−β(K[KX1, X2]+

K[X1,KX2], X3)+β([KX1, X3],KX2)−β([KX2, X3],KX1) = β(NK(X1, X2), X3)+

dβ(KX1,KX2, X3). �

Corollary 1.3.1. Assume β, β1 symplectic and set τ = β1((K+tI)−1, ) =

β((I + tK−1)−1, ). Then

dτ((K+tI)X1, (K+tI)X2, (K+tI)X3) = tβ(NK(X1, X2), X3) = −tdβ2(X1, X2, X3).

Remark. At each point (K+tI)−1 and (I+tK−1)−1 are linear combination

of powers of K, so τ is a 2-form on its domain of definition.

Proof. From lemma 1.3 applied to β, β1 andK follows dβ2 = −β(NK( , ), ).

On the other hand, applying this lemma to τ , β1 and K+ tI and taking into

account that NK = N(K+tI) and τ((K + tI)2, ) = β1((K + tI), ) yields:

τ(NK(X1, X2), X3) + dτ((K + tI)X1, (K + tI)X2, X3) = −dβ2(X1, X2, X3) =

β(NK(X1, X2), X3).

Hence by replacing X3 by (K + tI)X3 follows:

dτ((K + tI)X1, (K + tI)X2, (K + tI)X3) = β(NK(X1, X2), (K + tI)X3) −

τ(NK(X1, X2), (K + tI)X3) = β(NK(X1, X2), (K + tI − (I + tK−1)−1(K +

tI))X3) = tβ(NK(X1, X2), X3) = −tdβ2(X1, X2, X3). �

Let us prove proposition 1.1. Locally always there exists t 6= 0 such that

I+tH−1 is invertible. Since ΛΩ+tΛΩ1
is the dual bivector of Ω((I+tH−1)−1, ),

it projects in Λ′+tΛ′
1 and π

′ : M →
M ×Kr

A0
transforms Λ+tΛ1 in Λ′+tΛ′

1, the

bivector Λ+tΛ1 is given by the restriction toM [always identified toM×{0}] of

Ω((I+tH−1)−1, ) and α1◦(H+tI)−1, ..., α1◦(H+tI)−r. Indeed if Ω1(Yj , ) =

αj , j = 1, ..., r, then Y1, ..., Yr span A0 and Ω((I + tH−1)−1Yj , ) = Ω1((H +

tI)−1Yj , ) = αj ◦ (H + tI)−1, j = 1, ..., r.

On the other hand each αj ◦ (H + tI)−1 is the pull-back of αj ◦ (J + tI)−1

and α1 ◦ (J + tI)−1, ..., αr ◦ (J + tI)−1 define the foliation w̄(t). So α1 ◦ (H +

tI)−1, ..., αr ◦ (H+ tI)−1 define a foliation onM ×Kr and, by restriction, onM .

Thus Λ+ tΛ1 is a Poisson structure, that is (Λ,Λ1) bihamiltonian, if and only if

Ω((I + tH−1)−1, ) is closed modulo dyn−r+1, ..., dyn, α1 ◦ (H + tI)−1, ..., αr ◦

(H + tI)−1 when yn−r+1 = ... = yn = 0.

But the coefficients of H do not depend on y and (I + tH−1)−1∂/∂yj equals
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(1+ ta−1
j )−1∂/∂yj if j ≤ n− r and (1+ ta−1)−1∂/∂yj if j ≥ n− r+1, so Ω((I+

tH−1)−1, ) =
∑n−r

j=1 (1+ta
−1
j )−1dxj∧dyj+

∑n
j=n−r+1(1+ta

−1)−1dxj∧dyj+Ω′′
t

where Ω′′
t do not contain any term involving dy1, ..., dyn and its coefficients do

not depend on y.

Therefore, since dΩ((I + tH−1)−1, ) = dΩ′′
t , the pair (Λ,Λ1) is bihamilto-

nian if and only if (α1◦(H+tI)−1)∧...∧(αr◦(H+tI)−1)∧dΩ((I+tH−1)−1, ) =

0.

From corollary 1.3.1 applied to Ω, Ω1 andH follows dΩ((I+tH−1)−1, )((H+

tI) , (H+ tI) , (H+ tI) ) = −tdΩ2, so the above condition holds if and only

if α1 ∧ ... ∧ αr ∧ dΩ2 = 0, which finishes the proof of proposition 1.1.

Lemma 1.4. If Λ,Λ1 are compatible then α1 ∧ ... ∧ αr ∧NG = 0.

Proof. Since NG is the projection ofNH it suffices to show thatNH(X1, X2)

is a functional combination of ∂/∂y1, ..., ∂/∂yn if X1, X2 ∈ Ker(α1 ∧ ... ∧ αr).

By proposition 1.1, dΩ2 =
∑r

j=1 λj ∧ αj so dΩ2(X1, X2, ) is a functional

combination of α1, ..., αr.

From lemma 1.3 applied to Ω, Ω1 and H follows Ω(NH(X1, X2), ) =

−dΩ2(X1, X2, ), which implies that Ω(NH(X1, X2), ) is a functional com-

bination of α1, ...αr. Therefore NH(X1, X2) has to be a functional combination

of ∂/∂y1, ..., ∂/∂yn. �

Lemma 1.5. Assume Λ,Λ1 compatible. Then G is a prolongation of ℓ.

Proof. As beforeM is identified toM×{0} ⊂M×Kr and πP ◦π1 = πP on

M . First note that H(ImΛ1) ⊂ ImΛ modulo ∂/∂yn−r+1, ..., ∂/∂yn since on M

forms α1, ..., αr define ImΛ1 and forms α1◦J
−1, ..., αr◦J

−1 define ImΛ. On the

other hand if Y belongs to ImΛ modulo ∂/∂y1, ..., ∂/∂yn then Λ((iY Ω)|TM , )

equals −Y modulo ∂/∂y1, ..., ∂/∂yn.

Now consider X ∈ ImΛ1; then Λ1((iXΩ1)|TM , ) = −X . But iXΩ1 =

iHXΩ and HX belongs to ImΛ modulo ∂/∂y1, ..., ∂/∂yn, so Λ((iXΩ1)|TM , )

equals −HX modulo ∂/∂y1, ..., ∂/∂yn; that is to say ℓ̃([X ]) = [(π1)∗HX ]. Fi-

nally projecting on P via πP yields ℓ((πP )∗X) = (πP )∗((π1)∗HX) = (πP ◦ π1)∗(HX) =

G((πP ◦ π1)∗X) = G((πP )∗X). �
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Let us see that (F , ℓ) is a weak Veronese flag. Since G projects in J , the

morphism ℓ : F → TP projects in ℓ̄ = J|w̄(∞) and ℓA ⊂ A. As w̄ is a Veronese

web there is no ℓ̄-invariant vector subspace of positive dimension and ℓ̄∗ᾱ is

closed on w̄(∞) for any closed 1-form ᾱ such that Kerᾱ ⊃ w̄(∞). Pulling-

back via π : P → N shows that conditions 1) and 3) hold. Finally as F =

Ker(α1 ∧ ... ∧ αr) on P , lemmas 1.4 and 1.5 imply Nℓ = 0.

When we pointed out the existence, at each, point of an algebraic projection

of ℓ̃ it was showed that ω1 = ω(ℓ, ) [more exactly that ω1 = ω(ϕ, )]. There-

fore (F , ℓ, ω, ω1) will be a Veronese flag if condition 3) of this second definition

holds.

Lemma 1.6. On an open set P ′ of P consider functions f, f1, ..., fk, k ≥ 0,

such that α1 ∧ ...∧αr ∧ ...∧df1 ∧ ...∧dfk has no zero. Assume closed ℓ∗df along

the foliation Ker(α1 ∧ ...∧αr ∧ ...∧ df1 ∧ ...∧ dfk). Then (LXf
ℓ)(Ker(α1 ∧ ...∧

αr ∧ ... ∧ df1 ∧ ... ∧ dfk))(q) is contained in the vector subspace of TqP spanned

by Xf1(q), ..., Xfk(q) whenever q ∈ P ′.

Proof. Let X̃f , X̃f1 , ..., X̃fk be the Ω-hamiltonians of f, f1, ..., fk regarded

as functions on an open set of M × K
r. A straightforward calculation shows

that X̃f , X̃f1 , ..., X̃fk project in Xf , Xf1 , ..., Xfk ; in particular LX̃f
H projects in

LXf
G.

On M × Kr one has α1 ∧ ... ∧ αr ∧ df1 ∧ ... ∧ dfk ∧ d(df ◦ H) = 0 since

α1∧...∧αr∧df1∧...∧dfk∧d(df◦G) = 0 on P . Therefore α1∧...∧αr∧df1∧...∧dfk∧

LX̃f
Ω1 = 0 whence locally LX̃f

Ω1 =
∑r
j=1 λj∧αj+

∑k
i=1 µi∧dfi. But LX̃f

Ω1 =

LX̃f
(Ω(H, )) = Ω(LX̃f

H, ) so Ω(LX̃f
H, ) =

∑r
j=1 λj ∧αj +

∑k
i=1 µi∧dfi;

this implies that LX̃f
H =

∑r
j=1X

′
j ⊗ αj +

∑r
j=1X

′′
j ⊗ λj +

∑k
i=1 Yi ⊗ dfi −

∑k
i=1 X̃fi ⊗µi where X

′′
1 , ..., X

′′
r are functional combination of ∂/∂y1, ..., ∂/∂yn.

Thus the projection on P of LX̃f
H sends Ker(α1∧ ...∧αr ∧ ...∧df1∧ ...∧dfk)(q)

into the vector subspace of TqP spanned by Xf1(q), ..., Xfk(q). �

When k = 0 from lemma 1.6 follows the third condition of the definition of

Veronese flag. Thus (F , ℓ, ω, ω1)is a Veronese flag.

1.2. The bihamiltonian structure over a (1, 1)-tensor field and a

foliation.
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This second part contains a kind of inverse construction of that of sub-

section 1.1. Here, under some assumptions detailed later on, one will associate

a bihamiltonian structure defined on a quotient of the cotangent bundle to a

(1, 1)-tensor field and a foliation.

LetN be a n-manifold. Recall that on ΛrT ∗N it is defined a r-form R, called

the Liouville r-form, as follows: if v1, ..., vr ∈ Tµ(Λ
rT ∗N) then R(v1, ..., vr) =

µ(π∗v1, ..., π∗vr) where π : ΛrT ∗N → N is the canonical projection. In turn

Ω = dR will be named the Liouville (r + 1)-form of ΛrT ∗N . When r = 1,

that is on the cotangent bundle, the Liouville forms will be denoted ρ and ω

respectively.

Given a skew-symmetric (1, r)-tensor field H on N , in other words a section

of TN ⊗ ΛrT ∗N , let ϕH : T ∗N → ΛrT ∗N be the morphism of vector bundles

defined by ϕH(τ) = τ ◦ H , that is ϕH(τ)(v1, ..., vr) = τ(H(v1, ..., Hvr)). Set

ω1 = ϕ∗
HΩ.

Lemma 1.7. On a real or complex vector space V of dimension 2n, consider

a 2-form α of rank 2n and a (r+1)-form β. Then there exists h ∈ V ⊗ΛrV ∗ con-

necting α and β, that is to say such that β(v1, ..., vr+1) = α(h(v1, ..., vr), vr+1),

v1, ..., vr+1 ∈ V . Moreover h is unique and α(h(v1, ..., vr), vr+1)

= α(vr, h(v1, ..., vr−1, vr+1)), v1, ..., vr+1 ∈ V .

Conversely, given a 2-form α and h ∈ V⊗ΛrV ∗ such that α(h(v1, ..., vr), vr+1)

= α(vr, h(v1, ..., vr−1, vr+1)), v1, ..., vr+1 ∈ V , then setting β(v1, ..., vr+1) =

α(h(v1, ..., vr), vr+1), v1, ..., vr+1 ∈ V , defines a (r + 1)-form β.

The foregoing lemma gives rise to a skew-symmetric (1, r)-tensor field H∗

on T ∗N connecting ω and (−1)r+1ω1, which will be called the prolongation of

H (to the cotangent bundle).

Given coordinates x = (x1, ...xn) on N let (x, y) = (x1, ...xn, y1, ..., yn) be

the associated coordinates on T ∗N . Denote by m(r) the set of all the r-multi-

index K : k1 < ... < kr whereas dxK will mean dxk1 ∧ ... ∧ dxkr (as usual

elements of m(1) will be represented by small letters). On the other hand K(j),

where 1 ≤ j ≤ r and r ≥ 2, will be the element of m(r− 1) obtained by deleting

the term kj of K. Assume that H =
∑
j∈m(1),K∈m(r) hjK(∂/∂xj)⊗dxK , then:
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H∗ =
∑

j∈m(1),K∈m(r)

hjK

(
∂

∂xj
⊗ dxK −

r∑

a=1

(−1)a
∂

∂yka
⊗ dyj ∧ dxK(a)

)

−
∑

j∈m(1),K∈m(r+1)

yj




r+1∑

a,b=1

(−1)a+b
∂hjK(a)

∂xka

∂

∂ykb
⊗ dxK(b)




Therefore one has:

(a) H∗ projects in H .

(b) Let ξ be the radial vector field on TN∗ [in coordinates ξ =
∑n

j=1 yj∂/∂yj]

then LξH
∗ = 0.

(c) If v1, v2 are vertical vectors then H∗(v1, v2, ...) = 0.

(d) Set λ(X1, ..., Xr+1) = ω(H∗(X1, ..., Xr), Xr+1), which defines a (0, r + 1)-

tensor field. Then λ is a closed (r + 1)-form.

These four properties characterize the prolongation of H to TN∗. More

exactly:

Proposition 1.2. If a (1, r)-tensor field H ′ defined on TN∗ satisfies (a),

(b), (c) and (d), then H ′ = H∗.

Proof. The tensor field H1 = H ′ − H∗ satisfies (b), (c) and (d), and its

projection on N vanishes. So in coordinates (x, y):

H1 =
∑

j,a∈m(1),K∈m(r−1)

fjaK
∂

∂yj
⊗ dya ∧ dxK +

∑

j∈m(1),L∈m(r)

gjL
∂

∂yj
⊗ dxL.

But LξH1 = 0 therefore ξ · fjaK = 0 and ξ · gjL = gjL. In other words, each

function fjaK only depend on x and gjL(x, 0) = 0 for every j ∈ m(1), L ∈ m(r).

Let λ1 be the closed (r + 1)-form defined by λ1(X1, ..., Xr+1)

= ω(H1(X1, ..., Xr), Xr+1). Then if K is the multi-index k1 < ... < kr−1 one

has [recall that ω =
∑n

j=1 dyj ∧ dxj ]:

λ1(∂/∂ya, ∂/∂xk1 , ..., ∂/∂xkr−1
, ∂/∂xj)(x, 0)

= ω(H1(∂/∂ya, ∂/∂xk1 , ..., ∂/∂xkr−1
), ∂/∂xj)(x, 0) = fjaK(x), whereas

λ1(∂/∂xj, ∂/∂xk1 , ..., ∂/∂xkr−1
, ∂/∂ya)(x, 0)

= ω(H1(∂/∂xj, ∂/∂xk1 , ..., ∂/∂xkr−1
), ∂/∂ya)(x, 0) = 0.

Therefore fjaK = 0 and λ1 =
∑

S∈m(r+1) hSdxS where each function hS

only depend on x since dλ1 = 0, which implies Lξλ1 = 0. But Lξω = ω and

LξH1 = 0 so Lξλ1 = λ1. Thus λ1 has to vanish and H1 = 0. �
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Proposition 1.3. Given a (1, 1)-tensor field H on N then the prolongation

of NH equals NH∗ .

Proof. By construction NH∗ satisfies (a), (b) and (c) with respect to NH .

Therefore it suffices to show that setting λ(X1, X2, X3) = ω(NH∗(X1, X2), X3)

defines a closed 3-form, which immediately follows from lemma 1.3 applied to

ω, ω1 and H∗. �

Now suppose thatH is an invertible (1, 1)-tensor field and G a r-codimensional

foliation both of them defined on N . Assume that:

1) α ◦H is closed on G whichever α is a closed 1-form such that Kerα ⊃ G,

2) the restriction of NH to G vanishes.

Then (H + tI)G, t ∈ K, is a r-codimensional foliation on the open set At

of all points of N where H + tI is invertible. Indeed, reason as in the first

paragraph after lemma 1.1.

Let G0 be the ω-orthogonal of the foliation π
−1
∗ (HG) = {v ∈ T (T ∗N) | π∗v ∈

HG}, which equals the ω1-orthogonal of the foliation π−1
∗ (G) = {v ∈ T (T ∗N) |

π∗v ∈ G} because ω1 = ω(H∗, ) and H∗ projects in H . Note that G0 is a

symplecticly complete foliation for ω and ω1. On the other hand the quotient

M of T ∗N by G0 is globally defined and there is a projection π′ :M → N such

that π′ ◦ π̃ = π, where π̃ : T ∗N →M is the canonical projection. In fact, M can

be regarded as the quotient of T ∗N by a vector sub-bundle and π′ :M → N as

its quotient vector bundle.

Since G0 is both ω and ω1 symplecticly complete, the Poisson structures Λω

and Λω1
, respectively associated to ω and ω1, project in two Poisson structures

Λ and Λ1 on M .

Proposition 1.4. The pair (Λ,Λ1) is a bihamiltonian structure.

Proof. The proof is very similar to that of proposition 1.1. As the question

is local one may suppose G defined by closed 1-forms α1, ..., αr; of course we

will regard α1, ..., αr as forms on T ∗N by identifying αj and π∗αj , j = 1, ..., r.

Let {Y1, ..., Yr} the basis of G0 defined by ω1(Yj , ) = αj , j = 1, ..., r. Given

a point p ∈ T ∗N consider a scalar t 6= 0 and a small transversal P to G0,

passing through this point, such that I + t(H∗)
−1

is invertible around p [that

is (I + tH−1)(π(p)) is invertible], π̃(P ) is an open set of M and π̃ : P → π̃(P )
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a diffeomorphism. It suffices to prove that the bivector Λ + tΛ1 is a Poisson

structure. Note that it is the projection of Λω + tΛω1
which, in turns, is the

dual bivector of ω((I + t(H∗)
−1

)−1, ). But regarded on P by means of π̃ :

P → π̃(P ), the bivector Λ + tΛ1 is given by the restriction to this transversal

of ω((I + t(H∗)
−1

)−1, ) and ω((I + t(H∗)
−1

)−1Yj , ) = αj ◦ (H∗ + tI)−1,

j = 1, ..., r.

On the other hand each αj ◦ (H
∗+ tI)−1 is the pull-back of αj ◦ (H + tI)−1,

and α1◦(H+tI)−1, ..., αr◦(H+tI)−1 define the foliation (H+tI)G. So α1◦(H
∗+

tI)−1, ..., αr ◦ (H
∗+ tI)−1 define a foliation on T ∗N and, by restriction, on P as

well. Thus Λ + tΛ1 is a Poisson structure if and only if ω((I + t(H∗)−1)−1, )

restricted to P is closed modulo α1 ◦ (H
∗+ tI)−1, ..., αr ◦ (H

∗+ tI)−1. Therefore

for finishing the proof it is enough to show that ω((I+ t(H∗)
−1

)−1, ) is closed

on T ∗N modulo α1 ◦ (H
∗ + tI)−1, ..., αr ◦ (H

∗ + tI)−1.

From corollary 1.3.1, applied to ω, ω1 and H∗, follows that

d(ω((I + t(H∗)−1)−1, ))((H∗ + tI) , (H∗ + tI) , (H∗ + tI) ) = −tdω2

where ω2 = ω((H∗)2, ). So the above condition holds if α1∧ ...∧αr ∧dω2 = 0.

By lemma 1.3 applied to ω, ω1 and H∗ one has dω2 = −ω(NH∗( , ), ).

Therefore dω2 = ω̃1, where ω̃1 = (ϕNH
)∗Ω and Ω is the Liouville 3-form of

Λ2T ∗N since, by proposition 1.3, the prolongation of NH is NH∗ .

On the other hand α1∧...∧αr∧(ϕNH
)∗R = 0, where R is the Liouville 2-form

of Λ2T ∗N , because α1 ∧ ... ∧ αr ∧ NH = 0 [calculate (ϕNH
)∗R on coordinates

(x, y) such that α1 = dx1,..., αr = dxr]. Hence α1 ∧ ...∧αr ∧ ω̃1 = 0, as Ω = dR

and α1, ..., αr are closed, and finally α1 ∧ ... ∧ αr ∧ dω2 = 0. �

Examples. 1) On N = Kn, n ≥ 1, consider the foliation given by the closed

1-form α =
∑n

j=1 dxj and the (1, 1)-tensor field H =
∑n

j=1 hj(xj)(∂/∂xj)⊗dxj

where the functions h1, ..., hn never vanish. Then the associated bihamilto-

nian structure (Λ,Λ1), defined on M = T ∗(Kn)/G0, has a symplectic factor

of positive dimension at a point p ∈ M if and only if h̃(π′(p)) = 0 where

h̃ =
∏

1≤j<k≤n(hj − hk). In other words (Λ,Λ1) is Kronecker just on the open

set (h̃ ◦ π′)−1(K− {0}).

2) Now on N = R
n − {0}, n ≥ 1, consider the foliation G defined by α =

∑n
j=1 x

aj
j dxj , where a1, ..., ar are positive natural numbers, and the (1, 1)-tensor

field H =
∑n

j=1 j(∂/∂xj) ⊗ dxj . Then the associated bihamiltonian structure
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(Λ,Λ1), defined on M = T ∗(Rn − {0})/G0, has non-trivial symplectic factor on

the closed set (h ◦ π′)−1(0), where h = x1 · · · xn, and is Kronecker on the open

set (h ◦ π′)−1(R− {0}).

Let φt be the flow of the vector field ξ =
∑n

j=1(aj + 1)−1xj∂/∂xj . As

Lξα = α and LξH = 0, the foliation G and the (1, 1)-tensor field H project

in a foliation G̃ and a (1, 1)-tensor field H̃ respectively, defined on the quotient

manifold Ñ = (Rn−{0})/G whereG = {φk | k ∈ Z}. Obviously G̃ and H̃ satisfy

1) and 2), which gives rise to a bihamiltonian structure on M̃ = (T ∗Ñ)/G̃0.

Moreover Ñ is diffeomorphic to S1 × Sn−1.

2. Some properties of Veronese flags

The aim of this section is to establish two results on Veronese flags useful

later on. Given a vector bundle E over a manifold P and a morphism H :

E → E, we will say that H is 0-deformable if for any points p, q ∈ P there

exists an isomorphism between their fibers ϕ : E(p) → E(q) such that H(p) =

ϕ−1 ◦H(q) ◦ ϕ.

By technical reasons parameters are needed. Therefore consider a foliation

F1 on a manifold P , a second foliation F ⊂ F1 and a morphism ℓ : F → F1,

such that (F , ℓ) is a weak Veronese flag along F1; set r = dimF1 − dimF . Let

A be the foliation of the largest ℓ-invariant vector subspaces (as in section 1)

and π : P → N a local quotient of P by A. Then N is endowed with the

quotient foliations F ′
1 = F1/A and F ′ = F/A. Unless another thing is stated,

the Lie and the exterior derivatives of tensor fields defined along a foliation,

for example F1 on P or F ′
1 on N , will be considered along this foliation. By

definition (a system of) coordinates along am-dimensional foliation G will mean

a family of functions y1, ..., ym, on an open set of the support manifold, such

that dy1∧, ...,∧dym is a volume form along G; in this case {∂/∂y1, ..., ∂/∂ym}

will be the dual basis of {dy1, ..., dym}.

Consider functions x1, ...xn onN , such that dx1∧...∧dxn is a volume form on

F ′
1, and functions a1, ..., an constant along F ′

1. Set J =
∑n

j=1 aj(∂/∂xj)⊗dxj

where {∂/∂x1, ..., ∂/∂xn} is the dual basis of {dx1, ..., dxn}. One has:

Proposition 2.1. Let G : F1 → F1 be a morphism which extends ℓ and

projects in J . Assume that:

18



(a) ℓ |A is 0-deformable, nilpotent and flat on each leaf of A,

(b) a1, ..., an never vanish,

then around every point of P there exists a morphism G′ : F1 → F1, which

extends ℓ and projects in J , such that NG′ = 0.

From proposition 2.1 follows:

Lemma 2.1. Consider a morphism H̃ : F̃ → F̃ where F̃ is a m-dimensional

foliation on a manifold P̃ . Suppose that H̃ is 0-deformable and only has one

eigenvalue. If H̃ is flat on each leaf of F̃ then, around every point of P̃ , there ex-

ists a system of coordinates (z1, ..., zm) along F̃such that H̃ =
∑m
j,k=1 ajk(∂/∂zj)⊗

dzk where ajk ∈ K.

Proof. Assume m < dimP̃ otherwise the result is obvious. Consider co-

ordinates (x, y) = (x1, ..., xn, y1, ..., ym) defined on an open set B around a

point of P̃ , such that dx1 = ... = dxn = 0 gives F̃ . Let a be the eigenvalue

of H̃ ; by taking H̃ − aI instead H̃ we may suppose a = 0. Set ℓ̃ = H̃ and

J =
∑n
j=1 aj(∂/∂xj)⊗ dxj where a1, ..., an ∈ K−{0}. By means of coordinates

(x, y), J and H̃ can be regarded too as tensor fields on B in an obvious way. Set

G = J + H̃ . It easily seem that (F̃ , ℓ̃) is a weak Veronese flag on B for which

Ã = F̃ and the projected Veronese web is defined by J and dx1, ..., dxn.

Let G′ be the (1, 1)-tensor field given by proposition 2.1. The characteristic

polynomial of both G and G′ equals (
∏n
j=1(t−aj))t

m; even more Im(
∏n
j=1(G

′−

ajI)) = Im(
∏n
j=1(G − ajI)) = F̃ [here product means composition]. On the

other hand, as NG′ = 0 and
∏n
j=1(t − aj) and tm are relatively prime, locally

B splits into a product following the foliations F̃ = Im(
∏n
j=1(G

′ − ajI)) =

Ker((G′)m) and Im((G′)m) = Ker(
∏n
j=1(G

′ − ajI)). Thus one may consider

coordinates (x, u) = (x1, ..., xn, u1, ..., um) such that F̃ is given by dx1 = ... =

dxn = 0 and Im((G′)m) by du1 = ... = dum = 0 respectively. Moreover

G′ = J+
∑m
j,k=1 fjk(u)(∂/∂uj)⊗duk since NG′ = 0. But H̃ is flat on the leaves

of F̃ and G′
|F̃

= H̃ , so
∑m

j,k=1 fjk(u)(∂/∂uj) ⊗ duk is flat and one can choose

functions z1, ..., zm of u such that
∑m

j,k=1 fjk(u)(∂/∂uj)⊗ duk =
∑m

j,k=1 ajk(∂/∂zj)⊗ dzk, ajk ∈ K. �

Lemma 2.2. Consider a m-dimensional foliation F̃ on a manifold P̃ and
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a morphism H̃ : F̃ → F̃. Suppose that H̃ is 0-deformable and NH̃ = 0. Then

along F̃ , given a function f such that Kerdf ⊃ KerH̃ and d(df ◦H̃) = 0, locally

there exists a function g such that dg ◦ H̃ = df .

Proof. As NH̃ = 0 and H̃ is 0-deformable, ImH̃ is a foliation contained in

F̃ ; moreover there exists a vector sub-bundle E of F̃ and a morphism ρ : F̃ → F̃

such that F̃ = E ⊕KerH̃ and (ρ ◦ H̃)|E = I. Set α = df ◦ ρ; then α ◦ H̃ = df .

From lemma 1.1 applied along F̃ follows that dα(ImH̃, ImH̃) = 0, that is α|ImH̃

is closed. Therefore locally there is a function g such that (dg − α)|ImH̃ = 0 so

dg ◦ H̃ = α ◦ H̃ = df . �

One will prove proposition 2.1 by induction on m = dimA. If m = 0 the

result is obvious; now suppose the proposition true up to dimension m−1. Note

that in this case lemma 2.1 is also true if dimF̃ ≤ m − 1. As the problem is

local we may assume that F ′ is defined by r closed 1-forms α1, ..., αr along F ′
1,

that is J, α1, ..., αr describe the associated Veronese web. Functions x1, ..., xn

and forms α1, ..., αr can be regarded as defined on P in the obvious way (via π).

This allows us to consider coordinates (x, z) = (x1, ..., xn, z1, ..., zm) along F1

such that dx1 = ... = dxn = 0 defines A and, by means of (x, z), regard J and

H = ℓ|A as (1, 1)-tensor fields along F1. Moreover as KerG = Ker(H|A) ⊂ A

is a foliation since H|A is flat, coordinates (x, z) can be chosen in such a way

that KerG is defined by dx1 = ... = dxn = dz1 = ... = dzm−s = 0 where

s = dimKerG. Then G = J + H +
∑m

j=1(∂/∂zj) ⊗ βj where every βj is a

functional combination of dx1, ..., dxn and H =
∑m

j=1

∑m−s
k=1 fjk(∂/∂zj)⊗ dzk.

But when i = m− s+ 1, ...,m one has:

−NG

(
∂

∂zi
,

)
= G ◦ L ∂

∂zi

G− L
G
(

∂
∂zi

)G = G ◦ L ∂
∂zi

G

=
m∑

j=1

m−s∑

k=1

∂fjk
∂zi

H

(
∂

∂zj

)
⊗ dzk +

m∑

j=1

H

(
∂

∂zj

)
⊗
∂βj
∂zi

therefore ∂fjk/∂zi = 0, j, k = 1, ...,m − s, and α1 ∧ ... ∧ αr ∧ (∂βj/∂zi) = 0,

j = 1, ...,m−s, since α1∧ ...∧αr ∧NG = 0. Observe that it is the same proving

proposition 2.1 for G or for G+
∑r

j=1Xj ⊗αj where X1, ..., Xr are vector fields

tangent to A. So, by choosing suitable vector fields X1, ..., Xr, one may suppose

∂βj/∂zi = 0, j = 1, ...,m− s, without loss of generality.
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In this case Im(L(∂/∂zi)G) ⊂ KerG, i = m − s + 1, which allows us to

project G in a (1, 1)-tensor field Ḡ defined on the local quotient P̄ of P by

KerG. Besides F1, F , A and ℓ project in similar objects F̄1, F̄ , Ā and ℓ̄

on P̄ , (x, z1, ..., zm−s) can be regarded as coordinates along F̄1, and N is still

the quotient of P̄ by F̄ ; in particular α1, ..., αr may be seem as forms on P̄ .

Obviously all these objects satisfy the hypothesis of proposition 2.1 and, by the

induction hypothesis, there exists Ḡ′ : F̄1 → F̄1, which extends ℓ̄ and projects

in J , such that NḠ′ = 0. Since Ḡ′ − Ḡ =
∑r
j=1 X̄j ⊗ αj where X̄1, ..., X̄r are

tangent to Ā by considering G+
∑r

j=1Xj ⊗ αj instead of G, where X1, ..., Xr

are tangent to A and project in X̄1, ..., X̄r, one may suppose NḠ = 0 without

loss of generality.

The characteristic polynomial of Ḡ equals (
∏n
j=1(t−aj))t

m−s since = dimĀ =

m− s. As
∏n
j=1(t− aj) and t

m−s are relatively prime and NḠ = 0, locally F̄1

splits into a product of two foliations Ā = Im(
∏n
j=1(Ḡ − ajI)) = Ker(Ḡm−s)

and G = Im(Ḡm−s) = Ker(
∏n
j=1(Ḡ − ajI)). Thus we may consider coordi-

nates (v, x, u) = (v1, ..., vb, x1, ..., xn, u1, ..., um−s) on P̄ such that F̄1 is defined

by dv1 = ... = dvb = 0, Ā by dv1 = ... = dvb = dx1 = ... = dxn = 0, and G by

dv1 = ... = dvb = du1 = ... = dum−s = 0; moreover

Ḡ =
∑n

j=1 aj(∂/∂xj)⊗ dxj +
∑m−s

j,k=1 fjk(v, u)(∂/∂uj)⊗ duk.

Now from lemma 2.1, applied to coordinates (v, u) and the (1, 1)-tensor

field
∑m−s

j,k=1 fjk(v, u)(∂/∂uj) ⊗ duk on Ā, follows the existence of coordinates

(v, z̄1, ..., z̄m−s) such that
∑m−s
j,k=1 fjk(v, u)(∂/∂uj)⊗ duk =

∑m−s
j,k=1 ajk(∂/∂z̄j)⊗ dz̄k, ajk ∈ K.

Thus dxj ◦ Ḡ = ajdxj , j = 1, ..., n, and every dz̄k ◦ Ḡ, k = 1, ...,m − s, is

a linear combination with constant coefficients of dz̄1, ..., dz̄m−s. Consequently

if x1, ..., xn, z̄1, ..., z̄m−s are regarded as functions on P , since G projects in Ḡ,

then dxj ◦G = ajdxj , j = 1, ..., n, and each dzk ◦ Ḡ, k = 1, ...,m− s, is a linear

combination with constant coefficients of dz̄1, ..., dz̄m−s. On the other hand, as

N(H|A) = 0, Kerdz̄k ⊃ Ker(H|A) and d(dz̄k ◦ H)|A = 0, by lemma 2.2 there

exists a function gk such that (dgk ◦H)|A = (dz̄k)|A.

As Im((H|A)
∗) is the annihilator in A of Ker(H|A) and H|A is nilpotent

and 0-deformable, around any point and among g1, ..., gm−s, we may choose

functions z̄m−s+1, ..., z̄m−s̄, where s − s̄ = dim(Im(H|A) ∩ Ker(H|A)), such
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that Ker(H|A) = (Im(H|A) ∩Ker(H|A))⊕Ker((dz̄1 ∧ ... ∧ dz̄m−s̄)|A). Now if

z̄m−s̄+1, ..., z̄m are functions such that Kerdz̄j ⊃ Im(H|A), j = m− s̄+1, ...,m,

and dz̄m−s̄+1∧ ...∧dz̄m restricted to Ker((dz̄1 ∧ ... ∧ dz̄m−s̄)|A) does not vanish

anywhere, then z̄ = (z̄1, ..., z̄m) is a system of coordinates on A and (x, z̄) a

system of coordinates on F1. By construction dz̄j ◦ G, j = m − s + 1, ...,m,

equals a linear combination with constant coefficients of dz̄1, ..., dz̄m−s plus a

functional combination of dx1, ..., dxn.

In short, naming zk every function z̄k allows us to suppose that in coordinates

(x, z)

G =
∑n
j=1 aj(∂/∂xj)⊗ dxj +

∑m
j=1

∑m−s
k=1 ajk(∂/∂zj)⊗ dzk

+
∑m
j=m−s+1(∂/∂zj)⊗ βj

where every ajk ∈ K, each βj is a functional combination of dx1, ..., dxn and

{∂/∂zm−s+1, ..., ∂/∂zm} a basis of KerG.

Besides, by linearly rearranging z1, ..., zm if necessary, one may suppose that

{∂/∂zλ}λ∈L, for some subset L of {1, ...,m}, is a basis of G(A).

But now NG(∂/∂zk, ) = LG(∂/∂zk)G − G ◦ L∂/∂zkG = LG(∂/∂zk)G and

α1 ∧ ... ∧ αr ∧ NG = 0, therefore α1 ∧ ... ∧ αr ∧ (∂βj/∂zλ) = 0, λ ∈ L, j =

m − s + 1, ...,m. Thus considering G +
∑r

j=1Xj ⊗ αj instead of G, where

X1, ..., Xr are suitable functional combinations of ∂/∂zm−s+1, ..., ∂/∂zm, and

calling it G again allows us to suppose ∂βj/∂zλ = 0, λ ∈ L, j = m− s+1, ...,m

without loss of generality.

By lemma 1.1, dxj ◦ NG = dzk ◦ NG = 0, j = 1, ...n, k = 1, ...,m − s.

Therefore one has to study dzj ◦ NG when j = m − s + 1, ...m. Note that

each (βj ◦ J
−1) ◦NG = 0 [here J−1 =

∑n
i=1 a

−1
i (∂/∂xi) ⊗ dxi ], so dzj ◦NG =

(dzj − βj ◦ J
−1) ◦ NG, j = m − s + 1, ...m, and from lemma 1.1 applied to

dzj−βj ◦J
−1 and G follows (d(dzj−βj ◦J

−1))(G,G)+(dzj−βj ◦J
−1)◦NG = 0

since (dzj−βj◦J
−1)◦G and (dzj−βj◦J

−1)◦G2 equal zero or a linear combination

with constant coefficients of dz1, ..., dzm−s.

Hence

dzj◦NG = (d(βj◦J
−1))(G,G) = (dx(βj◦J

−1))(J, J)+

m∑

k=m−s+1

βk∧

(
∂(βj ◦ J

−1)

∂zk
◦ J

)
=

(
dx(βj ◦ J

−1) +

m∑

k=m−s+1

(βk ◦ J
−1) ∧

∂(βj ◦ J
−1)

∂zk

)
(J, J)
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where dx is the exterior derivative with respect to x = (x1, ..., xn) only [recall

that {∂/∂zλ}λ∈L is a basis of G(A) and ∂βj/∂zλ = 0].

Therefore the equation α1 ∧ ... ∧ αr ∧NG = 0 is equivalent to the system

(1)





(
dx(βj ◦ J

−1) +

m∑

k=m−s+1

(βk ◦ J
−1) ∧

∂(βj ◦ J
−1)

∂zk

)

∧(α1 ◦ J
−1) ∧ ... ∧ (αr ◦ J

−1) = 0

j = m− s+ 1, ...,m

By the same reason if G′ = G+
∑m
j=m−s+1(∂/∂zj)⊗β

′
j, where β

′
m−s+1, ..., β

′
m

are functional combinations of α1, ..., αr whose coefficient functions do not de-

pend on zλ, λ ∈ L, the equation NG′ = 0 is equivalent to the system

(2)





dx((βj + β′
j) ◦ J

−1) +

m∑

k=m−s+1

((βk + β′
j) ◦ J

−1) ∧
∂((βj + β′

j) ◦ J
−1)

∂zk
= 0

j = m− s+ 1, ...,m

In other words we need to show that given forms βm−s+1..., βm satisfying

system (1), there exist forms β′
m−s+1..., β

′
m such that system (2) is satisfied too.

On N forms α1 ◦ J−1, ..., αr ◦ J
−1 define a foliation contained in F ′

1 since

α1, ..., αr, J give rise to a Veronese web along F ′
1; moreover around every point

of N there exist indices 1 ≤ k1 < ... < kn−r ≤ n such that dxk1 ∧ ... ∧ dxkn−r
∧

(α1 ◦J
−1)∧ ...∧ (αr ◦J

−1) does not vanish anywhere. As the order of functions

x1, ..., xn is arbitrary, we may assume dx1∧...∧dxn−r∧(α1◦J
−1)∧...∧(αr◦J

−1)

non-singular and consider coordinates y = (y1, ..., yn) along F ′
1 such that y1 =

x1,..., yn−r = xn−r and Ker(dyn−r+1 ∧ ... ∧ dyn) = Ker((α1 ◦ J
−1) ∧ ... ∧ (αr ◦

J−1)); thus α1 ◦ J
−1, ..., αr ◦ J

−1 and each β′
j ◦ J

−1 are functional combination

of dyn−r+1, ..., dyn; in the first case the coefficients only depend on y and in the

second one they do not depend on zλ, λ ∈ L. Moreover one can assume that

every βj ◦J
−1 is only combination of dy1, ..., dyn−r; indeed if βj ◦J

−1 = γj + ρj

with γj∧dy1∧...∧dyn−r = 0 and ρj∧dyn−r+1∧...∧dyn = 0, it suffices replacing

G by G−
∑m

j=m−s+1(∂/∂zj)⊗ (ρj ◦ J).

On the other hand, linearly rearranging coordinates z allows us to suppose

that {1, ...,m−s}−L = {1, ...,m′} and {m−s+1, ...,m}−L = {m−s+1, ...,m−
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s+ s′} where m′ ≤ m− s and s′ ≤ s (here m′ = 0 means {1, ...,m− s} ⊂ L and

s′ = 0 that {m − s + 1, ...,m} ⊂ L). Now on P take a system of coordinates

(v, y, u, w) = (v1, ..., va+m′ , y1, ..., yn, u1, ..., us, w1, ..., wm−m′−s) such that dv1 =

... = dva = 0 defines F1, va+k = zk, k = 1, ...,m′, uj = zm−s+j , j = 1, ..., s, and

wk = zm′+k, k = 1, ...,m −m′ − s. Set τj = βm−s+j ◦ J
−1, j = 1, ..., s. Since

βm−s+j and β′
m−s+j do not depend on zλ, λ ∈ L, our problem may be stated

in coordinates (v, y, u), that is on a manifold P ′ of dimension a +m′ + s and

along the foliation G′ defined by dv1 = ... = dva+m′ = 0, as follows:

Given 1-forms τj =
∑n−r

k=1 fjkdyk, j = 1, ..., s, where functions fjk do not

depend on us′+1, ..., us such that

(3) d(y1,...,yn−r)τj +

s∑

i=1

τi ∧
∂τj
∂ui

= 0, j = 1, ..., s,

find forms τ̃j = τj +
∑n

k=n−r+1 fjkdyk, j = 1, ..., s, where each fjk does not

depend on us′+1, ..., us such that

(4) dy τ̃j +
s∑

i=1

τ̃i ∧
∂τ̃j
∂ui

= 0, j = 1, ..., s,

(here d(y1,...,yn−r) and dy are the exterior derivative in (y1, ..., yn−r) or y =

(y1, ..., yn) respectively).

Lemma 2.3. Forms τ̃1, ..., τ̃s always exist locally.

Proof. As a straightforward calculation shows, system (3) is equivalent to

say that vector fields Xk = ∂/∂yk +
∑s

j=1 fjk∂/∂uj, k = 1, ..., n− r, commute

among them.

An analogous statement holds for system (4).

In turn, functions fjk do not depend on us′+1, ..., us if and only ifX1, ..., Xn−r

commute with vector fields Y1, ..., Ys−s′ , where each Yi = ∂/∂us′+i.

Since by hypothesis X1, ..., Xn−r, Y1, ..., Ys−s′ commute and are linearly in-

dependent everywhere, along G′ and around every point, there exist coordinates

ν1, ..., νn+s such that ν1 = y1, ..., νn = yn, Xk = ∂/∂νk, k = 1, ..., n − r, and

Yi = ∂/∂νn+s′+i, i = 1, ..., s− s′.
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Set Xk = ∂/∂νk when k = n−r+1, ..., n. Then in coordinates (y, u) one has

Xk = ∂/∂yk +
∑s
j=1 fjk∂/∂uj, k = n − r + 1, ..., n. Moreover by construction

X1, ..., Xn, Y1, ..., Ys−s′ commute among them, so forms τ̃j =
∑n

k=1 fjkdyk =

τj +
∑n
k=n−r+1 fjkdyk, j = 1, ..., s, satisfy system (4) and functions fjk do not

depend on us′+1, ..., us. �

Now proposition 2.1 is proved.

The next step will be extending this result to Veronese flags. Therefore

let ω, ω1 be a symplectic form and a closed 2-form, respectively, defined on

A. Suppose that (F , ℓ, ω, ω1) is a Veronese flag on P or at some point of P

both along F1 [in the second case by definition condition 3’) has to hold on

neighbourhoods on P of this point]. Set dimA = 2m (now the dimension of A

has to be even since ω is symplectic).

Theorem 2.1. Let G : F1 → F1 be a morphism which extends ℓ and projects

in J . Assume that:

(a) ℓ |A is 0-deformable and its characteristic polynomial equals (t−a)2m where

a ∈ K,

(b) functions a1, ..., an never take the value a,

then around every point of P such that (F , ℓ, ω, ω1) is a Veronese flag at it

there exist a morphism G′ : F1 → F1, which extends ℓ and projects in J , and

functions z1, ..., z2m such that (x1, ..., xn, z1, ..., z2m) is a system of coordinates

along F1,

G′ =
∑n

j=1 aj(∂/∂xj)⊗ dxj +
∑2m
j,k=1 ajk(∂/∂zj)⊗ dzk,

where every ajk ∈ K, and ω, ω1 are expressed with constant coefficients relative

to (dz1)|A, ..., (dz2m)|A.

Again, one will prove theorem 2.1 by induction on m. If m = 0 the result is

obvious; now suppose the theorem true up to m− 1. Note that we may assume

ℓ|A nilpotent by considering G− aI, ℓ− aI and ω1 − aω instead of G, ℓ and ω1.

Then KerG = Kerω1 ⊂ A; so KerG is a foliation since ω1 is closed. Consider

coordinates (x, z) = (x1, ..., xn, z1, ..., z2m) along F1 such that dx1 = ... = dxn =

dz1 = ... = dz2(m−s) = 0 defines KerG, where dimKerG = 2s. Reasoning as in

the proof of proposition 2.1 allows us to assume G projectable in a tensor field

Ḡ, defined on the local quotient P̄ of P by KerG, and consider the objects F̄1,
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F̄ , Ā and ℓ̄ with the obvious difference that now dimĀ is even. Thus (F̄ , Ā) is

a weak Veronese flag along F̄1.

On the other hand ω1 projects in a symplectic form ω̄ on Ā. By lemma

1.3 the 2-form ω2(X,Y ) = ω(ℓX, Y ) is closed and Kerω2 ⊃ Kerω1 = KerG;

therefore it projects in a closed 2-form ω̄1 on Ā such that ω̄1 = ω̄(ℓ̄, ), and

(F̄ , ℓ̄, ω̄, ω̄1) will be a Veronese flag if we are able to check the third condition

of the definition of this notion.

Let h be a function on an open set of P̄ such that ℓ̄∗dh is a closed form on

F̄ , that is such that α1 ∧ ... ∧ αr ∧ (d(dh ◦ Ḡ)) = 0. Regarded on P one has

dh(KerG) = 0 and α1∧...∧αr∧(d(dh◦G)) = 0. In particular, locally and along

F1, dh = β ◦G for some 1-form β and, by lemma 1.1, one has dβ(G,G)+d(dh◦

G) + β ◦NG = 0. Hence, as α1 ∧ ... ∧ αr ∧NG = α1 ∧ ...∧ αr ∧ (d(dh ◦G)) = 0,

results α1 ∧ ...∧αr ∧ dβ(G,G) = 0, that is (α1 ◦ J
−1)∧ ...∧ (αr ◦ J

−1)∧ dβ = 0.

But α1 ◦ J
−1, ..., αr ◦ J

−1 define a foliation, therefore β = dg modulo α1 ◦

J−1, ..., αr ◦ J
−1 for some function g. Thus α1 ∧ ... ∧ αr ∧ (dg ◦ G − dh) = 0,

whence α1 ∧ ... ∧ αr ∧ (d(dg ◦G)) = 0; in other words ℓ∗dg is closed on F .

Let X be the ω-hamiltonian of g. From ω1(X, ) = ω(GX, ) = −(dg ◦

G)|A = −dh|A follows that the projection X̄ of X onP̄ is the ω̄-hamiltonian of

h. But LXℓ = 0 since (F , ℓ, ω, ω1) is a Veronese flag, so LX̄ ℓ̄ = 0; that is to say

(F̄ , ℓ̄, ω̄, ω̄1) is a Veronese flag too (everywhere or at some point).

By the induction hypothesis, there exist a morphism Ḡ′ : F̄1 → F̄1 extending

ℓ̄ and projecting in J and functions z1, ..., z2(m−s), such that (x1, ..., xn, z1, ..., z2(m−s))

is a system of coordinates along F̄1 in which Ḡ′, ω̄ and ω̄1 are written with con-

stant coefficients. But Ḡ′ − Ḡ =
∑r
j=1 X̄j ⊗ αj where X̄1, ..., X̄r are tangent to

Ā. Therefore considering G+
∑r

j=1 X̄j ⊗ αj instead of G, where X1, ..., Xr are

tangent to A and project in X̄1, ..., X̄r, allows us to suppose that G projects in

Ḡ′; that is to say Ḡ′ = Ḡ.

On the other hand, proceeding as in the proof of proposition 2.1 shows the

existence of vector fields X̃1, ..., X̃r, tangent to KerG, such that the Nijenhuis

torsion of G +
∑r
j=1 X̃j ⊗ αj vanishes; in other words one may assume NG =

0. Indeed, see (F̄ , ℓ̄), (F , ℓ) as weak Veronese flags and Ḡ, G like suitable

prolongations of ℓ̄, ℓ respectively.

In short, only case to consider: in coordinates (x1, ..., xn, z1, ..., z2(m−s)) Ḡ,
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ω̄, ω̄1 are written with constant coefficients following theorem 2.1 and NG = 0.

Regarded like function on P every dzk ◦ G, k = 1, ..., 2(m − s), is a linear

combination with constant coefficients of dz1, ....dz2(m−s); moreover dxj ◦G =

ajdxj , j = 1, ..., n. By lemma 2.2 there exist functions g1, ..., g2(m−s) such that

dgk ◦G = dzk, k = 1, ..., 2(m− s).

Since G|A = ℓ|A is 0-deformable and nilpotent, around any point and among

g1, ..., g2(m−s), one can choose functions z̄2(m−s)+1, ..., z̄2(m−s̄), where 2(s− s̄) =

dim(G(A) ∩KerG), such that

KerG = (G(A) ∩KerG)⊕Ker((dz1 ∧ ... ∧ dz2(m−s) ∧ dz̄2(m−s)+1 ∧ ... ∧ dz̄2(m−s̄))|A).

Now if z̄2(m−s̄)+1, ..., z̄2m are functions such that Kerdz̄j ⊃ ImG, j = 2(m −

s̄) + 1, ..., 2m, and dz̄2(m−s̄)+1 ∧ ... ∧ dz̄2m restricted to

Ker((dz1 ∧ ... ∧ dz2(m−s) ∧ dz̄2(m−s)+1 ∧ ... ∧ dz̄2(m−s̄))|A)

does not vanish anywhere, then (x1, ...xn, z1, ..., z2(m−s), z̄2(m−s)+1, ..., z̄2m) is a

system of coordinates along F1. By construction dz̄j◦G, j = 2(m−s)+1, ..., 2m,

equals a linear combination with constant coefficients of dz1, ..., dz2(m−s). Thus

G =
∑n

j=1 aj(∂/∂xj)⊗ dxj +
∑2m

j=1

∑2(m−s)
k=1 Zjk ⊗ dzk

where each Zjk is a linear combination with constant coefficients of

∂/∂z1, ..., ∂/∂z2(m−s), ∂/∂z̄2(m−s)+1, ..., ∂/∂z̄2m.

Moreover, in these coordinates, ω1 and ω2 are written with constant coeffi-

cients since ω̄ and ω̄1 are in coordinates (x1, ..., xn, z1, ..., z2(m−s)).

Let Xk be the ω-hamiltonian of zk, k = 1, ...2(m− s), or z̄k, k = 2(m− s) +

1, ...2m. Then ω1(Xk, ) = ω(GXk, ) equals −dzk ◦G or −dz̄k ◦G; in both

cases a linear combination with constant coefficients of dz1, ..., dz2(m−s) because

ω1 projects in ω̄. In other words

Xk =
∑2m
i=2(m−s)+1 fki∂/∂z̄i +

∑2(m−s)
j=1 bkj∂/∂zj

where each bkj ∈ K.

In particular {zj, zk}ω, j, k = 1, ..., 2(m−s), and {zj, z̄k}ω, j = 1, ..., 2(m−s),

k = 2(m − s) + 1, ..., 2m, are constant [here { , }ω and Λω are respectively

the Poisson structure and the dual bivector on A associated to ω].

On the other hand, everywhere or close to some point, LXk
ℓ = 0 since dzk◦G,

or dz̄k◦G, is closed. Hence α1∧...∧αr∧LXk
G = 0. A straightforward calculation

shows that LXk
G = −

∑2m
i=2(m−s)+1(∂/∂z̄i)⊗ (dfki ◦G), so α1∧ ...∧αr∧ (dxfki ◦

J) = 0 where dx is the exterior derivative with respect to x = (x1, ..., xn);
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that is (α1 ◦ J−1) ∧ ... ∧ (αr ◦ J−1) ∧ dxfki = 0, i = 2(m − s) + 1, ..., 2m.

In other words functions fki are basic for the foliation G′′ ⊂ F1 defined by

α1 ◦ J
−1, ..., αr ◦ J

−1, dz1, ..., dz2(m−s), dz̄2(m−s)+1, ..., dz̄2m.

But {z̄k, z̄i}ω = fki, therefore Λω and by consequence ω are written with

coefficients which are G′′-basic functions.

Lemma 2.3. Along a foliation F̃ of dimension 2m̃ defined on a manifold P̃ ,

consider a symplectic form λ and functions f1, ..., fk such that df1 ∧ ...∧dfk has

no zeros. Assume constant every function {fi, fj}, i, j = 1, ..., k. Then locally

there are functions g1, ..., g2m̃−k such that (f1, ..., fk, g1, ..., g2m̃−k) is a system

of coordinates along F̃ and λ is written with constant coefficients relative to it.

Proof. It is just one of the version of Darboux theorem. �

Pulling-back the functions given by lemma 2.3, applied to the projections

on the local quotient P/G′′ of A, z1, ..., z2(m−s) and ω, yields G
′′-basic functions

g1, ..., g2s such that (x1, ..., xn, z1, ..., z2(m−s), g1, ..., g2s) is a system of coordi-

nates along F1. In this system ω and ω1 are written with constant coefficients

[recall that ω1 is a constant linear combination of dzj ∧ dzk, 1 ≤ j < k ≤ 2(m−

s)]; by consequence the restriction of G to A is written with constant coefficients

too and every (dgi◦G)|A is a constant linear combination of dz1|A, ..., dz2(m−s)|A
.

Therefore in coordinates (x1, ..., xn, z1, ..., z2(m−s), z̄2(m−s)+1, ..., z̄2m) each dgi ◦

G equals dxgi ◦ J plus a constant linear combination of dz1, ..., dz2(m−s).

But gi is G
′′-basic, so dxgi ◦J is a functional combination of α1, ..., αr. Thus

in coordinates (x, z) = (x1, ..., xn, z1, ..., z2m) where z2(m−s)+i = gi, i = 1, ..., 2s,

one has:

G =
∑n
j=1 aj(∂/∂xj)⊗ dxj +

∑2m
j=1

∑2(m−s)
k=1 cjk(∂/∂zj)⊗ dzk

+
∑2s
i=1(∂/∂z2(m−s)+i)⊗ βi

where every cjk ∈ K and α1 ∧ ... ∧ αr ∧ βi = 0, i = 1, ..., 2s.

Now it suffices to set G′ = G −
∑2s

i=1(∂/∂z2(m−s)+i) ⊗ βi for finishing the

proof of theorem 2.1.

3. The case of an eigenvalue function

In the foregoing section one has studied Veronese flags with parameters when

ℓ|A is 0-deformable and nilpotent (theorem 2.1). Here we will consider Veronese
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flags for more general tensor field ℓ|A, which will be the main tool for establishing

the splitting theorem of bihamiltonian structures.

One starts introducing the notion of regular open set. Let KP [t] be the

polynomial algebra in one variable over the ring of differentiable functions on

a manifold P . A polynomial ϕ ∈ KP [t] is said irreducible if it is irreducible at

every point of P . Two polynomials ϕ, ψ ∈ KP [t] are called relatively prime if

they are at each point. Given a vector bundle E over P , of dimension m̃, and

a morphism H : E → E its characteristic polynomial ϕ =
∑m̃

j=0 hjt
j belongs to

KP [t]. Set gj = trace(Hj). Since h0, ..., hm̃−1 are, up to sign, the elementary

symmetric polynomials of the roots and each gj the sum of their j-th powers,

every function gj may be expressed as a rational polynomial of h0, ..., hm̃−1, and

each function hj like a rational polynomial of g1, ..., gm̃. In particular gj when

j ≥ m̃+ 1 equals a rational polynomial of g1, ..., gm̃.

One will say that H : E → E has constant algebraic type if there exist

relatively prime irreducible polynomials ϕ1, ..., ϕs ∈ KP [t] and positive integers

ajk, j = 1, ..., rk, k = 1, ..., s, such that at each point p ∈ P the family {ϕ
ajk
k (p)},

j = 1, ..., rk, k = 1, ..., s, is that of elementary divisors of H(p). Let f1, ..., fñ

be the family of all significant coefficient functions of ϕ1, ..., ϕs ∈ KP [t]; that is

f when ϕk = t + f and f, g if ϕk = t2 + ft + g. Obviously h0, ..., hm̃−1, and

by consequence each gj , are rational polynomials of f1, ..., fñ. Conversely, for

every point of P there exist analytic functions λk(u1, ..., uñ) such that close to

this point fk = λk(g1, ..., gñ), k = 1, ..., ñ (note that ñ ≤ m̃). Indeed, assume

the degree of every ϕk equals one (otherwise complexify E and H); then ñ = s

and it suffices to remark that the polynomial map F : Ks → Ks, defined by

F (z) = (
∑s

k=1 bkzk,
∑s

k=1 bkz
2
k, ....,

∑s
k=1 bkz

s
k) where each bk =

∑rk
j=1 ajk, is

a local diffeomorphism on the open set {z ∈ Ks | zj 6= zkifj 6= k} since the

determinant of its Jacobian matrix equals c
∏

1≤j<k≤j(zj−zk) with c ∈ K−{0}.

Let BH be the set of all points such that around them H has constant

algebraic type.

Lemma 3.1. The set BH is open and dense.

Proof. One may suppose K = C by complexifying E and H if necessary.

Given p ∈ P let a be a root of ϕ(p) of multiplicity b. Then if ε > 0 is small
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enough and q close to p, the sum of multiplicities of the roots of ϕ(q) belonging

to the disk Dε(a) equals b; indeed, this sum is the degree of the map eiθ ∈ S1 →

ϕ(q)(a+εeiτ ) ‖ ϕ(q)(a+εeiθ) ‖−1∈ S1. Therefore the number of different roots

of ϕ is locally constant on a dense open set P ′ of P .

Now assume p ∈ P ′. Then there exist ε > 0 and an open set p ∈ B ⊂ P ′

such that ϕ(q), q ∈ B, has just one root on Dε(a) and its multiplicity is b.

Let λ be the (b − 1)-derivative of ϕ with respect to t. Then (∂λ/∂t)(p, a) 6= 0

and by the implicit function theorem applied to λ and 0 ∈ C, shrinking B if

necessary, there is a differentiable (holomorphic or C∞) function f : B → C

such that −f(q), q ∈ B, is the root of ϕ(q) on Dε(a). Thus ϕ =
∏s
k=1(t+ fk)

bk

around p where f1, ..., fs are differentiable functions, b1, ..., bs integers ≥ 1 and
∏

1≤j<k≤s(fj − fk) never vanishes.

Finally, remark that the functions dimKer((H + fkI)
j) are locally decreas-

ing, so locally constant on a dense open set B′ ⊂ B. �

Suppose that E is a foliation and NH = 0; then jdgj+1 = (j + 1)dgj ◦

H . Indeed, consider (E,H) as a weak Veronese flag (if codimE = 0 regard

the problem on K × P in the obvious way) and apply lemma 1.2. Therefore

∩m̃j=1Kerdgj(p) = ∩m̃−1
j=0 Kerdhj(p) is a H-invariant vector subspace of TpP

because each gj , j ≥ m̃+ 1, is a function of g1, ..., gm̃.

One will be say that a point p ∈ P is regular if there exists an open neigh-

bourhood B of p such that:

(1) H has constant algebraic type on B,

(2) ∩m̃j=1Kerdgj , restricted to B, is a vector sub-bundle of E and therefore a

foliation,

(3) H restricted to ∩m̃j=1Kerdgj has constant algebraic type on B.

By lemma 3.1, applied to H and its restriction to ∩m̃j=1Kerdgj , the set of all

regular points is a dense open set P , called the regular open set.

To remark that if H has constant algebraic type on an open set D, then

∩m̃j=1Kerdgj = ∩ñj=1Kerdfj on it where f1, ..., fñ are the significant coefficient

functions of ϕ1, ..., ϕs.

Consider a Veronese flag (F , ℓ, ω, ω1) on a manifold P or at some point of P .

Let A be the foliation of the largest ℓ-invariant vector subspace (as in section 1)

and π : P → N a local quotient of P by A. Set codimF = r, dimA = 2m and
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dimN = n. Then N is endowed with a r-codimensional Veronese web whose

limit when t→ ∞ equals the quotient foliation F ′ = F/A; moreover ℓ projects

in the morphism ℓ′ associated to this Veronese web.

Suppose that ϕ = (t−f)2m is the characteristic polynomial of ℓ|A; then from

lemma 1.2 follows df ◦ ℓ = fdf on F . Now assume that df|A never vanishes.

Let Xf be the ω-hamiltonian of f ; then LXf
ℓ = 0 and ℓ(Xf ) = fXf since

df ◦ ℓ = fdf on F . Denoted by P̄ and π̄ : P → P̄ , respectively, the local

quotient of P by Xf and its canonical projection. Consider coordinates (y, z) =

(y1, ..., yn, z1, ..., z2m) on P such that dy1 = ... = dyr = 0 defines F , dy1 = ... =

dyn = 0 the foliation A, f = z2m and Xf = −∂/∂z2m−1. Thus (y1, ..., yn) can

be regarded as coordinates on N , (y1, ..., yn, z1, ..., z2m−2, z2m) as coordinates on

P̄ and f as a function on this last manifold. Now it is obvious that Kerdf and

F ∩Kerdf project in two foliations F̄1 and F̄ on P̄ , respectively, and ℓ|F∩Kerdf

projects in a morphism ℓ̄ : F̄ → F̄1; moreover (F̄ , ℓ̄) is a weak Veronese flag

along F̄1 (locally any extension of ℓ̄ can be lifted to an extension of ℓ), whose

foliation Ā of the largest ℓ̄-invariant vector subspaces equals the projection of

A ∩ Kerdf , P̄ /Ā is identified to N × B, where B is an open neighbourhood

of f(p) on K, and F̄1 projects in the foliation of N × B by the first factor.

Moreover, the Veronese web induced by (F̄ , ℓ̄) on each leaf N × {b} of this last

foliation equals the pull-back, by the first projection π1 : N × B → N , of that

induced by (F , ℓ).

On the other hand, since iXf
ω = −df|A and iXf

ω1 = −(df ◦ ℓ)|A = −fdf|A,

the vector fieldXf belongs toKer(ω|A∩Kerdf) andKer(ω1|A∩Kerdf ), so ω|A∩Kerdf

projects in a symplectic form ω̄ and ω1|A∩Kerdf in a closed 2-form ω̄1, both on

Ā; besides ω̄1 = ω̄(ℓ̄, ). The family (F̄ , ℓ̄, ω̄, ω̄1) will be called the symplec-

tic reduction of (F , ℓ, ω, ω1). For proving that this family is a Veronese flag it

suffices to check the third condition of the definition.

On N consider coordinates (x1, ..., xn) and a (1, 1)-tensor field

J =
∑n
j=1 aj(∂/∂xj)⊗ dxj where a1, ..., an are scalars.

Theorem 3.1. Let G be a (1, 1)-tensor field, which extends ℓ and projects

in J , defined around a point p of P such that (F , ℓ, ω, ω1) is a Veronese flag at

this point. Assume that:

(a) the characteristic polynomial of ℓ|A equals (t− f)2m where df|A never van-
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ishes,

(b) the function f does not take the values a1, ..., an,

(c) p is a regular point of ℓ|A,

(d) the symplectic reduction of (F , ℓ, ω, ω1) is a Veronese flag at π̄(p),

then around p there exist a (1, 1)-tensor field G′ extending ℓ and projecting in

J and functions z1, ..., z2m such that (x, z) = (x1, ..., xn, z1, ..., z2m) is a system

of coordinates,

G′ =
∑n

j=1 aj(∂/∂xj)⊗ dxj +
∑2m

j,k=1 hjk(z)(∂/∂zj)⊗ dzk

and ω, ω1 are expressed relative to dz1|A, ..., dz2m|A with coefficient functions

only depending on z.

Lets us prove theorem 3.1. Consider closed 1-forms α1, ..., αr defining F ; by

modifying the order of variables x1, ..., xn if necessary one may suppose that

dx1 ∧ ...∧ dxn−r ∧α1 ∧ ...∧αn−r has no zeros. Since df ◦ ℓ = fdf on F , one has

df ◦G = fdf +
∑r
j=1 hjαj . Now consider a vector field Y ∈ A such that Y f = 1

and setG1 = G−Y ⊗(
∑r
j=1 hjαj); then df◦G1 = fdf , which allows us to assume

df ◦ G = fdf by considering G1 instead of G and calling it G. On the other

hand from d(df ◦ G) = 0 follows LXf
ℓ = 0, that is α1 ∧ ... ∧ αr ∧ LXf

G = 0,

whence LXf
G =

∑r
j=1Xj ⊗ αj ; moreover X1, ...Xr ∈ A ∩ Kerdf . Indeed,

0 = LXf
(fdf) = LXf

(df ◦ G) = df ◦ LXf
G and the projection on N of LXf

G

vanishes since G projects in J and Xf in zero.

Around p there exist vector fields Y1, ...Yr ∈ A∩Kerdf such that [Xf , Yj ] =

−Xj, j = 1, ..., r. Then LXf
(G +

∑r
j=1 Yj ⊗ αj) = 0 and, by the same reason

as before, we can suppose df ◦G = fdf and LXf
G = 0. Thus G|Kerdf projects

in a (1, 1)-tensor field Ḡ defined along F̄1, which extend ℓ̄ and projects in J

(regarded along the foliation of N ×B by the first factor in the obvious way).

On the other hand (F̄ , ℓ̄−fI, ω̄, ω̄1−fω̄) is a Veronese flag along F̄1 because

f is basic for this last foliation. Moreover near π̄(p) the tensor field (ℓ̄−fI)|Ā is

nilpotent (obvious!) and 0-deformable. Indeed, p regular implies the existence

of positive integers k1, ..., ks such that, around this point, {tkj , tkj}, j = 1, ..., s,

is the family of elementary divisors of (ℓ − fI)|A [recall that every elementary

divisor of ℓ|A occurs an even number of times because ω1 = ω(ℓ, )] whereas

{{tkj , tkj}j=1,...,s−1, t
ks , tks−1} is that of (ℓ−fI)|A∩Kerdf ; now a straightforward

calculation shows that, close to π̄(p), the family of elementary divisors of (ℓ̄ −
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fI)|Ā has to be {{tkj , tkj}j=1,...,s−1, t
ks−1, tks−1}.

Thus theorem 2.1 applied to Ḡ− fI, (F̄ , ℓ̄− fI, ω̄, ω̄1 − fω̄) and
∑n

j=1(aj −

f)(∂/∂xj) ⊗ dxj yields coordinates (x1, ..., xn, z1, ..., z2m−2) along F̄1, which

become coordinates coordinates (x1, ..., xn, z1, ..., z2m−2, z2m) on P̄ by setting

z2m = f , such that dz2m = 0 defines F̄1,

Ḡ− z2mI =
∑n
j=1(aj − z2m)(∂/∂xj)⊗ dxj

+
∑2m−2
j,k=1 ajk(∂/∂zj)⊗ dzk +

∑r
j=1 X̄j ⊗ αj

where X̄1, ...X̄r ∈ Ā and each ajk ∈ K, and ω̄, ω̄1 − z2mω̄ are written with

constant coefficients. Moreover, considering G −
∑r

j=1Xj ⊗ αj instead of G

where eachXj ∈ A∩Kerdf , commutes with Xf and projects in X̄j , and linearly

rearranging coordinates (z1, ..., z2m−2) allows us to suppose ω̄ = (
∑m−1

k=1 dz2k−1∧

dz2k)|Ā and

Ḡ− z2mI =
∑n

j=1(aj − z2m)(∂/∂xj)⊗ dxj +
∑2m−2

j,k=1 ajk(∂/∂zj)⊗ dzk.

If we regard z1, ..., z2m−2, z2m as functions on P one has ω = (
∑m−1

k=1 dz2k−1∧

dz2k + µ ∧ dz2m)|A. But ω is closed so (dµ ∧ dz2m)|A = 0 and one may choose

a function z2m−1 such that dz2m−1 ∧ dz2m equals µ ∧ dz2m on A; that is to say

ω = (
∑m

k=1 dz2k−1∧dz2k)|A and (x1, ..., xn, z1, ..., z2m) is a system of coordinates

around p. Now f = z2m, Xf = −∂/∂z2m−1 and G =
∑n

j=1 aj(∂/∂xj) ⊗ dxj +

(∂/∂z2m−1) ⊗ τ + T where τ is a functional combination of dx1, ..., dxn and

T of (∂/∂zj) ⊗ dzk, j, k = 1, ..., 2m; moreover the coefficient function of these

combinations do not depend on z2m−1 since LXf
G = 0.

On the other hand ω1 = z2mω+Ω1+β∧(dz2m|A) where Ω1 is a constant linear

combination of (dzj ∧ dzk)|A, 1 ≤ j < k ≤ 2m− 2, whose restriction to Kerdf

projects in ω̄1−fω̄, and β a functional combination of dz1|A, ..., dz2m−2|A whose

coefficient functions do not depend on z2m−1 (recall that iXf
ω1 = −(df ◦ ℓ)|A =

−fdf|A; in particular LXf
ω1 = 0). Therefore as ω1 = ω(ℓ, ) = ω(G, ) =

ω(T, ) one has:

T = z2mIz +H + (∂/∂z2m−1)⊗ β∗ − Z ⊗ dz2m

where Iz =
∑2m
k=1(∂/∂zk)⊗ dzk, Z is is the vector field functional combination

of ∂/∂z1, ..., ∂/∂z2m−2 defined by the equation ω(Z, ) = β, β∗ the extension

of β to TP such that β∗(∂/∂xj) = 0, j = 1, ..., n, and H the constant lin-

ear combination of (∂/∂zj) ⊗ dzk, j, k = 1, ..., 2m − 2, satisfying the relation

ω(H, ) = Ω1.
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Set Ω = ω − (dz2m−1 ∧ dz2m)|A. Then Ω1 = Ω(H, ) and iZΩ = β.

Note that any tensor field on P , partial or not, without terms including

∂/∂z2m−1, ∂/∂z2m, dz2m−1 or dz2m, whose coefficients functions do not depend

on z2m−1, can be regarded as a tensor field along the foliation Kerdz2m on P̄

by projecting, via π̄, its restriction to Kerdz2m. In coordinates (x, z) this is

equivalent to delete coordinate z2m−1 and consider the tensor field along the

foliation dz2m = 0. For the sake of simplicity both tensor fields will be denoted

by the same letter. Among others that will be the case of Z,H,Ω,Ω1, β already

defined and Z̃, β̃ defined later on.

Until the end of the proof of theorem 3.1 and for making calculations easier,

D will denote the exterior derivative with respect of variables (z1, ..., z2m−2),

along A on P or Ā on P̄ , and L the Lie derivative on P̄ . As ω1 = z2m(Ω +

(dz2m−1 ∧ dz2m)|A) + Ω1 + β ∧ (dz2m|A) is closed one has Dβ = LZΩ = −Ω.

On the other hand NG(∂/∂z2m, ) = LG(∂/∂z2m)G − G ◦ L(∂/∂z2m)G =

−LZG−H+(∂/∂z2m−1)⊗λ+Z
′⊗dz2m with λ∧dx1∧...∧dxn∧dz1∧...∧dz2m−2 =

0 and Z ′∧(∂/∂z1)∧...∧(∂/∂z2m−2) = 0. Now from α1∧...∧αr∧NG = 0 follows

LZG = −H+
∑r

j=1 Yj ⊗αj +(∂/∂z2m−1)⊗λ+Z ′⊗ dz2m, where Y1, ..., Yr ∈ A

because G projects in J on N and Z in zero.

Hence projecting on P̄ , that is to say considering variables (x1, ..., xn, z1, ..., z2m−2)

and parameter z2m, yields LZḠ = LZH = −H+
∑r
j=1 Ȳj⊗αj where Ȳ1, ..., Ȳr ∈

Ā, which is the foliation defined by dx1 = ...dxn = dz2m = 0.

Set G̃ = Ḡ− z2mI =
∑n
j=1(aj − z2m)(∂/∂xj ⊗dxj)+H . Then on P̄ one has

Ω(Z, ) = β, Ω1 = Ω(G̃, ) = Ω(H, ) and LZG̃ = LZH = −H +
∑r

j=1 Ȳj ⊗

αj . Moreover α1 ∧ ... ∧ αr ∧NG̃ = α1 ∧ ... ∧ αr ∧NḠ = 0.

Given an endomorphism S of a vector space V and a vector v ∈ V , one

will say that v is S-generic if v and S have the same minimal polynomial; in

particular v 6= 0 if V 6= {0}.

Lemma 3.2. Close to p on P and to π̄(p) on P̄ the vector field Z is H-

generic.

Proof. First remark that, for any q ∈ P , Z(q) is H-generic if and only if

Z(π̄(q)) is H-generic on P̄ .

Assume dimĀ ≥ 2, otherwise the result is obvious. Along Ā each Ω(Hk, ),
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k ≥ 0, is a constant 2-form and LZ(Ω(H
k, )) = −(k + 1)Ω(Hk, ); on the

other hand LZ(Ω(H
k, )) = D(Ω(HkZ, )). Now suppose the minimal poly-

nomial of H equals tk+1. Then Ω(Hk, ) never vanishes and by consequence

HkZ only does on a closed set of empty interior; otherwise LZ(Ω(H
k, )) = 0

on some non-empty open set. Therefore Z is H-generic almost everywhere

around π̄(p) on P̄ and p on P .

A straightforward calculation shows that the minimal polynomial of (ℓ|A)(q)

is (t− f(q))k+2 if and only if Z(q) is H-generic. So Z has to be H-generic close

to p since this point is regular. �.

Let Z̃ be a second vector field defined around p, functional combination

of ∂/∂z1, ..., ∂/∂z2m−2 with coefficient only depending on (z1, ..., z2m−2), such

that Z̃(p) = Z(p), LZ̃Ω = −Ω and LZ̃Ω1 = −2Ω1. Then LZ̃H = −H on P and

LZ̃G̃ = LZ̃H = −H on P̄ . The existence of a such vector field is clear since Ω

and Ω1 are written with constant coefficients; for example take as Z̃ a suitable

linear vector field (just a linear algebra exercise) plus a constant one.

Set β̃ = Ω(Z̃, ). Then on P̄ one has Dβ̃ = −Ω and there is a function

g = g(x, z1, ..., z2m−2, z2m) such that β = β̃ +Dg and Dg(π̄(p)) = 0; moreover

Z = Z̃ −Xg where Xg is the Ω-hamiltonian of g (recall that Ω is symplectic on

Ā).

Given a 1-form µ defined on a vector sub-bundle E by µ(KerHk) = 0 one

means µ(v) = 0 for every v ∈ E ∩KerHk. It is clear that Dg(KerHk) = 0 for

some integer k ≥ 0. The next step will be to show that our problem reduces to

the case Dg(KerHk+1) = 0.

Set βt = β̃ + tDg and Zt = (1 − t)Z̃ + tZ, t ∈ K. Then Ω(Zt, ) = βt,

LZt
Ω = −Ω and Zt(π̄(p)) = Z(π̄(p)), so Zt(π̄(p)) is H-generic. Moreover

(LZt
G̃ + H) ∧ α1 ∧ ... ∧ αr = ((1 − t)LZt

G̃ + tLZG̃ + H) ∧ α1 ∧ ... ∧ αr = 0

and (LXg
G̃) ∧ α1 ∧ ... ∧ αr = 0 since Xg = Z̃ − Z. By technical reasons let us

decompose the manifold P̄ into a product of a n-manifold [variables (x1, ..., xn)],

a (2m−2)-manifold [variables (z1, ..., z2m−2)] a 1-manifold [variable (z2m)], and

set π̄ = (π1, π2, π3) following this decomposition.

On P̄ × K consider coordinates (x1, ..., xn, z1, ..., z2m−2, z2m, t) and the foli-

ation dz2m = dt = 0, that is variables (x1, ..., xn, z1, ..., z2m−2) and parameters

(z2m, t). From proposition 4.1, applied to Zt, G̃, Ω, Ω1, Ā all of them regarded
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along dz2m = dt = 0, π1(p), π2(p), the compact set K = {π3(p)} × [0, 1] and

g when a = c = c′ = −1, follows the existence of a function ft defined around

K ′ = {π̄(p)} × [0, 1] such that:

(I) Dft|K′ = 0,

(II) (LXt
G̃) ∧ α1 ∧ ... ∧ αr = 0 where Xt is the Ω-hamiltonian of ft,

(III) Dft(KerH
k) = 0 and D(Ztft + ft − g)(KerHk+1) = 0.

Therefore:

(1) Xt|K′ = 0,

(2) Xt is tangent to ImH
k,

(3) LXt
Ω = LXt

Ω1 = 0,

(4) (LXt
βt −Dg)(KerHk+1) = 0.

Indeed, assertions (1) is clear and (3) follows from he fact that Ω1 = Ω(G̃, ).

For checking (2) remark that ImHk is the Ω-orthogonal of Ā ∩ KerHk and

KerΩ(Xt, ) = KerDft ⊃ Ā ∩ KerHk. Finally, for assertion (4) take into

account that LXt
βt = LXt

(Ω(Zt, )) = Ω([Xt, Zt], ) = −LZt
(Ω(Xt, )) +

(LZt
Ω)(Xt, ) = D(Ztft + ft) and apply (III).

Let Ψs be the flow of the time depending vector field −Xt (on P̄ × K one

considers the vector field ∂/∂t − Xt). As Xt|K′ = 0, Ψ1 is defined around

π̄(p) and it can be regarded as a germ of diffeomorphism at this point. By

construction Ψ1 preserves π̄(p), Ω, Ω1, α1, ..., αr, G̃|Ā = H|Ā and G̃∧α1∧...∧αr.

Since Xt is tangent to Ā one has

Ψ1(x, z1, ..., z2m−2, z2m) = (x,Φ(x, z1, ..., z2m−2, z2m), z2m).

Thus the pull-back by Ψ1 of G̃ equals G̃ +
∑r

j=1 Ȳj ⊗ αj with Ȳ1, ..., Ȳr ∈ Ā,

and that of Ḡ equals Ḡ+
∑r

j=1 Ȳj ⊗ αj

Now we construct a germ of diffeomorphism F , at point p, by setting

F (x, z) = (x,Φ(x, z1, ..., z2m−2, z2m), z2m−1 + ϕ(x, z1, ..., z2m−2, z2m), z2m)

such that F (p) = p and F ∗ω = ω. Indeed, F ∗ω = Ω+ (dz2m−1 ∧ dz2m)|A + ρ ∧

(dz2m|A) + (dϕ ∧ dz2m)|A where ρ is a 1-form along A; as 0 = d(F ∗ω) = dρ ∧

(dz2m|A) one may choose ϕ in such a way that (dϕ ∧ dz2m)|A = −ρ∧ (dz2m|A).

On the other hand:

F ∗(z2mω + β ∧ (dz2m|A)) = z2mω + (β̃ +Dh1) ∧ (dz2m|A)

where h1 = h1(x, z1, ..., z2m−2, z2m) and Dh1(KerH
k+1) = 0 since Dβ = Dβ̃

and Φ transforms β̃|KerHk+1 in β|KerHk+1 , while
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F ∗Ω1 = Ω1 +Dh2 ∧ (dz2m|A)

where h2 = h2(x, z1, ..., z2m−2, z2m) because Ω1 is closed.

Let us see that Dh2(KerH
k+1) = 0. Set

Ψs(x, z1, ..., z2m−2, z2m) = (x, ψs(x, z1, ..., z2m−2, z2m), z2m).

Since Xt is tangent to Ā ∩ ImHk = ImHk, the flow Ψs respects each leaf

of the foliation Ā∩ImHk. Therefore (z1, ..., z2m−2) and ψs(x, z1, ..., z2m−2, z2m)

belong to the same leaf of the foliation ImHk regarded on the variables (z1, ..., z2m−2)

only; by consequence (ψs)∗(∂/∂z2m) ∈ ImHk and, in particular, Φ∗(∂/∂z2m) ∈

ImHk, whence (F∗(∂/∂z2m)−∂/∂z2m) ∈ ImHk; so set F∗(∂/∂z2m) = ∂/∂z2m+

HkV . As F respects A, Kerdz2m and H|A∩Kerdz2m one has F∗(A∩KerHk+1 ∩

Kerdz2m) = A ∩ KerHk+1 ∩ Kerdz2m. But on P , Ω1(∂/∂z2m, ) = 0,

Ω1 = Ω(H, ) and Ω(H, ) = Ω( , H), therefore

(F ∗Ω1)(∂/∂z2m,A ∩KerHk+1 ∩Kerdz2m)

= Ω1(F∗(∂/∂z2m),A ∩KerHk+1 ∩Kerdz2m)

= Ω(Hk+1V,A ∩KerHk+1 ∩Kerdz2m)

= Ω(V,Hk+1(A ∩KerHk+1 ∩Kerdz2m)) = 0

which implies Dh2(KerH
k+1) = 0.

In short F ∗ω1 = z2mω+Ω1+(β̃+Dh)∧(dz2m|A) where h = h(x, z1, ..., z2m−2, z2m)

and Dh(KerHk+1) = 0.

Set γ = β̃+Dh. Let γ∗ be the extension of γ to TP such that γ(∂/∂xj) = 0,

j = 1, ..., n, and U the vector field functional combination of ∂/∂z1, ..., ∂/∂z2m−2

defined by ω(U, ) = γ. Since G, up to the term (∂/∂z2m−1)⊗τ , is determined

by ω, ω1 and Ḡ, its pull-back GF by F is determined by F ∗ω = ω, F ∗ω1 =

z2mω +Ω1 + γ ∧ (dz2m|A) and Ḡ+
∑r

j=1 Ȳj ⊗ αj ; therefore reasoning as before

yields

GF =
∑n
j=1 aj(∂/∂xj)⊗ dxj + (∂/∂z2m−1)⊗ σ + z2mIz +H

+(∂/∂z2m−1)⊗ γ∗ − U ⊗ dz2m +
∑r

j=1 Yj ⊗ αj

where Y1, ..., Yr ∈ A and γ is a functional combination of dx1, ..., dxn whose

coefficients do not depend on z2m−1.

Clearly it suffices proving theorem 3.1 for GF , F
∗ω and F ∗ω1; even more

the term
∑r
j=1 Yj ⊗ αj is irrelevant and may be deleted. Thus a change of
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notation (denote GF by G, γ by β etc...) allows us to assume β = β̃+Dh where

h = h(x, z1, ..., z2m−2, z2m) and Dh(KerH
k+1) = 0.

Now we start the process again with Z̃ + (Z − Z̃)(p). Finally, after a fi-

nite number of steps, we may suppose Z = Z̃ + W where W is a constant

vector field linear combination of ∂/∂z1, ..., ∂/∂z2m−2. Thus Z only depend on

(z1, ..., z2m−2).

Lemma 3.3. On an open set of Kk+1 endowed with coordinates (v, u) =

(v1, ..., vk, u) consider a point q = (q1, ..., qk, q̄) and a tensor field T̃ = uI +

H̃ − U ⊗ du where H̃ =
∑k

i,j=1 aij(∂/∂vi) ⊗ dvj, with each aij constant, and

U =
∑k
j=1 ϕj(v)(∂/∂vj). Assume that U(q) is H̃-generic, H̃ nilpotent and

LUH̃ = cH̃, c ∈ K. Then around q there exist functions h1, ..., hk of v such that

d(dhj ◦ T̃ ) = 0, j = 1, ..., k, and (dh1 ∧ ... ∧ dhk ∧ du)(q) 6= 0.

Proof. Given h = h(v) one has d(dh◦T̃ ) = d(d◦H̃)−d(Uh+h)∧du. Close to

q and for every j = 1, ..., k, consider a function gj of v such that gj(q1, ..., qk) = 0

and dgj = d(Uvj + vj). Then d(dgj ◦ H̃) = 0; indeed, d(dvj ◦ H̃) = 0 and

d(Uvj)◦H̃ = (LUdvj)◦H̃ = LU (dvj ◦H̃)−cdvj ◦H̃. By proposition 4.2, applied

in coordinates v = (v1, ..., vk) with a zero dimensional space of parameters, close

to (q1, ..., qk) there exists fj = fj(v) such that dfj(q1, ..., qk) = 0, d(dfj ◦ H̃) = 0

and Ufj = −fj + gj .

Set hj = vj+fj; then d(dhj◦T̃ ) = 0, j = 1, ..., k, and (dh1∧...∧dhk∧du)(q) =

(dv1 ∧ ... ∧ dvk ∧ du)(q). �

Let us come back to the proof of theorem 3.1. If h = h(z1, ..., z2m−2, z2m)

one has dh◦G = z2mdh+dh◦H− (Zh)dz2m. Thus we can apply lemma 3.3, in

variables (z1, ..., z2m−2, z2m) when T̃ = z2mI+H−Z⊗dz2m, for concluding the

existence close to p of functions hj(z1, ..., z2m−2), j = 1, ..., 2m − 2, such that

d(dhj ◦G) = 0 and (dh1 ∧ ... ∧ dh2m−2 ∧ dz2m)(p) 6= 0.

Denote by Xj the ω-hamiltonian of hj , j = 1, ..., 2m − 2. From the third

condition of Veronese flag follows (LXj
G)∧α1∧ ...∧αr = 0 (everywhere or close

to point p), which in turn implies (LXj
τ)∧α1∧...∧αr = 0, j = 1, ..., 2m−2. Now

set τ =
∑n−r

k=1 ϕkdxj +
∑n

k=n−r+1 ϕkαk+r−n; then Xjϕk = 0, j = 1, ..., 2m− 2,

k = 1, ..., n − r. But (X1 ∧ ... ∧ X2m−2 ∧ (∂/∂z2m−1))(p) 6= 0 because (dh1 ∧

... ∧ dh2m−2 ∧ dz2m)(p) 6= 0, so each ϕk, k = 1, , , .n − r, only depends on
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(x, z2m). Besides the term (∂/∂z2m−1) ⊗ (
∑n
k=n−r+1 ϕkαk+r−n) is irrelevant

for our purpose and it may be deleted. In short, one can suppose that τ only

depends on (x, z2m).

On the other hand

NG(∂/∂xi, ∂/∂xj) = [ai∂/∂xi+τ(∂/∂xi)∂/∂z2m−1, aj∂/∂xj+τ(∂/∂xj)∂/∂z2m−1]

−G[∂/∂xi, aj∂/∂xj+τ(∂/∂xj)∂/∂z2m−1]−G[ai∂/∂xi+τ(∂/∂xi)∂/∂z2m−1, ∂/∂xj]

=

(
(ai − z2m)

∂(τ(∂/∂xj)

∂xi
− (aj − z2m)

∂(τ(∂/∂xi)

∂xj

)
∂

∂z2m−1

= dx(τ ◦ (J − z2mIx)
−1)((J − z2mIx)(∂/∂xi), (J − z2mIx)(∂/∂xj))

∂

∂z2m−1

where Ix =
∑n

j=1(∂/∂xj) ⊗ dxj and dx is the exterior derivative with respect

to x.

Therefore NG ∧ α1 ∧ ... ∧ αr = 0 implies dx(τ ◦ (J − z2mIx)
−1) ∧ (α1 ◦

(J − z2mIx)
−1) ∧ ... ∧ (αr ◦ (J − z2mIx)

−1) = 0. In other words, τ ◦ (J −

z2mIx)
−1 is closed along the foliation in variables (x, z2m) defined by α1 ◦ (J −

z2mIx)
−1, ..., αr ◦ (J − z2mIx)

−1, dz2m, and near p there exists a function h =

h(x, z2m) such that dxh equals τ◦(J−z2mIx)
−1 modulo α1◦(J−z2mIx)

−1, ..., αr◦

(J − z2mIx)
−1. Thus adding a suitable functional combination of α1, ..., αr to

τ allows us to suppose τ ◦ (J − z2mIx)
−1 = dxh. Then

d(z2m−1 − h) ◦ G = z2mdz2m−1 + τ − z2m(∂h/∂z2m)dz2m − (dxh) ◦ J + β∗ =

z2mdz2m−1+dxh◦(J−z2mIx)−z2m(∂h/∂z2m)dz2m−(dxh)◦J+β
∗ = z2md(z2m−1−

h) + β∗.

Finally, if the coordinate z2m−1 is replaced by z̃2m−1 = z2m−1 − h and next

z̃2m−1 is called z2m−1, as h only depends on (x, z2m), then the expression of ω

and that of ω1 are not modified whereas

G =
∑n
j=1 aj(∂/∂xj) + z2mIz +H + (∂/∂z2m−1)⊗ β∗ − Z ⊗ dz2m

which proves theorem 3.1.

4. The equation Zf = af + g

In this section, rather technical, one will establish the results on the foregoing

equation needed in the proof of theorem 3.1. Consider three open sets A ⊂

Kn, A′ ⊂ K2m and B ⊂ Ks̄, their product A × A′ × B ⊂ Kn+2m+s̄ endowed

with product coordinates (x, z, u) = (x1, ..., xn, z1, ..., z2m, u1, ..., us̄) and the
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following objects on it:

F1: foliation defined by setting u1, ...us̄ constant,

d: exterior derivative along F1,

A: foliation contained in F1 defined by dx1 = ... = dxn = 0,

D: exterior derivative along A,

ω, ω1: couple of 2-forms on A,

Z =
∑2m

j=1 ϕj∂/∂zj: vector field tangent to A.

Along F1, that is to say regarding B as the space of parameters, set J =
∑n

j=1 aj(u)(∂/∂xj)⊗dxj , H =
∑2m
j,k=1 ajk(∂/∂zj)⊗dzk where each ajk ∈ K, ξ =

∑r
j=1Xj ⊗αj where X1, ..., Xr ∈ A and α1, ..., αr are closed 1-forms functional

combination of dx1, ..., dxn [so their coefficients only depend on (x, u)] such that

α1 ∧ ... ∧ αr never vanishes, and G = J +H + ξ.

Let F be the foliation contained in F1 defined by α1, ..., αr. Suppose that

ω, ω1 are written with constant coefficients which respect to dz1|A, ..., dz2m|A,

functions a1(u), ..., an(u) never vanish on B, H is nilpotent, ω1 = ω(G, )

and (F , G|F ) is a weak Veronese flag along F1 whose associated G|F -invariant

foliation equals A; therefore α1, ..., αr, J defines a Veronese web along F1/A on

A×B

For any function ϕ one will denote Xϕ its ω-hamiltonian.

Lemma 4.1. Let Xf be the ω-hamiltonian of a function f . Then (LXf
G)∧

α1 ∧ ... ∧ αr = 0 if and only if α1 ∧ ...∧ αr ∧ d(df ◦G) is semi-basic for A (that

is iU (α1 ∧ ... ∧ αr ∧ d(df ◦G)) = 0 for any U ∈ A).

Proof. As (LXf
ξ) ∧ α1 ∧ ... ∧ αr = 0 and d(df ◦ ξ) ∧ α1 ∧ ... ∧ αr = 0 we

may suppose ξ = 0 without loss of generality. Now consider new coordinates

(zij), j = 1, ..., 2mi, i = 1, ..., s, on A′ constant linear combination of (z1, ..., z2m)

such that ω = (
∑s

i=1

∑mi

k=1 dz
i
2k−1 ∧ dz

i
2k)|A and ω1 = (

∑s
i=1

∑mi−1
k=1 dzi2k−1 ∧

dzi2k+2)|A. Then H =
∑s
i=1

∑mi−1
k=1 [(∂/∂zi2k+1) ⊗ dzi2k−1 + (∂/∂zi2k) ⊗ dzi2k+2]

since ω1 = ω(G, ) = ω(H, ), and LXf
G = S + T where

S =

s∑

i=1

∂

∂zi1
⊗




n∑

j=1

aj
∂2f

∂zi2∂xj
dxj




+

s∑

i=1

mi−1∑

k=1

∂

∂zi2k+1

⊗




n∑

j=1

[
aj

∂2f

∂zi2k+2∂xj
−

∂2f

∂zi2k∂xj

]
dxj



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+

s∑

i=1

mi−1∑

k=1

∂

∂zi2k
⊗




n∑

j=1

[
∂2f

∂zi2k+1∂xj
− aj

∂2f

∂zi2k−1∂xj

]
dxj




−

s∑

i=1

∂

∂zi2mi

⊗




n∑

j=1

aj
∂2f

∂zi2mi−1∂xj
dxj




and T does not involve any ∂/∂xj nor dxj , j = 1, ..., n.

Note that T = 0 if and only if (LXf
G)|A = 0.

On the other hand df ◦G =
∑n
j=1 aj(∂f/∂xj)dxj

+
∑s
i=1

∑mi−1
k=1 [(∂f/∂zi2k+1)dz

i
2k−1+(∂f/∂zi2k)dz

i
2k+2].

Therefore d(df ◦G) = ρ+ λ+ µ where

ρ =

s∑

i=1

mi−1∑

k=1




n∑

j=1

[
∂2f

∂zi2k+1∂xj
− aj

∂2f

∂zi2k−1∂xj

]
dxj


 ∧ dzi2k−1

−

s∑

i=1




n∑

j=1

aj
∂2f

∂zi2mi−1∂xj
dxj


 ∧ dzi2mi−1 −

s∑

i=1




n∑

j=1

aj
∂2f

∂zi2∂xj
dxj


 ∧ dzi2

+

s∑

i=1

mi−1∑

k=1




n∑

j=1

[
∂2f

∂zi2k∂xj
− aj

∂2f

∂zi2k+2∂xj

]
dxj


 ∧ dzi2k+2 ,

λ =
∑
jb hjbdxj∧dxb and µ =

∑
iajb h̃iajbdz

i
j∧dz

a
b ; thus (d(df ◦G))|A = µ|A.

But LXf
ω1 = ω(LXf

G, ) and at the same time LXf
ω1 = D(ω1(Xf , )) =

−d(df ◦G))|A; therefore T = 0 if and only if µ = 0 since ω is symplectic.

Finally, remark that the 1-forms functional combination of dx1, ..., dxn which

are the coefficients of ∂/∂zib or dz
i
b̄
in the expressions of S and ρ, respectively,

are the same up to sign and change of order, so S ∧α1 ∧ ...∧αr = 0 if and only

if ρ ∧ α1 ∧ ... ∧ αr = 0. As λ is semi-basic for A, the lemma is proved. �

Remark. From lemma 4.1 immediately follows that (F , G|F , ω, ω1) is a

Veronese flag along F1.

Proposition 4.1. Given an integer k ≥ 0, p ∈ A, q ∈ A′, a compact set

K ⊂ B, three scalars a, c, c′ and a function g : A×A′ ×B → K such that:

(1) (LZG− cH) ∧ α1 ∧ ... ∧ αr = 0 and LZω = c′ω,

(2) Z is H-generic on {(p, q)} ×K,

(3) (LXg
G) ∧ α1 ∧ ... ∧ αr = 0 and Dg(KerHk) = 0,
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then there exist a product open set U × U ′ × V ⊂ A × A′ × B, which contains

{(p, q)} ×K, and a function f : U × U ′ × V → K such that:

(I) Df(KerHk) = 0 and D(Zf − af − g)(KerHk+1) = 0,

(II) (LXf
G) ∧ α1 ∧ ... ∧ αr = 0,

(III) Df = 0 on {(p, q)} × V .

The next goal will be to prove proposition 4.1. Note that we may assume

ξ = 0 since (LXg
ξ)∧α1 ∧ ...∧αr = (LXf

ξ)∧α1 ∧ ...∧αr = 0. Set ϕg(x, z, u) =

g(x, q, u), then Dϕg = 0 and d(dϕg ◦ G) is A-basic; thus any solution of our

problem for g −ϕg is a solution for g too, which allows to suppose g(A×{q} ×

B) = 0 by considering g − ϕg instead of g if necessary. On the other hand by

shrinking A and modifying the order of variables (x1, ..., xn) one may assume

that dx1 ∧ ... ∧ dxn−r ∧ α1 ∧ ... ∧ αr never vanishes. By lemma 4.1, the first

statement (3) and part (II) of proposition 4.1 are respectively equivalent to

suppose α1 ∧ ... ∧ αr ∧ d(dg ◦G) and α1 ∧ ... ∧ αr ∧ d(df ◦G) semi-basic for A;

throughout the proof one will use these statements instead of original ones.

We start reducing the problem to the case k = 0. ConsiderH as a tensor field

on A′ and linearly rearrange coordinates z in such a way that dz1 = ... = dz2m̃ =

0 defines KerHk. Let A′′ be the quotient (close to q) of A′ by KerHk endowed

with coordinates (z1, ..., z2m̃), and π : A×A′ ×B → A×A′′ ×B the canonical

projection. As Dg(KerHk) = 0 there is a function ḡ on A × A′′ × B such

that g = ḡ ◦ π. Obviously Z,H,G,F ,A project in similar object Z̄, H̄, Ḡ, F̄ , Ā

defined on A×A′′ ×B.

On the other hand ω(Hk, ) and ω1(H
k, ) project in a couple of 2-forms

ω̄, ω̄1 defined along Ā. It is easily checked that the hypothesis of proposition 4.1

still hold on A×A′′ ×B for the scalars a, c and c′ + kc. Therefore, if the result

is proved for k = 0, there exists a solution f̄ and it suffices to set f = f̄ ◦ π.

In short k = 0 is the only case to deal with. We do that by induction on

the order k̃ of nilpotency of H . First consider the case H = 0, that is k̃ = 1

and G = J . Assume m ≥ 1, otherwise it suffices setting f = 0. As Z has

no zeros on the compact set {(p, q)} × K, we may suppose that ϕ1 does not

vanish on A × A′ × B by shrinking these three factor and changing the order

of variables z = (z1, ..., z2m) if necessary. From (1) of proposition 4.1 follows

α1 ∧ ... ∧ αr ∧ (dxϕj ◦ J) = 0, j = 1, ..., 2m, that is to say (α1 ◦ J−1) ∧ ... ∧
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(αr ◦ J
−1) ∧ dxϕj = 0, j = 1, ..., 2m. Consider new coordinates y = (y1, ..., yn)

around p on A such that dy1 = ... = dyr = 0 defines the same foliation as

α1◦J
−1, ..., αr◦J

−1 (recall that α1, ..., αr, J gives rise to a Veronese web). Since

every coordinate yi only depends on x one has that dx = dy and each vector field

∂/∂zj, j = 1, ..., 2m, belongs to the dual basis of {dy1, ..., dyn, dz1, ..., dz2m} as

well. Thus ϕj = ϕj(y1, ..., yr, z, u), j = 1, ..., 2m.

On the other hand given a function h then α1 ∧ ... ∧ αr ∧ d(dh ◦G) is semi-

basic for A if and only if α1 ∧ ...∧αr ∧ (dx(∂h/∂zj) ◦ J) = 0, j = 1, ..., 2m, that

is (α1 ◦ J
−1)∧ ...∧ (αr ◦ J

−1)∧ dx(∂h/∂zj) = 0, j = 1, ..., 2m, or in coordinates

(y, z, u) if and only if ∂2h/∂zj∂yi = 0, i = r + 1, ..., n, j = 1, ..., 2m. In these

last coordinates consider the open neighbourhoods of p and q, respectively,

U = U1×U2 and U
′, where U1 ⊂ Kr, U2 ⊂ Kn−r and U1, U2, U

′ are polycylinders

(that is product of open intervals if K = R or open disks if K = C). Then

α1 ∧ ... ∧ αr ∧ d(dh ◦ G) = 0 is semi-basic for A on U × U ′ × B if and only if

h = h1(y1, ..., yr, z, u) + h2(y, u); moreover we may suppose h1(p1, ..., pr, q, u) =

0, u ∈ B, by taking h1 − h̃ and h2 + h̃ where h̃(y, z, u) = h1(y1, ..., yr, q, u) if

necessary.

In particular as α1 ∧ ... ∧ αr ∧ d(dg ◦G) is semi-basic for A, on U × U ′ ×B

one has g = g1(y1, ..., yr, z, u) + g2(y, u) where g1(p1, ..., pr, q, u) = 0, u ∈ B.

But g(A× {q} ×B) = 0 so g2 = 0, that is g = g(y1, ..., yr, z, u).

Let f : U1×U ′×B → K be the function defined by the ordinary differential

equation Zf = af + g and the initial condition f(U1 × T × B) = 0 where

T = {z ∈ U ′ | z1 = q1} [again shrink U1, U
′, B if necessary]. Then regarded

on U × U ′ × B in the obvious way α1 ∧ ... ∧ αr ∧ d(df ◦ G) is semi-basic for

A and D(Zf − af − g) = 0. By construction (∂f/∂zj)({(p, q)} × B) = 0,

j = 2, ..., 2m. But (Zf)({(p, q)} ×B) = af({(p, q)} ×B) + g({(p, q)} × B) = 0

so (∂f/∂z1)({(p, q)} × B) = 0; in short Df = 0 on {(p, q)} × B, which proves

proposition 4.1 when k̃ = 0.

Remark. Observe that in this step proposition 4.1 was established without

making use of ω or ω1; therefore the result stated in terms of being semi-basic

for A is true regardless the existence or not of ω, ω1. This fact implies that

proposition 4.1 also holds if Dg ◦ H = 0; even more in this case there exists

f satisfying (I), (II) and (III) such that Df ◦ H = 0 and D(Zf − af − g) =
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0. Indeed, regard H as a tensor field on A′ and consider the quotient A′′ =

A′/ImH . Let π : A×A′ ×B → A×A′′ ×B be the canonical projection. Then

g = ḡ ◦ π for some ḡ : A × A′′ × B → K. Since all the relevant objects project

on A×A′′ ×B and H does in the zero tensor field, from the case k̃ = 0 follows

the existence of a suitable function f̄ for ḡ and it suffices setting f = f̄ ◦ π.

Now suppose true proposition 4.1 up to the order of nilpotency k̃ − 1 ≥ 1

and for any scalars a, c, c′. One will need the following result.

Lemma 4.2. Given a function h : A×A′×B → K such that Dh(KerH) = 0

and α1 ∧ ...∧αr ∧ d(dh ◦G) is semi-basic for A, then there exist a product open

set U × U ′ × V ⊂ A × A′ × B, which contains {(p, q)} × K, and a function

ϕ : U × U ′ × V → K such that:

(I) Dϕ ◦H = Dh and α1 ∧ ... ∧ αr ∧ d(dϕ ◦G) is semi-basic for A,

(II) ϕ({(p, q)} × V ) = 0 and Dϕ(p, q, u) = 0 for every u ∈ V such that

Dh(p, q, u) = 0.

Proof. Consider coordinates (zij), j = 1, ...,mi, i = 1, ..., s, on A′ as in

the proof of lemma 4.1 and shrink this open set in such a way that, in these

coordinates, A′ is a polycylinder. Then dzi2k+1 ◦H = dzi2k−1, dz
i
2k ◦H = dzi2k+2,

k = 1, ...,mi − 1, dzi1 ◦H = dzi2mi
◦H = 0, i = 1, ..., s.

Since Dh(KerH) = 0 one has ∂h/∂zi2mi−1 = ∂h/∂zi2 = 0, i = 1, ..., s and

β ◦H = Dh where

β =

s∑

i=1

mi−1∑

k=1

(
∂h

∂zi2k−1

dzi2k+1 +
∂h

∂zi2k+2

dzi2k

)

|A

.

Note that α1∧...∧αr∧d(dh◦G) semi-basic forA impliesD(Dh◦H) = 0. Now

from lemma 1.1 follows that Dβ(ImH, ImH) = 0, so β|ImH is closed and there

exists a function ψ : A × A′ × B → K such that (Dψ − β)|ImH = 0; therefore

Dψ ◦ H = Dh. Hence ∂ψ/∂zi2k+1 = ∂h/∂zi2k−1, ∂ψ/∂z
i
2k = ∂h/∂zi2k+2, k =

1, ...,mi − 1.

In general α1 ∧ ... ∧ αr ∧ d(dψ ◦G) is not semi-basic for A and we need to

modify ψ.

If following the terminology of the proof of lemma 4.1 we set d(dh ◦ G) =

ρh+λh+µh and d(ψ◦G) = ρψ+λψ+µψ then α1∧ ...∧αr∧ρh and µh = µψ = 0

because α1∧...∧αr∧d(dh◦G) is semi-basic for A and D(Dψ◦H) = D(Dh) = 0.
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Therefore α1∧...∧αr∧d(dψ◦G) is semi-basic forA if and only if α1∧...∧αr∧ρψ =

0.

When k = 1, ...,mi − 1, i = 1, ..., s, the 1-form coefficient of dzi2k+1 in the

expression of ρψ equals that of dzi2k−1 in the expression of ρh, and the coefficient

of dzi2k that of dzi2k+2 (recall that ∂h/∂zi2mi−1 = ∂h/∂zi2 = 0), so they vanish

modulo α1, ..., αr. Thus we have only to study the coefficients of dzi1 and dzi2mi
,

i = 1, ..., s, denoted by β2i−1, β2i hereafter, which are

β2i−1 =

n∑

j=1

(
∂2ψ

∂zi3∂xj
− aj

∂2ψ

∂zi1∂xj

)
dxj =

n∑

j=1

(
∂2h

∂zi1∂xj
− aj

∂2ψ

∂zi1∂xj

)
dxj

and

β2i =
n∑

j=1

(
∂2ψ

∂zi2mi−2∂xj
− aj

∂2ψ

∂zi2mi
∂xj

)
dxj

=

n∑

j=1

(
∂2h

∂zi2mi
∂xj

− aj
∂2ψ

∂zi2mi
∂xj

)
dxj respectively.

For the sake of simplicity, set zi1 = z̄2i−1 and z
i
2mi

= z̄2i, i = 1, ..., s. From the

expression of βj and βk immediately follows ∂βj/∂z̄k = ∂βk/∂z̄j, j, k = 1, ..., 2s.

Moreover α1∧...∧αr∧(∂βā/∂z
i
b̄
) = 0, ā = 1, ..., 2s, b̄ = 2, ..., 2mi−1, i = 1, ..., s.

Indeed,

∂βā
∂zi

b̄

=
n∑

j=1

∂

∂z̄ā

(
∂2h

∂zi
b̄
∂xj

− aj
∂2ψ

∂zi
b̄
∂xj

)
dxj

which is the derivative with respect to z̄ā of the coefficient of dzi
b̄−2

, if b̄ is odd,

or dzi
b̄+2

, if b̄ is even, in the expression of ρh. Thus, if we set βā = β̄ā+β
′
ā where

β̄ā is a functional combination of dx1, ..., dxn−r and β′
ā a functional combina-

tion of α1, ..., αr (recall that dx1, ..., dxn−r, α1, ..., αr are linearly independent

everywhere) one has ∂β̄ā/∂z
i
b̄
= 0; that is every β̄ā, ā = 1, ..., 2s, only depends

on x, z̄ = (z̄1, ..., z̄2s) and u.

Of course ∂β̄j/∂z̄k = ∂β̄k/∂z̄j, j, k = 1, ..., 2s.

The coefficient of dz̄k, k = 1, ..., 2s, in the expression of ρh equals

n∑

j=1

(
∂2h

∂zi
b̄
∂xj

− aj
∂2h

∂z̄k∂xj

)
dxj = dx

(
∂h

∂zi
b̄

)
− dx

(
∂h

∂z̄k

)
◦ J

where i and b̄ depend on k. This coefficient is a functional combination of

α1, ..., αr therefore, as α1, ..., αr define a foliation, one has α1 ∧ ... ∧ αr ∧
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dx(dx(∂h/∂z̄k) ◦ J) = 0. In turn from lemma 1.1 applied to dx(∂h/∂z̄k) ◦ J
−1

and J follows (α1 ◦ J
−1) ∧ ... ∧ (αr ◦ J

−1) ∧ dx(dx(∂h/∂z̄k) ◦ J
−1) = 0, whence

taking into account the expression of βk given before results (α1◦J
−1)∧...∧(αr◦

J−1)∧dx(βk ◦J
−1) = 0, k = 1, ..., 2s. Finally, since α1 ∧ ...∧αr ∧ (βk − β̄k) = 0

and α1 ◦J
−1, ..., αr ◦J

−1 define a foliation, one has (α1 ◦J
−1)∧ ...∧ (αr ◦J

−1)∧

dx(β̄k ◦ J
−1) = 0, k = 1, ..., 2s.

After shrinking A and A′ if necessary, we may suppose that A in coordinates

y = (y1, ..., yn) and A
′ in coordinates (zij) are polycylinders. Set A = A1×A2 ⊂

Kr×Kn−r and p = (p1, ..., pn) following coordinates (y1, ..., yn). Then there exist

functions fk : A×A′ ×B → K, k = 1, ..., 2s, only depending on x, z̄ and u such

that fk(A1×{(pr+1, ..., pn)}×A
′×B) = 0 and (α1◦J

−1)∧...∧(αr◦J
−1)∧(dxfk−

β̄k ◦J
−1) = 0. Moreover dz̄(

∑2s
k=1 fkdz̄k) = 0 where dz̄ is the exterior derivative

with respect to z̄ = (z̄1, ..., z̄2s). Indeed, dx(∂fk/∂z̄j − ∂fj/∂z̄k), j, k = 1, ..., 2s,

equals (∂β̄k/∂z̄j − ∂β̄j/∂z̄k) ◦ J
−1 = 0 modulo α1 ◦ J−1, ..., αr ◦ J−1, that

is modulo dy1, ..., dyr; in other words ∂fk/∂z̄j − ∂fj/∂z̄k does not depend on

(yr+1, ..., yn). But clearly ∂fk/∂z̄j−∂fj/∂z̄k vanishes on A1×{(pr+1, ..., pn)}×

A′ ×B so ∂fk/∂z̄j − ∂fj/∂z̄k = 0, j, k = 1, ..., 2s.

Thus there is a function ψ1 : A×A′ ×B → K only depending on x, z̄ and u

such that ∂ψ1/∂z̄k = fk, k = 1, ..., 2s. Therefore α1 ∧ ... ∧ αr ∧ (dx(∂ψ1/∂z̄k) ◦

J − β̄k) = 0.

Now set ϕ̃ = ψ+ψ1. Then Dϕ̃◦H = Dψ◦H = Dg and α1∧...∧αr∧d(dϕ̃◦G)

is semi-basic for A, that is ϕ̃ satisfies (I).

Finally, let ϕ̃1 be the function given by

ϕ̃1(x, z, u) =

2s∑

k=1

(z̄k − z̄k(q))
∂ϕ̃

∂z̄k
(p, q, u) + ϕ̃(p, q, u);

then ϕ = ϕ̃− ϕ̃1 satisfies (I) and (II). �

A box [of coordinates (zij)] will mean a block of coordinates (zi1, ..., z
i
2mi

) for

any fixed i; so one has s boxes. A box will be named short if mi = 1 and long

otherwise.

Consider a function h : A×A′ ×B → K such that α1 ∧ ... ∧ αr ∧ d(dh ◦G)

is semi-basic for A. Then there exists a function h̃, perhaps after shrinking A′,

such that Dh ◦ H = Dh̃. From lemma 1.1, applied to Dh and H along A,

follows D(Dh̃ ◦H) = D(Dh ◦H2) = 0, that is µh̃ = 0 in the terminology of the
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proof of lemma 4.1. Moreover α1 ∧ ... ∧ αr ∧ d(d̃h ◦G) is semi-basic for A since

the coefficient of each dzij in the expression of ρh̃ equals that of some dzā
b̄
in the

expression of ρh.

Observe that h̃ does not depend on the short boxes. By lemma 4.2, applied

to h̃ but considering long boxes only, there exists a function h1 : A×A′ ×B →

K [after shrinking we identify A × A′ × B and U × U ′ × V for the sake of

simplicity of the notation], which does not depend on the short boxes, such that

α1 ∧ ... ∧ αr ∧ d(dh1 ◦G) is semi-basic for A and Dh1 ◦H = Dh ◦H . Now set

h2 = h−h1; then α1 ∧ ...∧αr ∧d(dh2 ◦G) is semi-basic for A and Dh2 ◦H = 0.

In other words, after shrinking A, A′ and B if necessary, the function h

decompose into a sum h = h1 + h2 in such a way that α1 ∧ ...∧ αr ∧ d(dh1 ◦G)

and α1 ∧ ... ∧ αr ∧ d(dh2 ◦G) are semi-basic for A, h1 only depend on x, u and

the long boxes, and h2 does on (x, z̄1, ..., z̄2s, u) that is Dh2 ◦H = 0.

Moreover h1({(p, q)}×B) = 0 andDh1(p, q, u) = 0 whenever (Dh◦H)(p, q, u) =

0.

Consider a function ϕ : A × A′ × B → K such that Dϕ ◦ H = 0 and

α1 ∧ ... ∧ αr ∧ d(dϕ ◦ G) is semi-basic for A. If there is one long box at least,

then Z and Z + Xϕ are equivalent for the purpose of proposition 4.1. Let us

see that. On A×A′ × (B ×K) consider the vector field Zt = Z + tXϕ and the

obvious extensions of G, ω, ω1 and A, where now the space of parameters is

B × K endowed with coordinates (u1, ..., us̄, t). Note that the vector field Zt is

H-generic on {(p, q)} × (K ×K) since Xϕ ∈ KerH and H 6= {0}.

By the remark preceding lemma 4.2 applied to a = c′, c, c′, Zt, ϕ and the

compact set K ′ = K × [0, 1], as Dϕ ◦H = 0 there exists a function f such that

α1∧ ...∧αr∧d(df ◦G) is semi-basic for A, Df ◦H = 0, D(Ztf−c
′f−ϕ) = 0 and

Df = 0 on {(p, q)} ×K ′. Then (LXf
G) ∧ α1 ∧ ... ∧ αr = 0, LXf

ω = LXf
ω1 = 0

since ω1 = ω(G, ), and [Xf , Zt] = −Xϕ because LZt
ω = LZω = c′ω and

i[Xf ,Zt]ω = iXf
LZt

ω − LZt
(iXf

ω) = D(Ztf − c′f) = Dϕ.

Let Ψt̄ be the flow of the time depending vector field Xf . As Xf |{(p,q)}×K′ =

0, Ψ1 is defined around {(p, q)} × K, preserves A, ω, ω1, and transforms Z in

Z +Xϕ and G in G + ξ where ξ =
∑r

j=1Xj ⊗ αj and X1, ..., Xr ∈ A. As ξ is

irrelevant, that is the problem is the same for G and G + ξ, the equivalence is

established.
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Coming back to the main question, suppose mi ≥ 2 when i = 1, ..., s′ and

mi = 1 otherwise. Set Z = Z1 + Z2 where Z1 corresponds to the long boxes

and Z2 to the sort ones. Remark that Z1 is H-generic since Z2 ∈ KerH . On

the other hand set

Z̃ =
s∑

i=1

[
c

mi∑

k=1

(
−kzi2k−1

∂

∂zi2k−1

+ kzi2k
∂

∂zi2k

)
+
c′

2

2mi∑

k=1

zik
∂

∂zik

]
.

Then LZ̃ω = c′ω and LZ̃G = cH so (LZ̃G − cH) ∧ α1 ∧ ... ∧ αr = 0. Thus,

after shrinking A, A′ and B if necessary, there exists a function h = h1 + h2

such that Z̃ = Z +Xh, α1 ∧ ... ∧ αr ∧ d(dh1 ◦G) and α1 ∧ ... ∧ αr ∧ d(dh2 ◦G)

are semi-basic for A, h1 does not depend on the short boxes and Dh2 ◦H = 0

(indeed, LZ̃ω = c′ω = LZω implies that Z̃ = Z+Xh for some h; now decompose

this function into a sum h = h1 + h2 as it was showed before).

Since the components of Xh1
in the short boxes vanish, Z̃ = Z +Xh1

+Xh2

and the vector fields Z, Z +Xh2
are equivalent, we may assume

Z2 =
s∑

i=s′+1

[
c

mi∑

k=1

(
−kzi2k−1

∂

∂zi2k−1

+ kzi2k
∂

∂zi2k

)
+
c′

2

2mi∑

k=1

zik
∂

∂zik

]
,

which implies that the coefficients functions of Z1 do not depend on the short

boxes, otherwise LZω 6= c′ω.

Decompose g into a sum g = g1+g2 in such a way that g1 does not depend on

the short boxes,Dg2◦H = 0 and α1∧...∧αr∧d(dg1◦G), α1∧...∧αr∧d(dg2◦G) are

semi-basic for A. As proposition 4.1 was already proved for g2 sinceDg2◦H = 0,

it suffices to show it for g1. But Z1 is H-generic and its components do not

depend on the short boxes, therefore it is enough considering the problem on

the long boxes only.

In other words, we may suppose that there is no short box. Note that in this

case KerH ⊂ ImH , therefore if τ is a 1-form such that (τ ◦H)(KerH2) = 0

then τ(KerH) = 0.

After shrinking A, A′ and B if necessary, consider a function g̃ such that

Dg̃ = Dg ◦ H ; then α1 ∧ ... ∧ αr ∧ d(dg̃ ◦ G) is semi-basic for A (it suffices

reasoning as in the case Dh̃ = Dh ◦H). On the quotient A× (A′/KerH)× B

one may project g̃, Z, G, A, H and the 2-forms ω1, which becomes symplectic,

and ω1(G, ). Then the order of nilpotency of the projection H̃ of H equals

k̃ − 1 and by the induction hypothesis there is a solution of the problem for
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the scalars a+ c, c and c+ c′ [now LZω1 = LZ(ω(G, )) = (c + c′)ω1 and the

same equality holds on the quotient A × (A′/KerH) × B] and the projection

of g̃. Pulling-back this solution yields a function f̃ : Ũ × Ũ ′ × Ṽ → K such

that Df̃(KerH) = 0, D(Zf̃ − [a+ c]f̃ − g̃)(KerH2) = 0 since the pull-back of

KerH̃ is KerH2, α1 ∧ ... ∧ αr ∧ d(df̃ ◦ G) is semi-basic for A and Df̃ = 0 on

{(p, q)} × Ṽ .

Let f : U × U ′ × V → K a function given by lemma 4.2 applied to f̃ . Then

Df = 0 on {(p, q)}×V since Df̃ = 0 on this set; besides D(Zf − af − g) ◦H =

D(Zf̃ − [a + c]f̃ − g̃) because (LZDf) ◦ H = LZ(Df ◦ H) − cDf ◦ H . But

D(Zf̃ − [a+ c]f̃ − g̃)(KerH2) = 0 therefore D(Zf − af − g)(KerH) = 0, which

finishes the proof of proposition 4.1.

From now on and until the end of this section, consider an open set A ⊂

K
m endowed with coordinates z = (z1, ..., zm), a manifold B whose points are

denoted by u and on A×B the following objects:

G: foliation defined by setting u constant,

d: exterior derivative along G,

Z: vector field tangent to G,

H : (1, 1)-tensor field along G.

Suppose that H is nilpotent and written with constant coefficients with

respect to (∂/∂zj)⊗ dzk, j, k = 1, ...,m, where (z1, ..., zm) are regarded as coor-

dinates along G.

Proposition 4.2. Given an integer k ≥ 0, a point p ∈ A, a compact set

K ⊂ B, two scalars a, c and a function g : A×B → K such that:

(1) LZH = cH,

(2) Z is H-generic on {p} ×K,

(3) d(dg ◦H) = 0, dg(KerHk) = 0 and g({p} ×B) = 0,

then there exist a product open set U × V ⊂ A × B, which contains {p} ×K,

such that:

(I) Zf = af + g,

(II) d(df ◦H) = 0 and df(KerHk) = 0,

(III) df = 0 on {p} × V .

Let us proof proposition 4.2. Reasoning as in the proof of proposition 4.1

49



reduces the problem to the case k = 0. On the other hand, if H = 0 one has

just a ordinary differential equation and it suffices considering a solution f that

vanishes on a suitable transverse section of Z containing {p} × V , where V is

an open neighbourhood of K on B (note that (Zf)({p}×B) = 0 which implies

df = 0 on {p} × V ).

Now suppose that proposition 4.2 holds up to the dimension m− 1 for any

scalars a, c.

Lemma 4.3. Given a function h : A × B → K such that dh(KerH) = 0

and d(dh ◦H) = 0, then there exist a product open set U × V ⊂ A× B, which

contains {p} ×K, and a function ϕ : U × V → K such that:

(I) dϕ ◦H = dh and d(dϕ ◦H) = 0,

(II) ϕ({p} × V ) = 0 and dϕ(p, u) = 0 for every u ∈ V such that dh(p, u) = 0.

Proof. Consider coordinates (zij), j = 1, ...,mi, i = 1, ..., s, on A, constant

linear combination of (z1, ..., zm), such that H =
∑s

i=1

∑mi−1
k=1 (∂/∂zik+1)⊗ dzik;

that is dzik ◦ H = dzik−1 if k ≥ 2 and dzi1 ◦ H = 0. Therefore ∂h/∂zimi
= 0,

i = 1, ..., s, and β ◦ H = dh where β =
∑s

i=1

∑mi−1
k=1 (∂h/∂zik)dz

i
k+1. On the

other hand, after shrinking A, we may suppose that in these coordinates A is a

polycylinder.

Now from lemma 1.1 follows that β|ImH is closed; therefore there exists a

function ψ : A×B → K such that (dψ− β)|ImH = 0, whence dψ ◦H = dh. Let

ψ̃ be the function given by ψ̃(z, u) =
∑s

i=1(z
i
1 − zi1(p))(∂ψ/∂z

i
1)(p, u) +ψ(p, u);

then ϕ = ψ − ψ̃ satisfies (I) and (II). �

Let us resume the proof of proposition 4.2. Since d(dg ◦ H) = 0, after

shrinking A if necessary, there is a function g̃ : A×B → K vanishing on {p}×B

such that dg̃ = dg ◦ H ; moreover by lemma 1.1 d(dg̃ ◦ H) = 0. The equation

Zf̃ = (a + c)f̃ + g̃ has some solution satisfying (II) and (III) and such that

df̃(KerH) = 0. Indeed, project Z, H and g̃ on the quotient (A/KerH) × B,

apply the induction hypothesis and then pull-back a suitable solution. Note

that f̃ is defined on a product open set containing {p} ×K and which we will

call A×B for simplifying.

Let ϕ : U × V → K be a function given by lemma 4.3 applied to f̃ . Set

g0 = g + aϕ − Zϕ; then g0({p} × V ) = 0 and dg0 ◦ H = 0 since (LZdϕ) ◦
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H = LZ(dϕ ◦ H) − cdϕ ◦ H . In turn, the equation Zf0 = af0 + g0 has some

solution satisfying (II) and (III). Indeed, project Z, H and g0 on the quotient

(U/ImH) × V and reason as before. Now it suffices to set f = f0 + ϕ for

finishing the proof of proposition 4.2.

5. The non-real eigenvalue case

In this sectionK = R and the manifolds considered will be real unless another

thing is stated. Let (F , ℓ, ω, ω1) be a Veronese flag on a manifold P or at some

point of P , A the foliation of the largest ℓ-invariant vector subspace (see section

1) and π : P → N a local quotient of P by A. Set codimF = r, dimA = 2m

and dimN = n. Recall that N is endowed with a r-codimensional Veronese web

whose limit when t→ ∞ equals the quotient foliation F ′ = F/A and ℓ projects

in the morphism ℓ′ associated to this Veronese web.

Suppose that the characteristic polynomial ϕ of ℓ|A equals (t2 + ft + g)m

where f2 < 4g, that is ϕ has no real roots. Set gk = trace((ℓ|A)
k); by lemma

1.2 one has kdgk+1 = (k + 1)dgk ◦ ℓ on F .

When df|A(p) 6= 0 and the algebraic type of ℓ|A is constant about p, one may

construct the symplectic reduction of the Veronese flag as follows. First observe

that each gk is function of g1, g2 since f, g are the only significant coefficients of

the elementary divisors, g1 = −mf , g2 = m(f2 − 2g) and dg2 = 2dg1 ◦ ℓ on F .

Therefore Xg2 = 2ℓXg1 and (dg1 ∧ dg2)|A(p) 6= 0, otherwise (Xg1 ∧Xg2)(p) = 0

and ℓ has an eigenvalue on A(p) − {0}. Thus Xg1 , Xg2 , Xg3 , ... give rise to a

ℓ-invariant vector sub-bundle E of dimension two.

On the other hand ω(Xg1 , Xg2) = 2ω(Xg1 , ℓXg1) = ω1(Xg1 , Xg1) = 0 and

ω1(Xg1 , Xg2) = 2ω(ℓXg1 , ℓXg1) = 0. Hence Xg1g1 = Xg1g2 = Xg2g1 = Xg2g2 =

0 and [Xg1 , Xg2 ] = 0; in particular E is a foliation. Besides LXg1
ℓ = LXg2

ℓ = 0

since kdgk+1 = (k + 1)dgk ◦ ℓ on F .

Denoted by P̄ and π̄ : P → P̄ , respectively, the local quotient of P by E and

its canonical projection. Consider coordinates (y, z) = (y1, ..., yn, z1, ..., z2m)

around p such that dy1 = ... = dyr = 0 defines F , dy1 = ... = dyn = 0 the folia-

tion A, g1 = z2m−1, g2 = z2m, Xg1 = −∂/∂z2m−3 and Xg2 = −∂/∂z2m−2. Thus

(y1, ..., yn) can be regarded as coordinates onN , (y1, ..., yn, z1, ..., z2m−4, z2m−1, z2m)

as coordinates on P̄ and g1, g2 as functions on this last manifold. Now it is ob-

vious that Ker(dg1 ∧ dg2) and F ∩Ker(dg1 ∧ dg2) project in two foliations F̄1
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and F̄ on P̄ , respectively, and ℓ|F∩Ker(dg1∧dg2) does in a morphism ℓ̄ : F̄ → F̄1;

moreover (F̄ , ℓ̄) is a weak Veronese flag along F̄1 (locally any extension of ℓ̄

can be lifted to an extension of ℓ), whose foliation Ā of the largest ℓ̄-invariant

vector subspaces equals the projection of A∩Ker(dg1 ∧ dg2), P̄ /Ā is identified

to N × B, where B is an open neighbourhood of (g1(p), g2(p)) on R2, and F̄1

projects in the foliation of N ×B by the first factor. Besides, the Veronese web

induced by (F̄ , ℓ̄) on each leaf N ×{b} of this last foliation equals the pull-back,

by the first projection π1 : N ×B → N , of that induced by (F , ℓ).

On the other hand, since iXg1
ω, iXg2

ω, iXg1
ω1 and iXg2

ω1 are functional

combination of dg1|A, dg2|A (recall that every gk is function of g1, g2 and

kdgk+1 = (k + 1)dgk ◦ ℓ on F) one has Ker(ω|A∩Ker(dg1∧dg2))

= Ker(ω1|A∩Ker(dg1∧dg2)) = E. Therefore ω|A∩Ker(dg1∧dg2) and ω1|A∩Ker(dg1∧dg2)

project in two symplectic forms ω̄, ω̄1 along Ā; moreover ω̄1 = ω̄(ℓ̄, ). The fam-

ily (F̄ , ℓ̄, ω̄, ω̄1) will be called the symplectic reduction (near p) of (F , ℓ, ω, ω1).

As in section 3, for proving that this family is a Veronese flag it suffices to check

the third condition of its definition.

On N consider coordinates (x1, ..., xn) and a (1, 1)-tensor field

J =
∑n
j=1 aj(∂/∂xj)⊗ dxj where a1, ..., an are real numbers.

Theorem 5.1. In the real analytic category consider a (1, 1)-tensor field

G, which extends ℓ and projects in J , defined around a point p of P such that

(F , ℓ, ω, ω1) is a Veronese flag at this point. Assume that:

(a) the characteristic polynomial of ℓ|A equals (t2 + ft+ g)m where f2 < 4g,

(b) p is a regular point of ℓ|A,

(c) if df|A(p) = 0 then f is constant close to p,

(d) if df|A(p) 6= 0 then the symplectic reduction of (F , ℓ, ω, ω1) is a Veronese flag

at π̄(p),

then around p there exist a (1, 1)-tensor field G′ extending ℓ and projecting in

J and functions z1, ..., z2m such that (x, z) = (x1, ..., xn, z1, ..., z2m) is a system

of coordinates,

G′ =
∑n

j=1 aj(∂/∂xj)⊗ dxj +
∑2m

j,k=1 hjk(z)(∂/∂zj)⊗ dzk

and ω, ω1 are expressed relative to dz1|A, ..., dz2m|A with coefficient functions

only depending on z.
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Before proving this result, let us recall a few facts on the relationship between

complex and real manifolds. Let Q be a real manifold of dimension 2k endowed

with a complex structure H , which allows us to regard Q as a complex manifold

of dimension k. A real tangent vector field at q ∈ Q is a linear derivation of the

algebra of germs at this point of differentiable functions; therefore it acts too

on the germs at q of holomorphic functions and it can be regarded as a complex

tangent vector at this point. In other words, the real and the complex tangent

vector space at the same point may be identified in a canonical way.

In turn, if X is a real vector field then LXH = 0 if and only if the (infinites-

imal) action of X sends holomorphic functions into holomorphic functions. In

terms of complex coordinates z1 = x1 + ıy1, ..., zk = xk + ıyk and the associ-

ated real coordinates (x1,y1, ...,xk,yk), if X =
∑k

j=1(ϕj∂/∂xj+ψj∂/∂yj) then

LXH = 0 if and only if ϕ1 + ıψ1, ..., ϕk + ıψk are holomorphic functions of z =

(z1, ..., zk); in this case from the complex viewpoint X =
∑k
j=1(ϕj + ıψj)∂/∂zj

(warning this identification only works for the action of X on holomorphic func-

tions but not for any complex-valued function). This kind of vector fields are

named holomorphic.

A complex k̃-form [that is of type (k̃, 0)] β decompose into a sum β =

β1 + ıβ2, where β1, β2 are real k̃-forms such that β1(H, , ..., ) = −β2 and

β2(H, , ..., ) = β1 [which implies βj(H, , ..., ) = βj( , H, ..., )

= βj( , , ..., H), j = 1, 2], and conversely. Besides β is holomorphic if and

only if regarded from the real viewpoint β1(X1, ..., Xk̃) + ıβ2(X1, ..., Xk̃) is a

holomorphic function whatever X1, ..., Xk̃ are holomorphic vector fields. In par-

ticular if β is a complex k̃-form and its real part is closed then β is holomorphic

and closed.

Finally, a holomorphic (1, 1)-tensor field regarded from the real point of

view is just a real (1, 1)-tensor field that commutes with H and transforms

holomorphic vector fields into holomorphic vector fields.

Until the end of this section one works in the analytic category, in which

theorem 5.1 will be deduced from the complex case of theorems 2.1 and 3.1.

We start constructing a complex structure along A. Shrinking P if necessary,

one may suppose that the algebraic type of ℓ|A and that of ℓ|A∩Ker(df∧dg) are

constant. Set H0 = (4g − f2)−1/2(2ℓ|A + fI); then (H2
0 + I)m = 0. Therefore
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H0 is 0-deformable. Let H be its semi-simple part; by construction H2 = −I

and there is a polynomial ψ(t) with real coefficients such that H = ψ(H0), so

H = ψ̃(ℓ|A) for some polynomial ψ̃ ∈ RP [t]. From section 6 of [13] applied on

each leaf of A follows NH = 0; in other words H is a complex structure along A.

Moreover ω(H, ) = ω( , H) and ω1(H, ) = ω1( , H) since H = ψ̃(ℓ|A).

Thus the 2-forms Ω = ω + ıω̃ and Ω1 = ω1 + ıω̃1, where ω̃(X,Y ) =

−ω(HX,Y ) and ω̃1(X,Y ) = −ω1(HX,Y ), are holomorphic and closed because

dω = dω1 = 0. Observe that Ω and Ω1 are symplectic, ℓ|A ◦H = H ◦ ℓ|A and

Ω1 = Ω(ℓ|A, ), so m is even and ℓ|A is holomorphic along A.

As H is the semi-simple part of H0 the tensor field H0 − H is nilpotent

and commutes with H ; therefore (H0 − H)m = 0. Hence (ℓ|A + 1
2 [fI − (4g −

f2)
1
2H ])m = 0. In other words the complex polynomial (t+h)m where h = 1

2 [f−

ı(4g−f2)
1
2 ] annuls ℓ|A, which implies that (t+h)m is the complex characteristic

polynomial of the holomorphic tensor ℓ|A. In particular h is holomorphic along

A and Kerdh = Kerdf ∩Kerdg = Kerdg1 ∩Kerdg2.

Shrinking P allows us to suppose that the elementary divisors of ℓ|A on this

manifold are (t2 + ft + g)a1 ,..., (t2 + ft + g)ak̃ . Consider any point q ∈ P

and a cyclic decomposition A(q) = B ⊕ ... ⊕ Bk̃ associated to these elementary

divisors. Then HBj = Bj since ℓBj ⊂ Bj ; that is each Bj is a cyclic complex

vector subspace. Now reasoning as before on every Bj at each q ∈ P shows

that (t + h)a1 ,..., (t + h)ak̃ are the complex elementary divisors of ℓ|A. By the

same reason if (t2 + ft+ g)b1 ,..., (t2 + ft+ g)bk′ are the elementary divisors of

ℓ|A∩Kerdh then (t + h)b1 ,..., (t + h)bk′ are the complex elementary divisors of

ℓ|A∩Kerdh.

The analytic complex Frobenius theorem yields functions z1, ..., z2m such

that (x1, ..., xn, z1, ..., z2m) is a system of coordinates around p and

H =
∑2m

k=1((∂/∂z2k)⊗dz2k−1−(∂/∂z2k−1)⊗dz2k)|A. Now we may consider the

complex coordinates v1 = z1 + ız2,..., vm = z2m−1 + ız2m and, after shrinking,

identify P to a product open set A × B ⊂ Rn × Cm. In complex notation H

equals ıI on A.

Moreover functions z1, ..., z2m can be choose in such a way that Ω = (dv1 ∧

dv2 + ...+ dvm−1 ∧dvm)|A, and h = vm if df|A(p) 6= 0. Indeed, consider complex

variables u1 = x1 + ıy1,..., un = xn + ıyn on an open set A′ ⊂ Cn such that
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A′ ∩Rn = A and by means of the analyticity extend A, Ω and h, in the obvious

way, to an open neighbourhood of (p, 0) on A′ × B. Then apply the Darboux

theorem for obtaining suitable coordinates (u1, ..., un, ṽ1, ..., ṽm) and, finally,

restraint functions ṽ1, ..., ṽm to P = A×B.

On the other hand G =
∑n

j=1 aj(∂/∂xj)⊗ dxj +
∑2m
j,k=1 gjk(∂/∂zj)⊗ dzk +

∑n
j=1Xj ⊗ dxj where X1, ..., Xn ∈ A.

After changing the other of variables x1, ..., xn and shrinking A, we may

assume that dx1 ∧ ... ∧ dxn−r ∧ α1 ∧ ... ∧ αr has no zeros. Set T =
∑n

j=1Xj ⊗

dxj . Since it is enough proving theorem 5.1 for some G+
∑r

k=1 Yk ⊗ αk where

Y1, ..., Yr ∈ A, one can suppose Xn−r+1 = ... = Xn = 0. Thus there exist

vector fields X ′
1, ..., X

′
n ∈ F functional combinations of ∂/∂x1, ..., ∂/∂xn whose

coefficients do not depend on z such that TX ′
j = Xj , j = 1, ..., n. Observe that

LX′
j
H = 0.

ButNG(F ,F) = 0 soNG(X
′
j ,A) = 0, whenceG◦LX′

j
(G|A)−L(JX′

j+Xj)(G|A) =

0 that is LXj
(G|A) = G ◦ LX′

j
(G|A) − LJX′

j
(G|A). As JX ′

j is a functional

combination of ∂/∂x1, ..., ∂/∂xn with coefficients only depending on x one has

LJX′
j
H = 0. By construction G|A and H commute, therefore LX′

j
(G|A) and

LJX′
j
(G|A) commute withH and from the expression above follows that LXj

(G|A)

does too.

On the other hand H = ψ̃(G|A) so LXj
H equals a polynomial in G|A and

LXj
(G|A), which implies that H ◦LXj

H = (LXj
H) ◦H . In turn from H2 = −I

follows H ◦LXj
H = −(LXj

H)◦H , therefore LXj
H = 0 since H is invertible. In

short, we may assume X1, ..., Xn holomorphic without loss of generality. Now

in complex notation one has G =
∑n
j=1 aj(∂/∂xj)⊗ dxj +

∑m
j,k=1 hjk(∂/∂vj)⊗

dvk +
∑n
j=1(

∑m
k=1 h

′
jk∂/∂vk) ⊗ dxj where hjk and h′jk are holomorphic along

A.

If as before we consider complex variables u1 = x1 + ıy1,..., un = xn + ıyn

on an open set A′ ⊂ Cn such that A′ ∩ Rn = A, then through the analyticity

α1, ..., αr, F , ℓ, A, Ω, Ω1 and G may be extended to similar holomorphic objects

α̃1, ..., α̃r, F̃ , ℓ̃, Ã, Ω̃, Ω̃1 and G̃, which are defined on an open neighbourhood

P̃ of p̃ = (p, 0) on A′×B. In particular α̃1, ..., α̃r defines F̃ , du1 = ... = dun = 0

defines Ã and Ω̃ = (dv1 ∧ dv2 + ... + dvm−1 ∧ dvm)|Ã. After shrinking P̃ if

necessary, it is easily checked that (F̃ , ℓ̃, Ω̃, Ω̃1) verifies the two first conditions
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of Veronese flag.

Observe that given a holomorphic function µ = µ1+ıµ2 then its Ω̃-hamiltonian

Xµ equals the ωR-hamiltonian of µ1 where ωR is the real part of Ω̃ (note that

ωR = ω on P ). On the other hand if µ is defined around p̃ and ℓ̃∗dµ is closed on

F̃ , that is α̃1∧...∧α̃r∧d(dµ◦G̃) = 0, then α1∧...∧αr∧d(dµ1◦G) = 0 on P which

implies α1∧...∧αr∧LXµ
G = 0 around p on P ; therefore α̃1∧...∧α̃r∧LXµ

G̃ = 0

since this last tensor field is the extension of α1∧...∧αr∧LXµ
G. Hence LXµ

ℓ̃ = 0

near p̃; in other words (F̃ , ℓ̃, Ω̃, Ω̃1) is a Veronese flag at p̃.

Set G̃ =
∑n

j=1 aj(∂/∂uj)⊗duj +
∑m

j,k=1 h̃jk(∂/∂vj)⊗dvk+
∑n
j=1 X̃j ⊗duj.

Then h̃jk is the prolongation to P̃ of hjk and X̃j that of Xj . Consider the

m ×m matrix M = (hjk) + hI and its prolongation M̃ = (h̃jk) + h̃I where h̃

is the prolongation of h, which equals vm when h is not constant. Recall that

(t+h)a1 ,..., (t+h)ak̃ are the complex elementary divisors of ℓ|A on P ; since these

elementary divisors up to change of order are determined by dimKer(ℓ|A+hI)a,

a = 1, ...,m, these dimensions have to be constant, that is to say each function

rankMa, a = 1, ...,m, is constant on P . This fact implies that rankM̃a,

a = 1, ...,m, is constant near p̃ on P̃ and equals rankMa.

Indeed, as M̃(p̃) = M(p) one has rankM̃a ≥ rankMa. Let ρ̃ be a minor of

M̃a and ρ the similar one of Ma. Then ρ̃ is the prolongation of ρ, so ρ̃ vanishes

on P̃ if ρ does on P . Therefore rankM̃a ≤ rankMa. Thus dimKer(ℓ̃|Ã+h̃I)
a =

dimKer(ℓ|A + hI)a, a = 1, ...,m, and consequently (t + h̃)a1 ,..., (t + h̃)ak̃ are

the elementary divisors of ℓ̃|Ã closed to p̃.

A similar argument shows that (t + h̃)b1 ,..., (t + h̃)bk′ are the elementary

divisors of ℓ̃|Ã∩Kerdh closed to p̃. In short, the point p̃ is regular for ℓ̃|Ã.

When h is not constant, in coordinates (u, v) one has h̃ = vm and Ω̃ =

(dv1 ∧ dv2 + ... + dvm−1 ∧ dvm)|Ã; in particular ω =
∑m/2

j=1 (dz4j−3 ∧ dz4j−1 −

dz4j−2∧dz4j)|A. Thus the symplectic reduction of (F̃ , ℓ̃, Ω̃, Ω̃1) can be identified

to the extension by means of complex variables u1 = x1 + ıy1,..., un = xn +

ıyn of the symplectic reduction of (F , ℓ, ω, ω1). Indeed, g1, g2 are function of

z2m−1, z2m only so E is spanned by ∂/∂z2m−3, ∂/∂z2m−2 and from the complex

viewpoint it is the foliation spanned by ∂/∂vm−1. Since the symplectic reduction

of (F , ℓ, ω, ω1) is a Veronese flag at π̄(p), the symplectic reduction of (F̃ , ℓ̃, Ω̃, Ω̃1)

is a Veronese flag at (π̄(p), 0), which is the image of p̃ = (p, 0) by the canonical
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projection [just adapt the argument showing that (F̃ , ℓ̃, Ω̃, Ω̃1) verifies condition

3’) at p̃].

Since h̃(p̃) 6∈ R from theorems 2.1 and 3.1 follow the existence around p̃

of a (1, 1)-tensor field G̃′ extending ℓ̃ and projecting in
∑n
j=1 aj(∂/∂uj) ⊗ duj

and functions w1, ..., wm such that (u, v) = (u1, ..., un, w1, ..., wm) is a system of

coordinates,

G̃′ =
∑n

j=1 aj(∂/∂uj)⊗ duj +
∑m

j,k=1 θjk(w)(∂/∂wj)⊗ dwk

and Ω̃, Ω̃1 are expressed with coefficient functions only depending on w (constant

when h is constant).

Finally, set w1 = z̃1+ ız̃2,..., wm = z̃2m−1+ ız̃2m and observe that G̃′(TP ) ⊂

TP ; therefore the restriction to P of G̃′ defines a (1, 1)-tensor field G′ which

projects in J and extends ℓ. Now for finishing the proof of theorem 5.1 it is

enough considering G′ and functions z̃1, ..., z̃2m.

6. The blocks of a Veronese flag

The aim of this section is to reduce the local study of Veronese flags to

the case where their characteristic polynomial is a power of an irreducible one.

Let (F , ℓ, ω, ω1) be a Veronese flag on a manifold P or at some point of P , A

the foliation of the largest vector subspaces and π : P → N a local quotient

of P by A. Set codimF = r, dimA = 2m and dimN = n. On N consider

coordinates (x1, ..., xn), closed 1-forms α1, ..., αr and a (1, 1)-tensor field J =
∑n

j=1(∂/∂xj) ⊗ dxj , where a1, ..., an ∈ K, such that the associated Veronese

web is given by J, α1, ..., αr and dx1 ∧ ... ∧ dxn−r ∧ α1 ∧ ... ∧ αr never vanishes.

Assume that on an open neighbourhood of a regular point p of ℓ|A the char-

acteristic polynomial ϕ of ℓ|A is the product of two monic relatively prime poly-

nomials ϕ1 and ϕ2. Then Imϕ1(ℓ|A) = Kerϕ2(ℓ|A), Imϕ2(ℓ|A) = Kerϕ1(ℓ|A)

and A = Imϕ1(ℓ|A) ⊕ Imϕ2(ℓ|A); moreover Imϕ1(ℓ|A) and Imϕ2(ℓ|A) are fo-

liations because Nℓ = 0 (apply lemma 2 of [13]). Thus around p there exist

coordinates (x, z, z̃) = (x1, ..., xn, z1, ..., zm′ , z̃1, ..., z̃m̃) such that Imϕ1(ℓ|A) is

spanned by ∂/∂z1, ..., ∂/∂zm′ and Imϕ2(ℓ|A) is spanned by ∂/∂z̃1, ..., ∂/∂z̃m̃.

On the other hand ωk(Imϕ1(ℓ|A), Imϕ2(ℓ|A)) = ωk(Imϕ(ℓ|A), ) = 0, k =

0, 1, where by definition ω0 = ω. Hence

ωk =
∑

1≤i<j≤m′ fijk(x, z)dzi ∧ dzj +
∑

1≤i<j≤m̃ f̃ijk(x, z̃)dz̃i ∧ dz̃j

because dωk = 0. In particular m′ and m̃ are even since ω0 is symplectic.
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Therefore if G is a (1, 1)-tensor field extending ℓ and projecting in J one

has G = J +
∑m′

j,k=1 hjk(x, z)(∂/∂zj) ⊗ dzk +
∑m̃

j,k=1 h̃jk(x, z̃)(∂/∂z̃j) ⊗ dz̃k +
∑n

j=1Xj ⊗ dxj where X1, ..., Xn ∈ A.

Let us see that G may be chosen in such a way that X1, ..., Xn are foliate

both for Imϕ1(G|A) and Imϕ2(G|A). Set T =
∑n
j=1Xj ⊗ dxj . By considering

G+
∑r

j=1 Yj ⊗αj instead of G where Y1, ..., Yr are suitable vector fields tangent

to A, we can suppose Xn−r+1 = ... = Xn = 0 without loss of generality. Thus

locally there exist X ′
1, ..., X

′
n ∈ F functional combinations of ∂/∂x1, ..., ∂/∂xn

with coefficients only depending on x such that TX ′
j = Xj, j = 1, ..., n.

As Imϕ1(G|A) is spanned by ∂/∂z1, ..., ∂/∂zm′ and Kerϕ1(G|A) by ∂/∂z̃1,

..., ∂/∂z̃m̃, the morphism ϕ1(G|A) : Imϕ1(G|A) → Imϕ1(G|A) is in fact an

isomorphism whose inverse equals ψ(ϕ1(G|A)) for some polynomial ψ(t) [indeed,

if tm
′

+
∑m′−1

j=0 gjt
j is the characteristic polynomial of ϕ1(G|A) restricted to

Imϕ1(G|A) set ψ(t) = −g−1
0 (tm

′−1+
∑m′−1
j=1 gjt

j−1)]. Therefore
∑m′

j=1(∂/∂zj)⊗

dzj |A = ρ(G|A) where ρ(t) = ϕ1(t) · ψ(ϕ1(t)).

Analogously there is a polynomial ρ̃(t) such that
∑m̃

k=1(∂/∂z̃k) ⊗ dz̃k|A =

ρ̃(G|A). Set H =
∑m′

j=1(∂/∂zj) ⊗ dzj |A −
∑m̃

k=1(∂/∂z̃k) ⊗ dz̃k|A; then H =

ψ1(G|A) where ψ1(t) = ρ(t)− ρ̃(t). Observe that LXH = 0 for any vector field

X such that X =
∑n

j=1 fj(x)∂/∂xj .

As in section 5, from NG(F ,F) = 0 follows LXj
(G|A) = G ◦ LX′

j
(G|A) −

LJX′
j
(G|A); therefore LXj

(G|A) and H commute since LX′
j
H = LJX′

j
H = 0 and

(G|A)◦H = H ◦(G|A) because H = ψ1(G|A). In turn LXj
H = LXj

(ψ1(G|A)) is

a polynomial in G|A and LXj
(G|A), which implies that H and LXj

H commute.

On the other hand since H2 = I one has H ◦ LXj
H = −(LXj

H) ◦ H , so H ◦

LXj
H = 0 and finally LXj

H = 0. Therefore each Xj is foliate for Imϕ1(G|A) =

Im(H + I) and Imϕ2(G|A) = Im(H − I), that is Xj =
∑m′

i=1 fji(x, z)∂/∂zi +
∑m̃

k=1 f̃jk(x, z̃)∂/∂z̃k.

Now in variables (x, z) we can consider the foliation F ′ defined by α1, ..., αr,

the (1, 1)-tensor field

G′ = J +
∑m′

j,k=1 hjk(x, z)(∂/∂zj)⊗ dzk +
∑n

j=1(
∑m′

i=1 fji(x, z)∂/∂zi)⊗ dxj ,

and its restriction ℓ′ to F ′, the 2-forms ω′ =
∑

1≤i<j≤m′ fij0(x, z)dzi ∧ dzj ,

ω′
1 =

∑
1≤i<j≤m′ fij1(x, z)dzi∧dzj (more exactly their restriction to Imϕ1(G|A)

but we omit it for simplifying the notation) and the point p′ corresponding to
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p. It is easily checked that (F ′, ℓ′, ω′, ω′
1) is a Veronese flag, respectively a

Veronese flag at p′, if that was the case of (F , ℓ, ω, ω1). Similarly in variables

(x, z̃) one may consider the foliation F̃ defined by α1, ..., αr, the (1, 1)-tensor

field G̃ = J +
∑m̃

j,k=1 h̃jk(x, z̃)(∂/∂z̃j) ⊗ dz̃k +
∑n

j=1(
∑m̃

k=1 fjk(x, z̃)∂/∂z̃k) ⊗

dxj , and its restriction ℓ̃ to F̃ , the 2-forms ω̃ =
∑

1≤i<j≤m̃ f̃ij0(x, z̃)dz̃i ∧ dz̃j ,

ω̃1 =
∑

1≤i<j≤m̃ f̃ij1(x, z̃)dz̃i ∧ dz̃j and the point p̃ corresponding to p; then

(F̃ , ℓ̃, ω̃, ω̃1) is a Veronese flag or a Veronese flag at p̃ if that is case of (F , ℓ, ω, ω1).

Moreover p′ is regular for ℓ′|A′ and p̃ for ℓ̃|Ã since p was regular for ℓ|A, ϕ2 is

the characteristic polynomial of ℓ′|A′ and ϕ1 that of ℓ̃|Ã. In a more technical way

we will say that, around p, (F , ℓ, ω, ω1) is the fibered product over N , around

p′ and p̃, of (F ′, ℓ′, ω′, ω′
1) and (F̃ , ℓ̃, ω̃, ω̃1).

Obviously one may reiterate the process until the characteristic polynomial

of each factor is power of an irreducible one, which thus becomes the only case

to take into account.

7. The local product theorem

In this section is showed that, around every point of some dense open set,

an analytic bihamiltonian structure decomposes into a product of a Kronecker

bihamiltonian structure and a symplectic one if a necessary condition stated

later on holds (see [18]).

Consider a bihamiltonian structure (Λ,Λ1) on a real or complex manifold

M of dimension m. The set of all p ∈ M such that rank(Λ,Λ1) is constant

about p is open (obvious) and dense. Indeed, first recall that at any q ∈ M

rank((1− t)Λ+ tΛ1)(q) = rank(Λ,Λ1)(q) except for a finite number of scalars t,

which is ≤ m/2 (see section 1.2 of [17]). Now choose non-equal scalars b1, ..., bk

with k ≥ (m/2) + 2; then the set of all p ∈ M such that the rank of each

rank((1 − bj)Λ + bjΛ1), j = 1, ..., k, is locally constant at p is dense, open and

contained in the foregoing open set.

For simplicity sake suppose r = corank(Λ,Λ1) locally constant. Since our

problem is local, by considering rank((1−bj)Λ+bjΛ1) and rank((1−bj̃)Λ+bj̃Λ1)

for suitable indices j, j̃ instead of Λ,Λ1, we may assume maximal (Λ,Λ1), that

is r = corankΛ = corankΛ1 = corank(Λ,Λ1), without loss of generality.

As in sub-section 1.1, for each p ∈ M let A1(p) be the intersection of all

vector subspaces Im(Λ + tΛ1)(p), t ∈ K, such that rank(Λ + tΛ1)(p) = m− r.
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From the algebraic model follows that the dimension of the symplectic factor

at p equals 2dimA1(p) + r −m. But if c1, ..., cm are different scalars such that

rank(Λ + cjΛ1)(p) = m − r, j = 1, ...,m, then A1(p) = ∩mj=1Im(Λ + cjΛ1)(p)

[see section 1.2 of [17] again]. By continuity A1(q) = ∩mj=1Im(Λ+cjΛ1)(q) when

q is close to p therefore dimA1 is a locally decreasing function, which implies

that the dimension of A1 and that of the symplectic factor are locally constant

on a dense open set.

Observe that if (Λ,Λ1) decomposes into a product near p, then the dimension

of the symplectic factor has to be constant close to p.

In short, suppose that on an open set M ′ ⊂M the bihamiltonian structure

is maximal and its rank and the dimension of the symplectic factor are constant.

Then, following sub-section 1.1, setm = 2m′+2n−r where 2m′ is the dimension

of the symplectic factor and consider the Veronese flag (F , ℓ, ω, ω1) on the local

quotient P of M ′ by the secondary axis A2.

Given a (linear) symplectic form τ and a 2-form τ1 on an even dimensional

vector space V , let K be the endomorphism of V defined by τ1 = τ(K, ).

By definition the characteristic polynomial of (τ, τ1) will be that of K. Let

ϕ̃ = t2m
′

+
∑2m′−1

j=0 h̃jt
j be the characteristic polynomial of the symplectic

factor of (Λ,Λ1) on M
′, that is t2m

′

+
∑2m′−1

j=0 h̃j(p)t
j , for each p ∈ M ′, is the

characteristic polynomial of the symplectic factor of (Λ(p),Λ1(p)) when regarded

as a couple of (linear) symplectic forms.

On the other hand let ϕ = t2m
′

+
∑2m′−1

j=0 hjt
j be the characteristic polyno-

mial of ℓ|A. By means of the algebraic model of (Λ(p),Λ1(p)) it is not hard to see

that the symplectic factor of (Λ(p),Λ1(p)) is isomorphic to (ω(πP (p)), ω1(πP (p))).

Thus the characteristic polynomial of (ℓ|A)(πP (p)) equals ϕ̃(p), that is locally

h̃j = hj ◦ πP , j = 0, ..., 2m′ − 1, which in particular shows the differentiability

of h̃0, ..., h̃2m′−1.

Proposition 7.1. The functions h̃0, ..., h̃2m′−1 are in involution both for Λ

and Λ1. Moreover {Λ(dh̃j, )(p)}j=0,...,2m′−1 and {Λ1(dh̃j , )(p)}j=0,...,2m′−1

span the same vector subspace of TpM
′ for any p ∈M ′.

Proof. Let { , }ω be the Poisson structure on P defined by (A, ω) and

{ , }ω1
that defined by (A, ω1). Recall that { , }ω is the projection of Λ

60



and { , }ω1
that of Λ1. Thus for proving the involution of h̃0, ..., h̃2m′−1 it is

enough showing that h0, ..., h2m′−1 are in involution with respect to { , }ω

and { , }ω1
.

On the other hand by lemma 1.2, kdgk+1 = (k + 1)dgk ◦ ℓ on F where

gk = trace(ℓ|A)
k, k ≥ 0, whence (k + 1)ℓXgk = kXgk+1

. Therefore if 1 ≤ k ≤ k̃

one has ω(Xg
k̃
, Xgk) = C(k, k̃) · ω(ℓk̃−kXgk , Xgk) = 0 since ω(ℓk̃−k, ) is a 2-

form on F ; so {gk̃, gk}ω = 0. But h0, ..., h2m′−1 are function of g1, ..., gk, ... (see

section 3) therefore {hi, hj}ω = 0.

As it was pointed out in sub-section 1.1, from the algebraic model fol-

lows that Λ1(π
∗
P ℓ

∗β, ) = Λ(π∗
Pβ, ) for any β ∈ T ∗

πP (q)P and q ∈ M ′.

Thus in our case kdgk+1 = (k + 1)dgk ◦ ℓ on F implies Λ(d(gk ◦ πP ), ) =

k(k + 1)−1Λ1(d(gk+1 ◦ πP ), ). Since h0, ..., h2m′−1 are function of g1, ..., gk, ...

and the traces are function of h0, ..., h2m′−1 (see section 3 again), the same thing

happens with h̃0, ..., h̃2m′−1 and g1 ◦πP , ..., gk ◦ πP , ... Therefore the vector sub-

space spanned by {Λ(dh̃j, )(p)}j=0,...,2m′−1 is contained in that spanned by

{Λ1(dh̃j , )(p)}j=0,...,2m′−1.

For finishing the proof it is enough inverting the roles of Λ and Λ1 because

the characteristic polynomial of the symplectic factor of (Λ1,Λ) equals t2m
′

+
∑2m′−1

j=1 h̃2m′−j h̃
−1
0 tj + h̃−1

0 . �

Now assume that (M ′,Λ,Λ1) is diffeomorphic to a product of a Kronecker bi-

hamiltonian structure and a symplectic one (M1,Λ
′,Λ′

1)× (M2,Λ
′′,Λ′′

1). Let B1

and B2 be the foliations given by the first and second factor respectively. Then

A1 ⊃ B2 and h̃0, ..., h̃2m′−1 are B1-foliate functions; therefore the dimension of

the vector subspace of T ∗
qM

′ spanned by dh̃0(q), ..., dh̃2m′−1(q) equals the di-

mension of the vector subspace of A∗
1(q) spanned by dh̃0|A1(q), ..., dh̃2m′−1|A1(q)

whenever q ∈M ′.

Thus the foregoing property is necessary for the existence of a local decom-

position into a product of a Kronecker bihamiltonian structure and a symplectic

one.

A point p of M is called regular for (Λ,Λ1) if the three following conditions

hold:

1) The rank (Λ,Λ1) is constant on an open neighbourhood M ′ of this point.

Observe that this first condition allows assuming maximal (Λ,Λ1) by replac-
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ing (Λ,Λ1) by (1− b)Λ+ bΛ1 and (1− b′)Λ+ b′Λ1, for suitable scalars b, b′, and

shrinking M ′. Then:

2) The dimension of the symplectic factor is constant near p, that is on M ′ by

shrinking this neighbourhood again if necessary.

3) The point πP (p) is regular for ℓ|A.

Obviously there are many choices of scalars b, b′ such that ((1−b)Λ+bΛ1, (1−

b′)Λ+ b′Λ1) is maximal around p, but it is easily checked that conditions 2) and

3) do not depend on them.

Since the set of regular points of ℓ|A is open and dense and the projection

πP is a submersion, the set of regular points of (Λ,Λ1) is dense and open on M ;

it will be named the regular open set.

Theorem 7.1. Consider a real analytic or holomorphic bihamiltonian struc-

ture (Λ,Λ1) on M and a regular point p. Let ϕ̃ = t2m
′

+
∑2m′−1
j=0 h̃jt

j be the

characteristic polynomial of the symplectic factor of (Λ,Λ1) near p. Assume

that when q is close to p the vector subspace spanned by dh̃0(q), ..., dh̃2m′−1(q)

and that spanned by dh̃0|A1(q), ..., dh̃2m′−1|A1(q)
have the same dimension. Then,

around p, (Λ,Λ1) decomposes into a product of a Kronecker bihamiltonian struc-

ture and a symplectic one.

Moreover, if ϕ(p) only has real roots then in the C∞ category (Λ,Λ1) locally

decomposes into a product Kronecker-symplectic.

Let us prove theorem 7.1. Shrinking M we may assume that the hypothesis

of theorem hold for every point of this manifold. Around πN (p) consider coor-

dinates (x1, ..., xn), scalars a1, ..., an, the tensor field J =
∑n

j=1 aj(∂/∂xj)⊗dxj

and closed 1-forms α1, ..., αn such that a1, ..., an are not roots of the character-

istic polynomial ϕ(πP (p)) of (ℓ|A)(πP (p)) and α1, ..., αn, J define the Veronese

web associated to the Veronese flag (F , ℓ, ω, ω1) on P induced in turn by (Λ,Λ1).

Now shrinking P allows supposing that a1, ..., an never are roots of the charac-

teristic polynomial ϕ of ℓ|A.

The next aim will be to show the existence near πP (p) of functions z1, ..., z2m′

and a (1, 1)-tensor field G extending ℓ such that (x, z) = (x1, ..., xn, z1, ..., z2m′)

is a system of coordinates, G =
∑n

j=1 aj(∂/∂xj)⊗dxj+
∑n
j,k=1 hjk(z)(∂/∂zj)⊗

dzk and ω, ω1 are expressed relative to dz1|A, ..., dz2m′ |A with coefficient func-
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tions only depending on z.

First, around πP (p), consider a (1, 1)-tensor field G0 extending ℓ and pro-

jecting in J . Taking into account section 6 one may suppose G0 adapted to

the blocks of (F , ℓ, ω, ω1), where each of them has a characteristic polynomial

power of an irreducible one. Therefore it suffices dealing with the problem in

every block (F ′, ℓ′, ω′, ω′
1). Observe that the corresponding point p′ is regular

for ℓ′|A′ .

On the other hand each h̃j = hj ◦ πP and the foliation A1 projects in A,

therefore at every point the vector subspace spanned by dh0, ..., dh2m′−1 and

that spanned by dh0|A, ..., dh2m′−1|A have the same dimension. Thus since ϕ is

the product of the characteristic polynomial of the blocks one has the following

two cases:

(I) If (t−f)2m
′′

is the characteristic polynomial of ℓ′|A′ then f is either constant

or (df|A′)(p′) 6= 0; besides f never takes the values a1, ..., an.

(II) If (t2 + ft + g)m
′′

, where K = R and f2 < 4g, is the the characteristic

polynomial of ℓ′|A′ then f is either constant or (df|A′)(p′) 6= 0.

When f is constant theorems 2.1 and 5.1 give us the required coordinates

and the (1, 1)-tensor field. If (df|A′)(p′) 6= 0 these objects are given by theorems

3.1 and 5.1, provided that we are able to show that the symplectic reduction

is a Veronese flag or, more exactly, to check the third condition of this no-

tion. Let (F̄ ′, ℓ̄′, ω̄′, ω̄′
1) be the symplectic reduction of (F ′, ℓ′, ω′, ω′

1) and π
′ its

corresponding canonical projection. Consider a function h on an open set of

the symplectic reduction such that (ℓ̄′)∗dh is closed along F̄ ′. Then regarded

as a function on an open set of P in the obvious way (that is first compose

with π′ and then extend from the block to P ) ℓ∗dh is closed along the foliation

F ∩ Kerdf or F ∩ Kerdf ∩ Kerdg. By lemma 1.6, at each point LXf
ℓ sends

F ∩Kerdf , respectively F ∩Kerdf ∩Kerdg, into the vector space spanned by

Xf , respectively Xf , Xg.

But Xh is tangent to the block corresponding to (F ′, ℓ′, ω′, ω′
1) since h only

depends on the variables of this block. Therefore LX′
f
ℓ′ sends F ′ ∩ Kerdf or

F ′ ∩ Kerdf ∩ Kerdg into the vector space spanned by X ′
f or X ′

f , X
′
g, where

X ′
h, X

′
f , X

′
g are the ω′-hamiltonians of h, f, g respectively.

On the other hand X ′
fh = X ′

gh = 0, therefore X ′
hf = X ′

hg = 0; that is to
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say X ′
h is tangent to A′ ∩ Kerdf or to A′ ∩ Kerdf ∩ Kerdg. Moreover by π′

the vector field X ′
h projects in the ω̄′-hamiltonian X̄ ′

h of h, whereas ℓ′|F ′∩Kerdf

or ℓ′|F ′∩Kerdf∩Kerdg do in ℓ̄′. Thus LX′
h
ℓ′ restricted to F ′ ∩Kerdf or to F ′ ∩

Kerdf ∩Kerdg projects in LX̄′
h
ℓ̄′, whence LX̄′

h
ℓ̄′ = 0. In short, the symplectic

reduction is a Veronese flag.

We need the following lemma whose proof is an exercise on Poisson structures

(see [20]).

Lemma 7.1. On a manifold M̃ consider a Poisson structure Λ̃ and a 2m̃-

codimensional foliation G. Assume that:

(a) The bracket of any two foliate functions is a foliate function.

(b) The hamiltonians of the foliate functions give rise to a 2m̃-dimensional

vector sub-bundle G̃ of TM̃ .

Then G̃ is a foliation, TM = G⊕G̃ and, in coordinates (u, v) = (u1, ..., uk, v1, ..., v2m̃)

such that G and G̃ are defined by dv1 = ... = dv2m̃ = 0 and du1 = ... = duk = 0

respectively, one has

Λ̃ =
∑

1≤i<j≤k θij(u)(∂/∂ui) ∧ (∂/∂uj) +
∑

1≤i<j≤2m̃ θ̃ij(v)(∂/∂vi) ∧ (∂/∂vj).

Moreover
∑

1≤i<j≤2m̃ θ̃ij(v)(∂/∂vi)∧ (∂/∂vj) is a symplectic Poisson struc-

ture in variables (v1, ..., v2m̃).

By means of πP functions z1, ..., z2m′ may be regarded as functions defined

around p on M ; since πP is a submersion G0 = Ker(dz1 ∧ ... ∧ dz2m′) is a

2m′-codimensional foliation about p. On the other hand, since {zi, zj}ω and

{zi, zj}ω1
are only function of z and Λ, Λ1 project in the bivectors associated to

(A, ω) and (A, ω1) respectively, the functions Λ(dh1, dh2) and Λ1(dh1, dh2) are

G0-foliate whenever h1, h2 are G0-foliate. Besides, near p, the Λ-hamiltonians

of the G0-foliate functions give rise to a vector sub-bundle G1 of dimension 2m′

because ω is symplectic on A. In the same way, the Λ1-hamiltonians of the

G0-foliate functions give rise to a vector sub-bundle G′
1 of dimension 2m′. But

Λ1(π
∗
P ℓ

∗β, ) = Λ(π∗
Pβ, ), dzj ◦ G =

∑2m′

k=1 hjk(z)dzk, j = 1, ..., 2m′, and

ℓ|A = G|A is invertible; therefore G′
1 = G1.

By lemma 7.1 applied to Λ,Λ1 and G0, the vector sub-bundle G1 is a foliation

and locally TM = G0 ⊕ G1. Thus around p there exist functions u1, ..., um−2m′

such that (u, z) = (u1, ..., um−2m′ , z1, ..., z2m′) is a system of coordinates, G0 is
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defined by dz1 = ... = dz2m′ = 0 and G1 by du1 = ... = dum−2m′ = 0. Now from

lemma 7.1 follows that

Λ =
∑

1≤i<j≤m−2m′ θij(u)(∂/∂ui) ∧ (∂/∂uj)

+
∑

1≤i<j≤2m′ θ̃ij(z)(∂/∂zi) ∧ (∂/∂zj)

Λ1 =
∑

1≤i<j≤m−2m′ θ1ij(u)(∂/∂ui) ∧ (∂/∂uj)

+
∑

1≤i<j≤2m′ θ̃1ij(z)(∂/∂zi) ∧ (∂/∂zj)

which decomposes (Λ,Λ1) into a product of a Kronecker bihamiltonian structure

[variables (u1, ..., um−2m′)] and a symplectic one [variables (z1, ..., z2m′)] and

finishes the proof of theorem 7.1.

8. A counter-example

In this section one will give an example, in the C∞ category, of a bihamil-

tonian structure for which theorem 7.1 fails (see [19]); more exactly one will

show that the partial tensor field ℓ, of the associated Veronese web, cannot be

extended to a (1, 1)-tensor field with no Nijenhuis torsion. In our example the

bihamiltonian structured considered defines a G-structure and the Lewy’s result

[7] prevents us to find an extension of ℓ with vanishing Nijenhuis torsion, which

clearly contradicts theorem 7.1 (the reader interested in a classic example of

non-equivalent G-structures may see [6]).

First let us establish some auxiliary results. Consider on a manifold P

endowed with coordinates (x, y) = (x1, ..., xn, y1, ..., ym), for example on an open

set of Kn+m, the foliation A given by dx1 = ... = dxn = 0, and in coordinates

x = (x1, ..., xn), that is on the quotient of P by A, a Veronese web defined by

J =
∑n

j=1 aj(∂/∂xj) ⊗ dxj where a1, ..., an ∈ K − {0} and the closed 1-forms

α1, ..., αr. Recall that in this case α1 ∧ ... ∧ αr ∧ d(αj ◦ J) = 0, j = 1, ..., r, and

α1, ..., αr, J
∗ span, at each point, the same vector space that dx1, ..., dxn. In

the obvious way J, α1, ..., αr will be regarded as objects on P too. On the other

hand, assume that the n-form dx1 ∧ ... ∧ dxn−r ∧ α1 ∧ ... ∧ αr never vanishes.

On P let G = J + H +
∑n−r

j=1 Xj ⊗ dxj where X1, ..., Xn−r ∈ A, H =
∑m

j,k=1 ajk(y)(∂/∂yj)⊗ dyk and the Nijenhuis torsion of H|A vanishes.

Lemma 8.1. One has:

(a) If NG ∧ α1 ∧ ... ∧ αr = 0 then (LXj
H)

|A
= 0, j = 1, ..., n− r.

(b) If (LXj
H)

|A
= 0, j = 1, ..., n− r, then NG(A, ) = 0.
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Proof. (a) From the formula NG(X, ) = LGXG−GLXG straightforward

follows NG(∂/∂xi,A) = 0, i = n − r + 1, ..., n. But NG(∂/∂yk, ) ∧ α1 ∧

... ∧ αr = 0, k = 1, ...,m, so NG(∂/∂yk, ) = 0 since the 1-forms α1, ..., αr

restricted to dx1 = ... = dxn−r = 0 are linearly independent everywhere. Thus

NG(∂/∂xj,A) = 0, j = 1, ..., n− r, which implies (LXj
H)

|A
= 0.

(b) Clearly NG(A,A) = 0 and NG(∂/∂xi,A) = 0 when i runs from n− r+1

to n. On the other hand NG(∂/∂xj,A) = (LXj
H)(A) if j = 1, ..., n− r. �

Lemma 8.2. Consider a tensor field G′′ = J +H +
∑n

j=1Xj ⊗ dxj where

X1, ..., Xn ∈ A. If NG′′ = 0 then (LXj
H)

|A
= 0, j = 1, ..., n.

Proof. Now (L∂/∂xj
G′′)(A) = 0 whereas (LXj

H)(A) = (LG′′(∂/∂xj)G
′′)(A) =

0. �

Hereafter n = 3 and J =
∑3
j=1 aj(∂/∂xj) ⊗ dxj where a1, a2, a3 are non-

equal and non-vanishing real numbers. Besides one will replace m by 4m, that

is we will consider coordinates (x1, x2, x3, y1, ..., y4m), and P will be an open

set of R4m+3. On the other hand one will set r = 2, α1 = dx1 − dx2 and

α2 = x2dx2 − dx3. Then α1, α2, α1 ◦ J and α2 ◦ J are closed. It is easily

checked that α1, α2, J define a Veronese web of codimension two in variables x

and dx1 ∧ α1 ∧ α2 = dx1 ∧ dx2 ∧ dx3.

For making calculations easy, we introduce a complex structure along A

by means of the complex variables (z, u) = (z1, ..., zm, u1, ..., um), where z1 =

y1 + ıy2, u1 = y3 + ıy4,..., zm = y4m−3 + ıy4m−2, um = y4m−1 + ıy4m. Set H =

ıI(z,u)+
∑m
j=1(∂/∂zj)⊗duj where I(z,u) =

∑m
j=1[(∂/∂zj)⊗dzj+(∂/∂uj)⊗duj ].

From the real viewpoint H is a (1, 1)-tensor field with constant coefficients

and minimal polynomial t(t2+1)2, whose semi-simple and nilpotent parts equal

ıI(z,u) and
∑m
j=1(∂/∂zj)⊗ duj respectively.

Lemma 8.3. Consider the (1, 1)-tensor field G′ = J + H and a complex

valued function f(x, u) holomorphic along A. If d(df ◦G′) ∧ α1 ∧ α2 = 0 then,

locally, there exists a complex valued function g(x, z, u) holomorphic along A

such that d(dg ◦G′) ∧ α1 ∧ α2 = 0 and (dg ◦ (H − ıI(z,u)))|A = df |A.

Let us prove this result. First consider the basis of the cotangent bundle,

with respect to variables x, {dx1, α1, α2} and its dual basis X = ∂/∂x1 +
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∂/∂x2+x2∂/∂x3, X1 = −∂/∂x2−x2∂/∂x3, X2 = −∂/∂x3. Taking into account

that dh = X(h)dx1 +X1(h)α1 +X2(h)α2 +
∑m

j=1[(∂h/∂zj)dzj + (∂h/∂uj)duj ]

when h is holomorphic along A, a calculation shows that d(df ◦ G′) ∧ α1 ∧

α2 = 0 if and only if (JX − ıX) · (∂f/∂uj) = 0, j = 1, ...,m. On the other

hand (dg ◦ (H − ıI(z,u)))|A = df |A means that g =
∑m
j=1 zj∂f/∂uj + ϕ(x, u).

Therefore we have to find a function ϕ(x, u) holomorphic along A in such a way

that d(dg ◦ G′) ∧ α1 ∧ α2 = 0. But again a calculation shows that this last

condition is equivalent to the equation (JX − ıX) · (∂ϕ/∂uj) = X · (∂f/∂uj),

j = 1, ...,m [observe that d(d(∂f/∂uk) ◦ G
′) ∧ α1 ∧ α2 = 0, k = 1, ...,m, since

d(df ◦G′) ∧ α1 ∧ α2 = 0].

Now consider a function ψ(x, u) such that (JX − ıX) · ψ = 0 and set Y =

(a1− ı)
−1x1∂/∂x1+(a2− ı)

−1x2∂/∂x2+((a2− ı)
−1+(a3− ı)

−1)x3∂/∂x3. Then

[JX − ıX, Y ] = X , which implies (JX − ıX) · h = X · ψ where h = Y · ψ.

Since Y commutes with ∂/∂uj, ∂/∂z̄j, ∂/∂ūj, j = 1, ...,m, it suffices to set

ϕ = Y · f for finishing the proof of lemma 8.3.

Now let G = J + H + Z ⊗ dx1 where Z =
∑m
j=1 fj(x, u)∂/∂zj and each

fj is holomorphic along A. Then (LZH)|A = 0 and, by lemma 8.1, one has

NG(A, ) = 0; thus NG ∧ α1 ∧ α2 = 0 since there are only three variables x.

Theorem 8.1. There exists a complex valued function f(x), x ∈ R3, such

that, if one sets f1 = u1f , then the Nijenhuis torsion of the (1, 1)-tensor field

G̃ = G+Z1⊗α1+Z2⊗α2 never vanishes around any point whatever Z1, Z2 ∈ A.

Proof. The real characteristic polynomial ψ of G̃ equals ψ1 · ψ2 where

ψ1 = (t − a1)(t − a2)(t − a3) and ψ2 = (t2 + 1)2m. Assume NG̃ = 0 for some

Z1, Z2 ∈ A. Then locally G̃ decompose into a product of two manifolds endowed

each of them with a (1, 1)-tensor field whose real characteristic polynomials are

ψ1 and ψ2 respectively. Both factor tensor fields are flat because the first one

can be identified to J and the second one to the restriction of G̃ to a leaf of

the foliation A and, obviously, this restriction is flat (in fact the foliation by the

second factor equals A).

Note that the complex structure along A is given by the semi-simple part

of G̃|A. So there exist coordinates (x̃, z̃, ũ) = (x̃1, x̃2, x̃3, z̃1, ..., z̃m, ũ1, ..., ũm),
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where x̃1 = x1, x̃2 = x2, x̃3 = x3, such that dx̃1 = dx̃2 = dx̃3 = 0 defines

A, α1 = dx̃1 − dx̃2, α2 = x̃2dx̃2 − dx̃3, z̃1, ..., z̃m, ũ1, ..., ũm are holomorphic

along A and G̃ = J̃ + H̃ where J̃ =
∑3
j=1 aj(∂/∂x̃j) ⊗ dx̃j and H̃ = ıI(z̃,ũ) +

∑m
j=1(∂/∂z̃j)⊗ dũj .

Clearly d(du1 ◦ G̃) ∧ α1 ∧ α2 = 0 [calculate it in coordinates (x, z, u)]. Be-

sides in coordinates (x̃, z̃, ũ) function u1 does not depend on z̃ since it is fo-

liate with respect to the foliation Ker((G̃ − ıI)|A). Therefore from lemma

8.3 applied, in coordinates (x̃, z̃, ũ), to u1 and G̃ follows the local existence

of a function g holomorphic along A such that d(dg ◦ G̃) ∧ α1 ∧ α2 = 0 and

du1|A = (dg ◦ (H̃ − ıI(z̃,ũ)))|A. But (H̃ − ıI(z̃,ũ))|A = (H − ıI(z,u))|A since this

object is the nilpotent part of G̃|A, so du1|A = (dg ◦ (H − ıI(z,u)))|A; moreover

d(dg ◦ G) ∧ α1 ∧ α2 = 0 because (G̃ − G) ∧ α1 ∧ α2 = 0. The first condition

implies that g = z1 + ρ(x, u) where ρ is holomorphic along A.

Now take f1 = u1f(x); then 0 = (d(dg ◦G) ∧ α1 ∧ α2)(X,X1, X2, ∂/∂u1) =

d(dg ◦ G)(X, ∂/∂u1) = X(dg(G∂/∂u1)) − ∂/∂u1(dg(GX)), which yields the

equation

(*) (JX − ıX) · (∂ρ/∂u1) + f = 0.

Let X̃ = [JX,−X ]. Then X̃ = (a3 − a2)∂/∂x3 6= 0 since a2 6= a3. Regarded

on R3, the vector fields JX,−X, X̃, which are linearly independent everywhere,

define a 3-dimensional Lie algebra whose center is spanned by X̃. Moreover

b1JX − b2X + b3X̃ is complete for any b1, b2, b3 ∈ R.

OnR
3 endowed with coordinates y = (y1, y2, y3) set Y1 = −∂/∂y1−2y2∂/∂y3,

Y2 = −∂/∂y2 + 2y1∂/∂y3 and Ỹ = [Y1, Y2] = −4∂/∂y3; note that Y1, Y2, Ỹ

are linearly independent everywhere and define a 3-dimensional Lie algebra

whose center is spanned by Ỹ ; moreover b1Y1 + b2Y2 + b3Ỹ is complete for

any b1, b2, b3 ∈ R. As R3 is simply connected there is a diffeomorphism of this

space transforming JX,−X, X̃ in Y1, Y2, Ỹ respectively.

From the Lewy’s example (see (5) of page 156 of [7]) follows the existence

of a C∞ function F : R3 → C such that the equation (Y1 + ıY2)F̃ = F has

no solution in any neighbourhood of any point of R3. Pulling-back −F gives

a function f for which equation (*) has no solution at all (regard ∂ρ/∂u1 as a

function of x and u1, ..., um as parameters); in other words if one takes f1 = u1f

then NG̃ never vanishes around any point. �
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The next step will be to apply the construction of sub-section 1.2 to a fo-

liation and a particular (1, 1)-tensor field on R7. More exactly, set m = 1 and

S = J + H + u1f(x)(∂/∂z1) ⊗ dx1 or in real notation S =
∑3
j=1 aj(∂/∂xj) ⊗

dxj +
∑2

j=1[(∂/∂y2j)⊗dy2j−1 − (∂/∂y2j−1)⊗dy2j ]+ (∂/∂y1)⊗dy3 +(∂/∂y2)⊗

dy4 + [(y3g1 − y4g2)(∂/∂y1) + (y3g2 + y4g1)(∂/∂y2)]⊗ dx1 where f = g1 + ıg2.

Note that, as it was pointed out before, NS ∧ α1 ∧ α2 = 0. Moreover, if α

is a closed 1-form such that Kerα ⊃ Ker(α1 ∧ α2) then α1 ∧ α2 ∧ d(α ◦ S) = 0

since α =
∑3

j=1 hk(x)dxk. In other words the construction of sub-section 1.2

applies to S and G = Ker(α1 ∧ α2).

Let (x, y, x̃, ỹ) = (x1, x2, x3, y1, ..., y4, x̃1, x̃2, x̃3, ỹ1, ..., ỹ4) be the coordinates

of T ∗R7 associated to (x, y). Then ω =
∑3

j=1 dx̃j ∧ dxj +
∑4

j=1 dỹj ∧ dyj ,

ω1 = ω(S∗, ) and

S∗ =
∑3
j=1 aj [(∂/∂xj)⊗ dxj + (∂/∂x̃j)⊗ dx̃j ]

+
∑2
j=1[(∂/∂y2j)⊗ dy2j−1 − (∂/∂y2j−1)⊗ dy2j

+(∂/∂ỹ2j−1)⊗ dỹ2j − (∂/∂ỹ2j)⊗ dỹ2j−1]

+(∂/∂y1)⊗ dy3 + (∂/∂y2)⊗ dy4 + (∂/∂ỹ3)⊗ dỹ1 + (∂/∂ỹ4)⊗ dỹ2

+[(y3g1 − y4g2)(∂/∂y1) + (y3g2 + y4g1)(∂/∂y2)

−(ỹ1g1 + ỹ2g2)(∂/∂ỹ3) + (ỹ1g2 − ỹ2g1)(∂/∂ỹ4)]⊗ dx1

+
∑3
j=1(∂/∂x̃j)⊗ βj

where β1, β2, β3 are functional combinations of dx1, dx2, dx3, dy3, dy4, dỹ1, dỹ2.

Recall that in our case G0 is a 2-dimensional foliation, isotropic and symplec-

ticly complete for ω and ω1, spanned by the ω-hamiltonians of α1◦J
−1, α2◦J

−1

or by the ω1-hamiltonians of α1, α2, when α1, α2, α1 ◦J
−1, α2 ◦J

−1 are regarded

as 1-forms on T ∗R7 in the obvious way.

Therefore by projection the Poisson structures Λω and Λω1
give rise to a bi-

hamiltonian structure (Λ,Λ1) on the global quotientM = T ∗R7/G0 (proposition

1.4).

Since the ω-hamiltonians of α1◦J
−1, α2◦J

−1 equal −a−1
1 ∂/∂x̃1+a

−1
2 ∂/∂x̃2,

−a−1
2 x2∂/∂x̃2 + a−1

3 ∂/∂x̃3, the submanifold of T ∗R7 defined by x̃2 = x̃3 = 0 is

transverse to G0, which allows us to identify it withM endowed with coordinates

(x1, x2, x3, y1, ..., y4, x̃1, ỹ1, ..., ỹ4), whereas Λ,Λ1 are given by the restriction to

M of α1 ◦ J
−1, α2 ◦ J

−1, ω and α1, α2, ω1 respectively.

In general (see the proof of proposition 1.4) Λ+ tΛ1 is defined by the restric-
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tion toM of α1 ◦(S
∗+ tI)−1 = α1 ◦(J+ tI)

−1, α2 ◦(S
∗+ tI)−1 = α1 ◦(J+ tI)

−1

and ω((I+t(S∗)−1)−1, ). Therefore the rank of (Λ,Λ1) equals 10, the primary

axis of (Λ,Λ1) is the foliation dx1 = dx2 = dx3 = 0 and the secondary one the

foliation spanned by ∂/∂x̃1; in particular the dimension of the symplectic factor

is 8 everywhere and 4 that of the Kronecker factor. Thus the global quotient of

M by the secondary axis is identified, in a natural way, to the submanifold P ′

of T ∗R7 defined by the equations x̃1 = x̃2 = x̃3 = 0 endowed with coordinates

(x, y, ỹ), while the foliation A of the Veronese flag on P ′ induced by (Λ,Λ1) is

given by dx1 = dx2 = dx3 = 0, and the Veronese web is defined in variables

x = (x1, x2, x3) by J, α1, α2.

On the other hand, as ω1 = ω(S∗, ) and S∗ projects on P ′ in the (1, 1)-

tensor field

G =
∑3

j=1 aj(∂/∂xj)⊗ dxj

+
∑2
j=1[(∂/∂y2j)⊗ dy2j−1 − (∂/∂y2j−1)⊗ dy2j

+(∂/∂ỹ2j−1)⊗ dỹ2j − (∂/∂ỹ2j)⊗ dỹ2j−1]

+(∂/∂y1)⊗ dy3 + (∂/∂y2)⊗ dy4 + (∂/∂ỹ3)⊗ dỹ1 + (∂/∂ỹ4)⊗ dỹ2

+[(y3g1 − y4g2)(∂/∂y1) + (y3g2 + y4g1)(∂/∂y2)

−(ỹ1g1 + ỹ2g2)(∂/∂ỹ3) + (ỹ1g2 − ỹ2g1)(∂/∂ỹ4)]⊗ dx1,

this last one is a prolongation of the partial (1, 1)-tensor field ℓ : F → TP ′,

which projects in J .

Since ℓ|A = G|A is 0-deformable because it is written with constant coef-

ficients, the algebraic model of the symplectic factor of (Λ,Λ1), which is com-

pletely determined by ℓ|A, does not depend on the point considered. In particu-

lar its characteristic polynomial equals (t2 + 1)4 and the hypothesis of theorem

7.1 on the coefficients of this polynomial automatically holds.

Note that the algebraic model of the Veronese web in variables x does not

depend on the point as in dimension three and codimension two there is only

one model. Thus the algebraic model of the Kronecker factor is independent of

the point, (Λ,Λ1) defines a G-structure andM is the regular open set of (Λ,Λ1).

Assume that, around some point q ofM , the bihamiltonian structure (Λ,Λ1)

decomposes into a product Kronecker-symplectic. Then considering the local

quotient by the secondary axis on each factor separately implies the existence

about of some point p ∈ P ′ of a (1, 1)-tensor field G̃, which prolongs ℓ and
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projects in J , whose Nijenhuis torsion vanishes. In other words, around p there

exist two vector fields Z1, Z2 ∈ A such that NG̃ = 0 where G̃ = G+ Z1 ⊗ α1 +

Z2 ⊗ α2.

Now set y5 = ỹ3, y6 = −ỹ4, y7 = ỹ1, y8 = −ỹ2 and consider complex

variables z1 = y1 + ıy2, u1 = y3 + ıy4, z2 = y5 + ıy6 and u2 = y7 + ıy8. Then

G = J +H + Z ⊗ dx1 where Z = u1f∂/∂z1 − u2f∂/∂z2 and f = g1 + ıg2.

By theorem 8.1 one may choose function f in such a way that the Nijenhuis

torsion of G̃ never vanishes about any point, which implies that (Λ,Λ1) does

not decompose into a product Kronecker-symplectic around any point.

In short, one has constructed a counter-example to theorem 7.1 in the C∞

case.

Appendix: A splitting property for (1, 1)-tensor fields

Nowadays it is well known, and belongs to the mathematical folklore, that

a (1, 1)-tensor fields whose Nijenhuis torsion vanishes locally follows the decom-

position of its characteristic polynomial (see [2]). Nevertheless, and for making

our text more self-contained, we will prove this result here. More exactly:

Proposition A.1. Consider a (1, 1)-tensor fields G on a n-manifold M .

Let ϕ be its characteristic polynomial. Assume that:

(1) NG = 0,

(2) ϕ = ϕ1 · ϕ2 where ϕ1, ϕ2 are monic polynomials, of respective degrees n1

and n2, relatively prime at each point.

Then, around every point, (M,G) decomposes into a product (M1, G1) ×

(M2, G2), where dimM1 = n1, dimM2 = n2, NG1
= NG2

= 0, ϕ1 is the charac-

teristic polynomial of G1 (more exactly ϕ1 is the pull-back of the characteristic

polynomial of G1 by the first projection) and ϕ2 that of G2.

Let us prove proposition A.1. Set H1 = ϕ2(G) and H2 = ϕ1(G). By

algebraic reasons KerH1 = ImH2, KerH2 = ImH1, ImH1 and ImH2 are

vector sub-bundles of dimension n1 and n2 respectively and TM = ImH1 ⊕

ImH2. Moreover ImH1 and ImH2 are G-invariant, ϕ1(H1) = ϕ2(H2) = 0, and

H1, ϕ2(H1) : ImH1 → ImH1, H2, ϕ1(H2) : ImH2 → ImH2 are isomorphisms.

Since NG = 0 one has (LGkX(Gr))Y = (GkLX(G
r))Y for any vector fields

X,Y and natural numbers k, r. Recall that if H̃ is a (1, 1)-tensor field then
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LfZH̃ = fLZH̃ +(H̃Z)⊗ df −Z ⊗ (df ◦ H̃). Now a straightforward calculation

shows:

Lemma A.1. Consider functions h0, ..., hs and set H =
∑s

k=0 hkG
k. Then

NH(X,Y ) =
∑n−1

j=0 [αj(X)GjY − αj(Y )GjX ] where each αj is a 1-form func-

tional combination of dhk ◦G
r, k = 0, ..., s, r = 0, ..., n− 1.

In particular NH = 0 if h0, ..., hs are constant.

By definition of Nijenhuis torsion [H1X,H1Y ] − NH1
(X,Y ) is a section of

ImH1. Therefore given vector fields X,Y ∈ ImH1, since G
k(ImH1) ⊂ ImH1,

from lemma A.1 follows that [H1X,H1Y ] ∈ ImH1. But the vector fields H1Z

such that Z ∈ ImH1 span ImH1, so ImH1 is involutive; in turn and by a

similar reason ImH2 is involutive too.

In other words, locally, M can be regarded as a productM1×M2 associated

to the decomposition of the tangent bundle TM = ImH1 ⊕ ImH2; moreover

G(TM1 × {0}) ⊂ TM1 × {0} and G({0} × TM2) ⊂ {0} × TM2. Thus there

exist two (1, 1)-tensor field G1 : TM1 → TM1, perhaps depending on M2, and

G2 : TM2 → TM2, perhaps depending on M1, such that G = G1 + G2 when

G1, G2 are considered on TM in the natural way (that is G1({0} × TM2) = 0

and G2(TM1×{0}) = 0). The proof will be finished if we are able to show that

G1, G2 do not depend on M2 and M1 respectively, since in this case NG = 0

obviously implies NG1
= NG2

= 0.

We start dealing with the case where there exist a symplectic form ω and a

closed 2-form ω1 such that ω1 = ω(G, ); recall that ω(G, ) = ω( , G). Then

ω(ImH1, ImH2) = ω(Im(ϕ2(G)), Im(ϕ1(G))) = ω(Im(ϕ1(G)◦ϕ2(G)), TM) =

0; in a analogous way one has ω1(ImH1, ImH2) = 0. Now consider coordinates

(x, y) = (x1, ..., xn1
, y1, ..., yn2

) on M such that ∂/∂x1, ..., ∂/∂xn1
span ImH1

and ∂/∂y1, ..., ∂/∂yn2
span ImH2. Then ω = ω′ + ω′′ and ω1 = ω′

1 + ω′′
1

where ω′ =
∑

1≤i<j≤n1
fij(x)dxi ∧ dxj , ω

′′ =
∑

1≤i<j≤n2
gij(y)dyi ∧ dyj , ω

′
1 =

∑
1≤i<j≤n1

f̃ij(x)dxi ∧ dxj and ω′′
1 =

∑
1≤i<j≤n2

g̃ij(y)dyi ∧ dyj , because dω =

dω1 = 0 and ω(∂/∂xk, ∂/∂yr) = ω1(∂/∂xk, ∂/∂yr) = 0, k = 1, ..., n1, r =

1, ..., n2. Thus ω
′
1 = ω′(G1, ) in coordinates (x1, ..., xn1

) regarded on M1 and

ω′′
1 = ω′′(G2, ) in coordinates (y1, ..., yn2

) onM2; whereby G1 only depends on

(x1, ..., xn1
) and G2 on (y1, ..., yn2

), which proves proposition A.1 in this case.
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In the general case consider the prolongation G∗ of G to T ∗M (see sub-

section 1.2) whose characteristic polynomial equals ϕ2, or more exactly the

pull-back of ϕ2 by the canonical projection π : T ∗M →M . Now NG∗ = 0, ϕ2 =

ϕ2
1 ·ϕ

2
2 and, since on T ∗M there exist ω and ω1 as before, G∗ decomposes into a

sum G∗ = G∗
1+G

∗
2 in such a way that ImG∗

1 = Imϕ2
2(G

∗), KerG∗
1 = Imϕ2

1(G
∗),

ImG∗
2 = Imϕ2

1(G
∗) and KerG∗

2 = Imϕ2
2(G

∗). Moreover NG∗
1
= NG∗

2
= 0 as

NG∗ = 0.

Again, consider coordinates (x, y) = (x1, ..., xn1
, y1, ..., yn2

) on M such that

∂/∂x1, ..., ∂/∂xn1
span ImH1 and ∂/∂y1, ..., ∂/∂yn2

span ImH2. Identify M

to the zero section S0 of T ∗M . If (x, y, x̃, ỹ) are the associated coordinates on

T ∗M , in which the zero section is given by x̃ = 0, ỹ = 0, from the formula of

the prolongation given in sub-section 1.2 easily follows that G∗(TS0) ⊂ TS0,

G∗
1(TS0) ⊂ TS0 and G∗

2(TS0) ⊂ TS0. Besides (Imϕ2
2(G

∗)) ∩ TS0 = Imϕ2(G),

(Imϕ2
1(G

∗)) ∩ TS0 = Imϕ1(G), G
∗
|S0

= G, G∗
1|S0

= G1 and G∗
2 |S0

= G2 [it is

just an algebraic verification at each point of S0]. Thus NG1
= NG2

= 0 on

M . In particular from NG1
(∂/∂yr, ) = 0 follows L(∂/∂yr)G1 = 0, r = 1, ..., n2,

that is G1 does not depend on M2. Analogously one shows that G2 does not

depend on M1. Therefore the proof of proposition A.1 is finished.
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