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Abstract

In this concluding part of the series I first consider the bivector derivative for four-vector and
four-tensor fields in the case of arbitrary Riemannian geometry. I then define this derivative
for five-vector and five-tensor fields, examine the bivector analogs of the Riemann tensor, and
introduce the notion of the commutator for the fields of five-vector bivectors. After that I
examine a more general case of five-vector affine connection, introduce the five-vector analog
of the curvature tensor, discuss the canonical stress-energy and angular momentum tensors
corresponding to the five-vector covariant derivative, and consider a possible five-vector
generalization of the Einstein and Kibble–Sciama equations. In conclusion, I introduce the
notion of the bivector derivative for the fields of nonspacetime vectors and tensors, consider
the corresponding gauge fields and their properties, and derive a possible generalization of
Maxwell’s equation.

To Valeri Dvoeglazov

A. Bivector derivative in curved space-time

In part III I have introduced the bivector derivative
for scalar, four-vector and four-tensor fields in flat
space-time. Now I would like to define this derivative
in the general case. As one can see from the for-
mulae obtained in section D of part III, in the case
of flat space-time the bivector derivative of the in-
dicated fields is determined only by the metric, and
since with respect to its metric properties any suffi-
ciently smooth space-time manifold is locally flat, the
bivector derivative in the general case can be defined
by postulating that in local Lorentz coordinates it
has the same form at any space-time geometry. For
scalar fields this means that the bivector derivative
of an arbitrary function f is given by formula (32) of
part III, where eA can be any active regular basis at
the considered point. For four-vector fields the above
assertion means that the bivector derivative of the
basis fields Eα corresponding to any system of local
Lorentz coordinates at the considered point is given
by formula (33) of part III, where eA is now the active
regular five-vector basis associated with Eα. Further-
more, one should assume that in the general case, too,
the bivector derivative has the properties expressed
by equations (37) of part III, which will enable one to

define the derivative DAW for any four-vector field
W and any five-vector bivectorAA, and that the bivec-
tor derivative of the contraction and tensor product
obeys the Leibniz rule, which will enable one to de-
fine the action of operator D on all other four-tensor
fields.

As in the case of flat space-time, for any set of
four-vector basis fields Eα and any set of five-vector
basis fields eA one can define the bivector connection
coefficients according to formula (40) of part III. In
the particular case where Eα is a basis that corre-
sponds to some system of local Lorentz coordinates
at the considered point and eA is the associated ac-
tive regular five-vector basis, the bivector connection
coefficients Γµ

νAB at that point are given by formulae
(41) of part III.

The bivector derivative for the considered type of
fields in the general case can also be defined without
referring to local Lorentz coordinates. Instead, one
can postulate that as in the case of flat space-time,
it is expressed according to formulae (38) and (39)
of part III for scalar fields in terms of the directional
derivative and for four-vector fields in terms of the
torsion-free g-conserving ordinary covariant deriva-
tive ∇· , which is uniquely determined by space-time

metric, and of the local operator M̂, whose argument
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is a four-vector bivector, on which M̂ depends lin-
early. Let us recall that in an arbitrary four-vector

basis Eα, operator M̂ has the following components:

(M̂Eα∧Eβ
)µν = δµβ gαν − δµα gβν ≡ (Mαβ)

µ
ν . (1)

The bivector derivative of scalar, four-vector and
four-tensor fields defined above possesses one impor-
tant property: at any five-vector affine connection 2

with respect to which the metric tensor g is covari-
antly constant, the five-vector covariant derivative of
any of these fields is expressed linearly in terms of
its bivector derivatives. More precisely this property
can be formulated as follows: at any given five-vector
affine connection that conserves the metric tensor, at
each space-time point there exists such a linear map σ
from the tangent space of five-vectors to the tangent
space of five-vector bivectors that for any five-vector
u at that point

2u G = Dσ(u) G (2)

for any field G from the considered class of fields. Let
us now prove this statement.

Consider an arbitrary point Q and introduce in
its vicinity some system of local Lorentz coordinates
with the origin at Q. Let Eα be the four-vector ba-
sis corresponding to these coordinates and eA be the
associated active regular five-vector basis. Let Υα

βA

denote the connection coefficients for the basis Eα:

2AEα = EβΥ
β
αA, (3)

where, as usual, 2A ≡ 2eA
. It is evident that the

upper and the first lower indices of Υα
βA are four-

vector, and its second lower index is five-vector.

The supposed covariant constancy of g imposes cer-
tain constraints on the coefficients Υα

βA. Indeed, ow-
ing to the property of 2 expressed by relation (18) of
part V, from the fact that g is covariantly constant
as a five-tensor follows that it is covariantly constant
as a four-tensor, which in its turn means that

2g = 0,

where g is considered a four-tensor. Writing down
this equation in components relative to the basis Eα

and considering that the latter is associated with a
system of local Lorentz coordinates, one obtains that
at Q

gαωΥ
ω
βA + gωβΥ

ω
αA = 0. (4)

Let us now introduce the quantities

Sαβ
A ≡ − gβω Υα

ωA. (5)

From equation (4) it follows that Sαβ
A are antisym-

metric with respect to their upper indices. Further-
more, it is easy to check that with transition to any
other system of local Lorentz coordinates with the
origin at the same point, the quantities Sαβ

A trans-
form as components of a five-vector 1-form whose
values are four-vector bivectors. Consequently, the
1-form constructed according to the formula

S̃ ≡ S
|αβ|

A Eα ∧Eβ ⊗ õA,

where õA is the basis of five-vector 1-forms dual to the
basis eA, will be the same at any choice of the local
Lorentz coordinates. From definition (5) it follows
that

Υα
βA = −gτβS

ατ
A = −δασgτβS

στ
A = (Mστ )

α
β S

|στ |
A.

Consequently, by virtue of equations (1) and (3), at
Q one has

2AEα = Eβ (Mστ )
β
α S

|στ |
A = M̂

S̃(eA)
Eα, (6)

where S̃(eA) denotes the four-vector bivector ob-

tained by contracting the 1-form S̃ with the basis
five-vector eA.
Since the basis Eα is associated with a system of

local Lorentz coordinates at Q, at that point one has

∇·AEα = 0,

and consequently, equation (6) can be rewritten as

2AEα = ∇·AEα + M̂
S̃(eA)

Eα. (7)

Due to the linear dependence of operators 2, ∇· , and
M̂ on their arguments, from the latter formula it fol-
lows that

2uEα = ∇· uEα + M̂
S̃(u)

Eα

for any five-vector u. Furthermore, owing to the
properties of the derivative ∇· expressed by equations
(2b) and (2c) of part V; to similar properties of the
operator 2 expressed by equations (11b) and (11c) of

part V; and to the linearity and locality of M̂, from
the latter equation one obtains that

2uW = ∇· uW + M̂
S̃(u)

W (8)

for any four-vector field W. Finally, by making use
of the relation between the bivector derivative and
operators ∇· and M̂, expressed by equations (39) of
part III, one can present equation (8) as

2uW = DA(u)W (9)
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where AA(u) denotes the five-vector bivector whose E-
component corresponds to the four-vector that corre-
sponds to u, and whose Z-component corresponds to
the four-vector bivector S̃(u). Owing to the linearity
of the latter two correspondences, the bivector AA(u)
can be presented as a contraction of u with some five-
vector 1-form s̃ whose values are five-vector bivectors.
It is easy to see that in an arbitrary active regular ba-
sis this 1-form has the following components:

sα5A = −s5αA = δαA and sαβA = Sαβ
A, (10)

where Sαβ
A are the components of the 1-form S̃ in

the associated four-vector basis. By using s̃ one can
rewrite equation (9) as

2uW = D
<̃s,u>

W,

which, if one puts σ(u) ≡ < s̃,u >, coincides with
equation (2) for four-vector fields. From formula (15)
of part V and formula (38) of part III it follows that
at such σ(u) equation (2) will also hold for arbitrary
scalar fields. Finally, since the action of both 2 and
D on the contraction and tensor product obeys the
Leibniz rule, equation (2) with σ(u) selected this way
will hold for all other four-tensor fields as well.
In the particular case where the fifth component

of the five-vector covariant derivative for four-vector
fields is zero, one can establish a simple relation be-
tween the 1-form S̃ and the four-vector torsion ten-
sor. Since the latter is a four-tensor, it is more con-
venient to consider the covariant derivative a linear
function of a four-vector rather than of a five-vector,
which is possible since in this case 2 is equivalent
to an ordinary covariant derivative. Furthermore, to
present the formulae involving torsion in a more fa-
miliar form, instead of 2 I will write ∇. Instead of
Υα

βA one will then have ordinary four-vector connec-
tion coefficients Γα

βµ, and instead of formula (5),

Sαβ
µ ≡ − gβω Γα

ωµ, (11)

so Sαβ
µ will now be the components of a four-vector

1-form rather than of a five-vector one.
Let us now recall the definition of four-vector tor-

sion:

∇UV −∇VU− [U,V] ≡ −2T(U,V), (12)

where U and V are any two four-vector fields and the
factor −2 is introduced for convenience. Since ∇ de-
pends on its argument linearly, the quantityT(U,V),
which is a certain four-vector field, will depend lin-
early onU andV, and consequently can be presented
as a contraction of some four-vector 2-form, T̃, whose

values are four-vectors, with the bivectorU∧V. Usu-
ally, the components of T̃ are defined as follows:

T̃ = T α
|µν| Eα ⊗ Õµ ∧ Õµ, (13)

where Õµ is the basis of four-vector 1-forms dual to
the basis Eα, and it is a simple matter to show that in
any coordinate basis they can be expressed in terms
of the corresponding connection coefficients in the fol-
lowing familiar way:

T α
µν = Γα

[µν]. (14)

Comparing this formula for the case where Eα is as-
sociated with a system of local Lorentz coordinates,
with formula (11), one finds that

T α
µν = −Sα

[µν], (15)

where Sα
µν = gµω Sαω

ν . Since both S̃ and T̃ are ten-
sors, the latter equation will hold in any four-vector
basis. Making use of the antisymmetry of S̃ with re-
spect to its first two indices, in the usual way one can
derive the formula opposite to formula (15), which

expresses the components of S̃ in terms of those of
T̃:

Sαβ
µ = gασgβτ (Tστµ − Tτµσ − Tµστ ),

where Tστµ = T ω
στ gωµ. Therefore, the four-vector-

valued 2-form T̃ and the bivector-valued 1-form S̃

contain exactly the same information. Later on we
will see that a similar relation exists between the five-
vector 1-form s̃ introduced above and the five-vector
torsion tensor.
In conclusion, let me note that the four-vector 2-

form S̃ actually coincides with the so-called contor-
sion tensor, K̂, which can be defined as an operator
whose action on an arbitrary four-vector field W is
given by the formula

K̂UW ≡ (∇·U −∇U)W.

For practical reasons, the components of K̂ relative
to some four-vector basis Eα are defined as follows:

K̂Eµ
Eα = K β

µα Eβ .

Comparing the latter two definitions with formula (8)
adapted to the case we are now considering, one finds
that

K β
µα = gαω Sβω

µ,

so S̃ differs from K̂ only in the arrangement of its
indices.
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B. Bivector derivative of five-vector

and five-tensor fields

In this section I wish to define the bivector deriva-
tive for five-vector fields and for the fields of all other
five-tensors. As before, let us begin by considering
flat space-time and after that generalize the formulae
obtained to the case of arbitrary Riemannian geom-
etry by following the same recipe that has been used
in the previous section to define the bivector deriva-
tive of scalar, four-vector and four-tensor fields in the
general case.
As in all the cases considered earlier, the bivector

derivative of five-vector and five-tensor fields in flat
space-time can be defined according to formula (26)
of part III, where G can now be an arbitrary five-
vector or five-tensor field and Πs{G} denotes the im-
age of G relative to active Poincare transformations
from some one-parameter family, H, that includes the
identity transformation (the latter corresponding to
the value of the family parameter s = 0). From for-
mula (31) of part I one then obtains that for an arbi-
trary O-basis eA,

Deµ∧e5eA = 0 and Deµ∧eν
eA = eB (Mµν)

B
A, (16)

where (MKL)
A
B ≡ δAL gKB−δAK gLB. For an arbitrary

P -basis pA one will have

DpK∧pL
pA = pB (MKL)

B
A.

Though such a definition of the bivector derivative
for five-vector fields is quite permissible, it is not dif-
ficult to see that in that case the relation between 2

and D expressed by equation (2) cannot exist. Indeed,
the five-vector covariant derivative of an arbitrary
field from FFZ has in general a nonzero E-component,
whereas the bivector derivative of any such field de-
fined as described above will always be a field from
FFZ , as is readily seen from formulae (16). Since in
the further analysis the mentioned relation between
2 and D will play an essential role, let us try to de-
fine the bivector derivative for five-vector fields in a
different way: so that relation (2) could hold in this
case as well.
To understand how this should be done, let us de-

fine for an arbitrary set of five-vector basis fields eA
in flat space-time the bivector connection coefficients
according to the formula similar to equation (40) of
part III:

DKLeA = eBG
B
AKL. (17)

Since we wish that equation (2) hold and since the
derivative 2 has property (18) of part V, one should
require that

v ≡ w (mod R) =⇒ DAv ≡ DAw (mod R) (18)

for any bivector fieldAA, and that the derivative DAW

of any four-vector field W be the equivalence class of
all the derivatives of the form DAw with w ∈ W.
From these requirements it follows that in any stan-
dard basis

Gα
5KL = 0 (19)

and
Gα

βKL = Γα
βKL,

where Γα
βKL are the bivector connection coefficients

corresponding to the associated four-vector basis.
Thus, according to formulae (41) of part III, for an
O-basis one has

Gα
βµ5 = 0 and Gα

βµν = (Mµν)
α
β . (20)

Of the yet undetermined bivector connection coef-
ficients for five-vector fields, the quantities G5

Bµ5 can
be found by considering a particular case where the
five-vector affine connection is such that there exists
a local symmetry similar to the one which has been
discussed in section 3 of part II for∇ (see section D of
this paper). In that case, for any Lorentz four-vector
basis the connection coefficients Υα

βA introduced in
the previous section are identically zero, and from
formulae (5) and (10) one finds that

2µ G = Dµ5 G (21)

for any scalar, four-vector or four-tensor field G. Re-
quiring that this relation between the covariant and
bivector derivatives hold in the case of five-vector
fields as well, for an arbitrary O-basis one obtains

G5
βµ5 = − gβµ and G5

5µ5 = 0. (22)

Finally, let me observe that the latter two equa-
tions, the first equation in (20), and equation (19)
for (KL) = (µ5) can be combined into a single for-
mula:

GA
Bµ5 = − (Mµ5)

A
B .

Likewise, the second equation in (20) and formula
(19) for (KL) = (µν) can be combined into

Gα
Bµν = (Mµν)

α
B.

If one now supposes that for an O-basis the con-
nection coefficients G5

Bµν are also proportional to

(Mµν)
5
B, one will have

G5
5µν = G5

βµν = 0. (23)

A more serious argument in favour of the latter equa-
tions is the following. It is reasonable to think that
as in the case of four-vector and four-tensor fields,
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the bivector derivative of five-vector fields is deter-
mined only by the metric, and since with respect to its
metric properties flat space-time is homogeneous and
isotropic, the bivector connection coefficients GA

BKL

should have the same form in any Lorentz coordinate
system. Reasoning as in section 3 of part I, one can
find the following general form of the bivector con-
nection coefficients for an arbitrary O-basis, which
satisfy condition (18):

GA
Bµ5 ∝ (Mµ5)

A
B and GA

Bµν = (Mµν)
A
B .

Fixing the proportionality factor in the first relation
from equation (21), one finally gets

GA
Bµ5 = − (Mµ5)

A
B and GA

Bµν = (Mµν)
A
B, (24)

which coincides with formulae (19), (20), (22), and
(23). One should observe that the sign in the right-
hand side of the first equation in (24) will not change
if in all the formulae one replaces e5 with −e5, for
such a replacement will change the sign of G5

βµ and
the sign in the right-hand side of equation (21), but
will not change the sign of G5

βµ5.
Let me also note that the obtained connection co-

efficients GA
BKL for an O-basis, regarded as matrices

with respect to the indices A and B, satisfy the com-
mutation relations for the generators of the Poincare
group, which in the matrix form can be expressed as

[GKL, GMN ] = gKMGLN − gLMGKN

− gKNGLM + gLNGKM ,

where (GKL)
A
B ≡ GA

BKL. The same commutation
relations are satisfied by the bivector connection coef-
ficients corresponding to derivative (16), only in that
case the matrices Gµ5 that correspond to the gener-
ators of translations are all zero.
Formulae (17) and (24) determine the bivector

derivative for sets of five-vector fields that make up an
O-basis. To define the derivative DAw for any five-
vector field w and any field of five-vector bivectors AA,
one should take that in the case of five-vector fields,
too, the operator D has the properties expressed by
equations (37) of part III, in which the four-vector
fields should now be replaced with the five-vector
ones. Furthermore, to define the bivector derivative
for the fields of all other five-tensors, one should sup-
pose that the action of the operator D on the con-
traction and tensor product obeys the Leibniz rule.
One should observe that in this case properties (37) of
part III and the Leibniz rule are postulated, whereas
in the case of four-vector fields these properties of D
follow from definition (26) of part III.
For the bivector derivative of five-vector fields there

exists a representation similar to formula (39) of part

III. Namely, from equations (17) and (24) it follows
that the operator DA can be presented as a sum of
two operators: (i) the operator ∇· of the ordinary co-
variant derivative that corresponds to the connection
considered in section 3 of part II, whose argument
will be the five-vector from Z that corresponds to
the E-component of AA, and (ii) the local linear oper-

ator M̂, whose components in an arbitrary standard
five-vector basis equal (MKL)

A
B and whose argument

will be the Z-component of AA. Thus, for an arbitrary
five-vector field u one has

DAu = ∇· au+ M̂AZu, (25)

where a denotes the five-vector from Z that corre-
sponds to AAE .
By using the formulae obtained above, it is not dif-

ficult to define the bivector derivative for five-vector
and five-tensor fields in the case of arbitrary Rieman-
nian geometry of space-time. As in the case of four-
vector fields, it is sufficient to postulate that formulae
(17) and (24) are valid in any system of local Lorentz
coordinates at a given point and that the bivector
derivative of five-vector fields in the general case has
the properties similar to those expressed by equations
(37) of part III. Alternatively, one can postulate equa-

tion (25), which expresses D in terms of ∇· and M̂.
By using either of these definitions, it is not difficult
to calculate the bivector connection coefficients for an
arbitrary set of basis five-vector fields eA that make
up an active regular basis at every point. For such
a set of fields, formulae (19), (22), and (23) will be
valid without any changes, while instead of formula
(20) one will have

Gα
βµ5 = Gα

βµ and Gα
βµν = (Mµν)

α
β , (26)

where Gα
βµ are the connection coefficients for the ba-

sis eA, associated with the derivative ∇· .

C. Bivector analogs of the Riemann tensor

and the commutator of bivector fields

As one can see from the material presented in the pre-
vious sections of this paper and in section D of part
III, in many respects the bivector derivative is similar
to the covariant derivative and usually can be han-
dled in very much the same way. Let us now develop
the analogy between these two derivatives further and
consider the bivector analog of the Riemann tensor.
It seems reasonable to suppose that the components
of the latter in any regular basis associated with some
system of local Lorentz coordinates at a given point
can be obtained by considering the operator

R̂RKLMN ≡ DKLDMN − DMNDKL (27)
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acting on four-vector fields. It is a simple matter to
show that R̂RKLMN is a local operator, so if Eα is the
associated four-vector basis, one can write

R̂RKLMNEα = EβR
β
αKLMN . (28)

By definition, the coefficients Rα
βKLMN have the fol-

lowing symmetry properties:

R
α
βKLMN = −R

α
β LKMN = −R

α
βKLNM

and
R
α
βKLMN = −R

α
βMNKL,

and it is evident that with transition to another sys-
tem of local Lorentz coordinates with the origin at
the same point, they transform as components of a
four-tensor with respect to the indices α and β and
as components of a five-tensor with respect to the
indices K, L, M , and N . Consequently, the quantity

RR ≡ 1
4 Eα⊗Õβ

R
α
βKLMN (õK∧õL)⊗(õM∧õN ) (29)

will be the same at any choice of the local Lorentz
coordinates, and it would seem that it is it that one
should take to be the analog of the Riemann tensor
for the bivector derivative.
By using definitions (27) and (28), one can express

the components of RR in terms of the bivector connec-
tion coefficients:

R
α
βKLMN = DKLΓ

α
βMN − DMNΓα

βKL

+ Γα
ωKLΓ

ω
βMN − Γα

ωMNΓω
βKL.

(30)

From this formula it follows that in an active regular
basis associated with some system of local Lorentz
coordinates at the considered point

R
α
β κ5µ5 = ∂κΓ

α
βµ5 − ∂µΓ

α
βκ5

+ Γα
ωκ5Γ

ω
βµ5 − Γα

ωµ5Γ
ω
βκ5

= ∂κΓ
α
βµ − ∂µΓ

α
βκ

+ Γα
ωκΓ

ω
βµ − Γα

ωµΓ
ω
βκ,

where Γα
βµ are the four-vector connection coefficients

associated with the derivative ∇· , so
R
α
β κ5µ5 = Rα

βκµ, (31)

where Rα
βκµ are the components of the Riemann ten-

sor in the associated four-vector basis. In a similar
manner one finds that

R
α
β κ5µν = R

α
β µνκ5 = 0 (32)

and

R
α
β κλµν = (Mκλ)

α
ω(Mµν)

ω
β − (Mµν)

α
ω(Mκλ)

ω
β

= gκµ(Mλν)
α
β − gλµ(Mκν)

α
β (33)

− gκν(Mλµ)
α
β + gλν(Mκµ)

α
β ,

and it is obvious that formulae (31)–(33) will be valid
in any active regular basis.
Let us now try to define RR without explicitly refer-

ring to coordinates. To this end, let us consider the
operator

[DA,DB ] ≡ DADB − DBDA, (34)

where AA and BB are two arbitrary fields of five-vector
bivectors. In an active regular basis associated with
some system of local Lorentz coordinates xα at the
considered point one has

[DA,DB ] = A|KL|B|MN | [DKL,DMN ]

+ (DAB|KL| − DBA|KL|)DKL.

The first term in the right-hand side is simply the
contraction of RR with the values of the fields AA and
BB, and the second term is a bivector derivative oper-
ator whose argument is the value of a bivector field
constructed from the fields AA and BB in such a way
that its structure resembles that of the commutator
of two four-vector fields. As we will see below, the
quantity

(DAB|KL| − DBA|KL|) eK ∧ eL, (35)

where eA is the considered five-vector basis, does
not depend on the choice of the corresponding lo-
cal Lorentz coordinates, so if one takes it to be the
commutator of the fields AA and BB and denotes it as
[AA,BB ], one can give RR the following coordinate-free
definition:

< RR,AA ⊗ BB > = DADB − DBDA − D[A,B ], (36)

provided one can give a coordinate-free definition to
[AA,BB ].
Before we turn to this latter problem, let us find

the expression for the commutator of AA and BB in
an active regular basis associated with an arbitrary

coordinate system, x′α. Straightforward calculations
give

[AA,BB ] = (DAB′ |KL|−DBA′ |KL|) e′K ∧e′L+∆′ (37)

and

∆′ ≡ (A′ σ5B′µτ − B′σ5A′µτ )
× (L−1)νω(∂

′
σL

ω
τ ) · e′µ ∧ e′ν ,

(38)

where ∂ ′
σ = ∂/∂x′σ and Lα

β = ∂xα/∂x′β . From these
expressions we see that the suggested definition of
the commutator is indeed invariant in the sense that
quantity (35) is the same at any choice of the local
Lorentz coordinates at the considered point. At the
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same time, the above formulae show that in contrast
to the case of four-vector and five-vector fields, the
expression for the commutator of bivector fields in
an arbitrary coordinate system acquires an additional
term proportional to the derivatives ∂2xα/∂x′µ∂x′ν .
To understand the origin of this term and to obtain
a coordinate-free expression for the commutator of
bivector fields, let us again consider operator (34) and
evaluate it using formulae (39) of part III, which ex-

press D in terms of ∇· and M̂. One will have

[DA,DB ] = [∇·A′ + M̂A′′ ,∇·B′ + M̂B′′ ]

= [∇·A′ ,∇·B′ ] + [∇·A′ , M̂B′′ ]

− [∇·B′ , M̂A′′ ] + [ M̂A′′ , M̂B′′ ]

(39)

where A′ and B′ are the four-vector fields that cor-
respond to the E-components of AA and BB and A′′

and B′′ are the four-vector bivector fields that cor-
respond to their Z-components. By adding and sub-
tracting the derivative ∇· [A′,B′ ], one can present the
right-hand side of the latter formula as a sum of three
terms:

[DA,DB ] = (∇·A′∇·B′ −∇·B′∇·A′ −∇· [A′,B′ ])

+ (M̂A′′M̂B′′ − M̂B′′M̂A′′)

+ (∇·A′M̂B′′ − M̂B′′∇·A′)
(40)

− (∇·B′M̂A′′ − M̂A′′∇·B′) +∇· [A′,B′ ].

The first term is apparently the value of the Riemann
tensor (corresponding to derivative∇· ) on the bivector
A′ ∧ B′, and by virtue of equation (31), it equals
< RR,AAE ⊗ BBE >. Likewise, the second term can be
shown to equal < RR,AAZ ⊗ BBZ >. So, considering
that according to equations (32), < RR,AAE ⊗ BBZ > =
< RR,AAZ ⊗BBE > = 0, we see that the sum of the first
two terms in (40) is exactly the contraction of RR with
AA and BB.
The sum of all other terms in the right-hand side of

formula (40) should therefore be considered as arising
from the commutator ofAA and BB. Simple calculations
show that it equals

∇· [A′,B′ ] + M̂(∇·
A′B′′−∇·

B′A′′). (41)

Thus, the commutator of AA and BB should be such a
bivector field that its E-component would correspond
to the four-vector field [A′,B′ ] and its Z-component
would correspond to the field of four-vector bivec-
tors (∇·A′B′′ − ∇·B′A′′). In an active regular basis
associated with an arbitrary coordinate system one
therefore has

( [AA,BB ] )µ5 = Aσ5∂σBµ5 − Bσ5∂σAµ5

= Aσ5
Dσ5Bµ5 − Bσ5

Dσ5Aµ5

= DABµ5 − DBAµ5

and

( [AA,BB ] )µν = Aσ5(∂σBµν + Γµ
τσBτν + Γν

τσBµτ )
− Bσ5(∂σAµν + Γµ

τσAτν + Γν
τσAµτ )

= (DABµν − DBAµν)
+ (Aσ5Bωτ − Bσ5Aωτ ) (Γν

τσδ
µ
ω − Γµ

τσδ
ν
ω),

where Γµ
τσ are the corresponding four-vector con-

nection coefficients associated with the derivative ∇· .
Hence,

[AA,BB ] = (DAB|KL| − DBA|KL|) eK ∧ eL +∆, (42)

where

∆ = (Aσ5Bµτ − Bσ5Aµτ ) · Γν
τσ · eµ ∧ eν . (43)

Now, if the selected coordinate system is a local
Lorentz one, the connection coefficients Γν

τσ at the
considered point are all zero, and formula (42) ac-
quires the form of formula (35). For an arbitrary
coordinate system, the above connection coefficients
can be expressed in terms of the elements of the trans-
formation matrix that relates this coordinate system
to a local Lorentz one. According to the standard
formula for tranformation of connection coefficients,
one has

Γ′ ν
τσ = (L−1)νωΓ

ω
αβL

α
τL

β
σ

+ (L−1)νω(∂βL
ω
τ )L

β
σ = (L−1)νω(∂

′
σL

ω
τ ),

where ∂ ′
σ = ∂/∂x′σ and Lα

β = ∂xα/∂x′β , so formulae
(42) and (43) with primes coincide with formulae (37)
and (38).
As one can see from expression (41) or from for-

mulae (42) and (43), in contrast to the commuta-
tors of four-vector and five-vector fields, which are
determined only by the differential structure of the
manifold, for determining the commutators of bivec-
tor fields one also needs to know the Riemannian ge-
ometry of space-time. This dependece on the metric
manifests itself in several ways, one of which has to do
with the existence of a set of basis bivector fields for
which all the commutators are identically zero within
a given region of space-time. It turns out that such a
set exists if and only if within this region space-time
is flat. Let us prove this statement.
If space-time is flat within a given region of space-

time, then in the latter one can introduce a sys-
tem of global Lorentz coordinates, and from formu-
lae (42) and (43) it follows that for any regular basis
eA associated with these coordinates one will have
[ eA ∧ eB, eC ∧ eD ] = 0.
Let us now suppose that in some finite region of

space-time there exists a set of ten basis bivector
fields, AA1,AA2, . . . ,AA10 , such that everywhere in this
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region [AAi,AAj ] = 0 at all i and j. The latter equa-
tions are apparently equivalent to the equations

[A′
i,A

′
j ] = 0 and ∇·A′

i
A′′

j −∇·A′

j
A′′

i = 0,

where A′
i denotes the four-vector field that corre-

sponds to AAE
i and A′′

i denotes the field of four-vector
bivectors that corresponds to AAZ

i .
It is evident that from the set A′

1,A
′
2, . . . ,A

′
10 one

can always select four fields that make up a four-
vector basis. Without any loss in generality one can
take that these are the first four fields of the set.
Let us now recall one useful theorem about four-
vector fields: if the fields Vi (i = 1, 2, 3, 4) make
up a basis and are such that everywhere within a
certain region of space-time [Vi,Vj ] = 0 for all
i and j, then any field U such that [U,Vi ] = 0

for all i within the considered region is a linear
combination of the fields Vi with constant coeffi-

cients. Applying this theorem to the considered
set of fields, one obtains that each of the fields
A′

5, . . . ,A
′
10 is a linear combination with constant co-

efficients of the fields A′
1, . . . ,A

′
4, and consequently

the E-components of the fields AA5, . . . ,AA10 are lin-
ear combinations with constant coefficients of the E-
components of AA1, . . . ,AA4. This fact enables one to
construct a new set of commuting fields: BBi = AAi for
i = 1, 2, 3, 4 and BBi = AAi − Ci1AA1 − . . . − Ci4AA4 for
i = 5, . . . , 10, where the coefficients Cij are selected
in such a way that the E-components of BB5, . . . ,BB10

be zero. Since all Cij are constants, everywhere
within the considered region of space-time one will
have [BBi,BBj ] = 0 at any i and j. It is evident that
for 1 ≤ i ≤ 4 and 5 ≤ j ≤ 10 the latter equation is
equivalent to the following four-tensor equation:

∇·B′

i
B′′

j = 0,

whereB′
i andB′′

i are related to BBi the same way asA′
i

and A′′
i are related to AAi. This latter equation means

that in the considered region of space-time there ex-
ist six linearly independent and covariantly constant
fields of four-vector bivectors, which is only possible
if everywhere in this region space-time is flat.
Let us now obtain an expression for the commuta-

tor of bivector fields that would not involve coordi-
nates. To this end let us observe that since the deriva-
tive ∇· is torsion-free, one has [A′,B′ ] = ∇·A′B′ −
∇·B′A′. Consequently, the bivector field [AA,BB ] cor-
responds to the following pair of four-tensor fields:

( ∇·A′B′ −∇·B′A′ , ∇·A′B′′ −∇·B′A′′ ),

and by using formula (25) of the previous section one
can easily obtain that

[AA,BB ] = (DAEBBE − DBEAAE)

+ (DAEBBZ − DBEAAZ)Z .
(44)

The expression in the right-hand side is obviously a
part of the quantity DABB − DBAA, and compared to
the latter it lacks the following three terms:

(DAEBBZ − DBEAAZ)E , (DAZBBE − DBZAAE) ,

and (DAZBBZ − DBZAAZ) .

Writing out explicitly the expressions for these terms
in components, one finds that the sum of the first two
terms is identically zero, so instead of (44) one can
write

[AA,BB ] = (DABBE − DBAAE) + (DAEBBZ − DBEAAZ)

or

[AA,BB ] = (DABB−DBAA)− (DAZBBZ −DBZAAZ). (45)

Looking at the latter formula, one may think
that in the above analysis we did something wrong
and that the “right” expression for the commutator
should be

[AA,BB ] = DABB − DBAA. (46)

To see if this is possible, let us analyze more closely
how we have arrived at formula (45).
It is evident that our definition of the bivector com-

mutator is a consequence of our definition of the ten-
sor RR and of the assumption that the two quantities
are related by equation (36). It is also evident that
our definition of RR implicitly includes the assumption
that the commutators of basis bivector fields corre-
sponding to a regular five-vector basis associated with
a system of local Lorentz coordinates are all zero at
the origin of the latter. Since this latter assump-
tion is based solely on the analogy with the case of
four-vector fields, which may very well be wrong, one
should regard it as merely a reasonable initial hy-
pothesis the correctness of which is to be confirmed
or disproved by further analysis. We now see that
judging by the formulae obtained above, it may seem
more natural to define the commutator of two bivec-
tor fields according to formula (46) rather than to
formula (45). Compared to the former, the latter
lacks the term

(DAZBBZ − DBZAAZ) = M̂AZBBZ − M̂BZAAZ

= (2gαβ AαµBβν) eµ ∧ eν ,

which is simply a contraction of AA and BB with a
Lorentz-invariant five-tensor, so its addition to the
commutator will not change anything in essence.
Such a redefinition of the commutator implies that
from the left-hand side of formula (36) one should
now subtract the term

D(D
AZBZ−D

BZAZ ) = 2 (M̂AZM̂BZ − M̂BZM̂AZ ),
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which is also a contraction ofAA and BB with a Lorentz-
invariant five-tensor, so it will not lead to any essen-
tial changes in RR either. If one does define the com-
mutator for bivector fields this way, then instead of
formula (27) one will have

R̂RKLMN ≡ DKLDMN −DMNDKL−D[KL,MN ], (47)

where D[KL,MN ] ≡ D[eK∧eL,eM∧eN ], but definitions
(28) and (29) will be the same. Since for any active
regular basis associated with a system of local Lorentz
coordinates, at the origin of the latter one still has

[ eκ ∧ e5, eµ ∧ e5 ] = [ eκ ∧ e5, eµ ∧ eν ] = 0, (48)

formulae (31) and (32) for the components of RR will
still be valid. However, since for the same basis one
will now have

[ eκ ∧ eλ, eµ ∧ eν ]
= 2 { gκµ eλ ∧ eν − gλµ eκ ∧ eν

− gκν eλ ∧ eµ + gλν eκ ∧ eµ },
(49)

the expression for the components R
α
β κλµν will ac-

quire an additional term equal to

− 2 { gκµ(Mλν)
α
β − gλµ(Mκν)

α
β

− gκν(Mλµ)
α
β + gλν(Mκµ)

α
β },

so the right-hand side of formula (33) will simply
change its sign.
The latter formula suggests still another way of

choosing the commutator for bivector fields, namely,

[AA,BB ] = (DABB−DBAA)− 1
2 (DAZBBZ−DBZAAZ). (50)

Compared to the right-hand side of equation (46) the
right-hand side of the latter equation lacks the term
gαβ AαµBβν eµ ∧ eν . Definitions (28), (29), and (47)
will still be valid, and so will formulae (31), (32) and
(48). However, instead of equation (49) one will now
have

[ eκ ∧ eλ, eµ ∧ eν ]
= gκµ eλ ∧ eν − gλµ eκ ∧ eν

− gκν eλ ∧ eµ + gλν eκ ∧ eµ,
(51)

so instead of formula (33) one will simply have

R
α
β κλµν = 0. (52)

In the rest of this paper it will be assumed that the
commutator for bivector fields is defined according to
formula (50).

It is evident that RR is not the only analog of the
Riemann tensor that one can think of. There are at

least two more analogs of the latter that may be of
interest. Both of them can be obtained by considering
operator (47), but now one should let the latter act,
in the one case, on five-vector fields and, in the other
case, on the fields of five-vector bivectors. As before,
it is easy to prove that on both types of fields R̂RKLMN

acts as a local operator. This enables one to define
two sets of quantities similar to R

α
βKLMN and then

construct out of them two five-tensors, which I will
denote as RR

(5) and RR
(10). Accordingly, the tensor RR

itself can now be denoted as RR(4) and the notation RR

reserved for those cases where one needs to write a
formula valid for all three tensors.
Let us now calculate the components of RR(5) and

RR
(10). For simplicity, in the following formulae I will

omit the lables (5) and (10), since the upper indices
of the components will unambiguously indicate which
tensor they belong to. Let us again consider an arbi-
trary active regular basis associated with some sys-
tem of local Lorentz coordinates. By virtue of equa-
tions (48) and (51), one has

D[κ5,µ5] = D[κ5,µν] = D[κλ,µ5] = 0

and

D[κλ,µν] = gκµDλν − gλµDκν

− gκνDλµ + gλνDκµ.
(53)

Consequently,

R
A
B κ5µ5 = ∂κG

A
Bµ5 − ∂µG

A
Bκ5

+ GA
Cκ5G

C
Bµ5 −GA

Cµ5G
C
Bκ5

= ∂κG
A
Bµ − ∂µG

A
Bκ

+ GA
CκG

C
Bµ −GA

CµG
C
Bκ,

where GA
Bµ are the five-vector connection coefficients

associated with the derivative ∇· . By using formulae
(47), (48), and (50) of part II, one finds that

R
α
5κ5µ5 = R

5
5 κ5µ5 = 0 and R

α
β κ5µ5 = Rα

βκµ, (54)

where Rα
βκµ are the components of the Riemann ten-

sor in the associated four-vector basis. In a similar
manner, since the derivative ∇· is torsion-free, one
finds that

R
5
β κ5µ5= gβκ;µ − gβµ;κ + gβω (Gω

κµ −Gω
µκ)

= 2 gβωΓ
ω
[κµ] = 0.

(55)

By using formulae (24), for the “mixed” components
one obtains

R
A
B κ5µν = ∂κG

A
Bµν +GA

Cκ5G
C
Bµν −GA

CµνG
C
Bκ5

= ∂κ(Mµν)
A
B − (Mκ5)

A
C(Mµν)

C
B

+ (Mµν)
A
C(Mκ5)

C
B,

9



and since the selected basis is associated with a local
Lorentz coordinate system, one has

R
A
B κ5µν = − [Mκ5,Mµν ]

A
B

= − gκµ(M5ν)
A
B + gκν(M5µ)

A
B

= δA5 (gκµgνB − gκνgµB).

Hence,

R
5
5 κ5µν = R

α
5κ5µν = R

α
β κ5µν = 0

R
5
β κ5µν = gκµgνβ − gκνgµβ .

Finally, using formulae (24) again and considering
(53), one obtains that

R
5
5κλµν = R

α
5 κλµν = R

5
β κλµν = R

α
β κλµν = 0.

The components of the tensor RR(10) are defined ac-
cording to the formula

R̂RKLMN (eC ∧ eD) = eA ∧ eB R
|AB|

CDKLMN ,

and can be easily calculated by noting that for any
two five-vector fields u and v,

R̂RKLMN (u∧v) = (R̂RKLMN u)∧v+u∧ (R̂RKLMN v),

so in any five-vector basis,

R
AB

CDKLMN = δACR
B
DKLMN − δBCR

A
DKLMN

− δADR
B
C KLMN + δBDR

A
C KLMN .

(56)

Tensors RR
(4), RR(5), and RR

(10) have two important
properties, one of which is algebraic and follows from
the fact that Poincare transformations conserve the
scalar product g, and the other is differential and is
of the kind possessed by all analogs of the Riemann
tensor.
The first property can be derived either by using

the expressions for the components of these tensors
and recalling that the Riemann tensor is antisymmet-
ric in its first two indices, or directly—by writing out
the equation that expresses the fact that Poincare
transformations conserve the scalar product g and
differentiating it twice. Either way, for the compo-
nents of RR(4) one obtains the equation

gαωR
ω
β KLMN + gβωR

ω
αKLMN = 0, (57)

and similar equations for the components of RR(5) and
RR

(10).
Before we turn to the second property, let us see if

the commutator of bivector fields satisfies the Jacobi
identity. To this end let us consider the sum

[AA, [BB, CC ]] + [BB, [ CC,AA ]] + [ CC, [AA,BB ]],

where AA, BB, and CC are arbitrary fields of five-vector
bivectors. By using definition (50), one can easily
find that it equals

eK ∧ eL · R|KL|
ABCDEF

× (A|AB| B|CD| C|EF | + cyclic permutations ).

Direct calculation shows that the only term not iden-
tically zero in the latter expression is

eκ ∧ eλ · R|κλ|
αβ µ5ν5 · (A|αβ|Bµ5Cν5

+ B|αβ|Cµ5Aν5 + C|αβ|Aµ5Bν5 )

= eκ ∧ eβ ·Rκ
αµν · (AαβBµ5Cν5

+ BαβCµ5Aν5 + CαβAµ5Bν5 ).

(58)

Denoting this quantity as −∆(AA,BB, CC), one obtains
the following equation that replaces the Jacobi iden-
tity in the case of commutators of bivectors fields:

[AA, [BB, CC ]] + [BB, [ CC,AA ]]

+ [ CC, [AA,BB ]] +∆(AA,BB, CC) = 0.
(59)

The last term in the left-hand side of this equation
is identically zero only if space-time is flat, so this
is another example of how the properties of bivector
commutators depend on the Riemannian geometry of
space-time.
Let us finally discuss the analog of the Bianchi iden-

tity for tensors RR. Let us first derive this identity in
a general form applicable to any derivative that de-
pends linearly on its argument. The latter can be a
vector or a tensor of any kind provided that for the
fields of such vectors or tensors one can define the
notion of a commutator. In the following derivation
I will denote this derivative as D and the vectors or
tensors that can be its argument as A, B, and C. By
virtue of the Jacobi identity for ordinary commuta-
tors of operators D, one has

0 = [DA, [DB, DC ]] + cyclic permutations

= [DA, (DBDC −DCDB −D[B,C ] ) ]
+ [DA, D[B,C ] ] + cyclic permutations

= [DA, (DBDC −DCDB −D[B,C ] ) ]
+ (DAD[B,C ] −D[B,C ]DA −D[A, [B,C ]] )
+ D[A, [B,C]] + cyclic permutations.

Introducing the notation ℜ(A,B) ≡ DADB−DBDA−
D[A,B] , one can rewrite the latter equation as

0 = [DA,ℜ(B,C) ] + ℜ(A, [B,C ] )

+ D[A, [B,C ]] + cyclic permutations .
(60)

In a standard way one can show that ℜ(A,B) is a lo-
cal operator and therefore can be regarded as a tensor
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of rank (1, 1) over the space of the vectors or tensors
upon which act the operators D. One can then show
that [DA,ℜ(B,C) ] = DAℜ(B,C), where in the right-
hand side the operator DA acts on ℜ(B,C) as on a
tensor. Finally, since ℜ(A,B) is a linear function of
its arguments and is antisymmetric in them, one can
present it as a contraction of a certain tensor RR inde-
pendent of A and B with the antisymmetrized tensor
product of A and B. Denoting this latter product as
A∧B and substituting all this into equation (60), one
obtains the identity

DA < RR,B ∧ C > + DB < RR,C ∧ A >
+ DC < RR,A ∧ B > − < RR, [A,B ] ∧ C >
− < RR, [B,C ] ∧ A > − < RR, [C,A ] ∧ B >
+ D ( [A, [B,C ]] + [B, [ C,A ]] + [C, [A,B ]] ) = 0.

(61)

When D is an ordinary covariant derivative, RR
is the Riemann tensor. The last term in the left-
hand side of equation (61) is then identically zero,
since the commutators of four-vector fields satisfy
the Jacobi identity, and on comparing the remain-
ing terms with the right-hand side of equation (45b)
of part V, which defines the exterior derivative of
nonscalar-valued four-vector 2-forms, one obtains the
usual Bianchi identity: dR = 0.
When D is a bivector derivative, RR is one of the

tensors RR, and identity (61) acquires the form

DA < RR,BB ∧ CC > + DB < RR, CC ∧ AA >
+ DC < RR,AA ∧ BB > − < RR, [AA,BB ] ∧ CC >
− < RR, [BB, CC ] ∧ AA > − < RR, [ CC,AA ] ∧ BB >

= D∆(A,B,C).

(62)

Since both sides of this equation are linear and anti-
symmetric in AA, BB, and CC, each of them can be pre-
sented as a contraction of a certain five-tensor with
the antisymmetrized tensor product of these three
bivector fields. Considering that the left-hand side
of equation (62) in its structure resembles the left-
hand of equation (45b) of part V, one may suppose
that the tensor corresponding to it is the analog of
the exterior derivative for RR, and one may denote it
as d(D)

RR. The right-hand side of equation (62) equals

M̂στ ·Rσ
αµν (AατBµ5Cν5

+ BατCµ5Aν5 + CατAµ5Bν5 ),
(63)

and one may denote the tensor corresponding to it as

M̂∆. Since AA, BB, and CC are arbitrary bivector fields,
one obtains the equation

d(D)
RR = M̂∆, (64)

which should be regarded as the analog of the Bianchi
identity for tensors RR.

D. A more general case of five-vector

affine connection

So far I have considered only one particular case of the
connection for five-vector fields, which corresponds
to an ordinary covariant derivative and where there
exists a local symmetry described in section 3 of part
II. Let us now see what the requirement of the same
local symmetry will give in the case of the five-vector
covariant derivative.
Repeating the reasoning presented in the cited sec-

tion of part II, one finds that in any regular basis
associated with a system of local Lorentz coordinates
at the considered point, the only connection coeffi-
cients that do not have to be zero are Hα

β5, H5
βµ,

and H5
55 and that one should have

Hα
β5 ∝ δαβ , H5

βµ ∝ gβµ and H5
55 = const. (65)

Requiring also that with respect to this connection
the metric tensor be covariantly constant, one finds
that the quantities Hαβ5 ≡ gαωH

ω
β5 should be anti-

symmetric in α and β, which is compatible with the
first relation in (65) only if Hα

β5 = 0. Selecting the
length of the fifth basis five-vector so that the pro-
portionality factor between H5

βµ and gβµ be minus
unity, one finally obtains that

H5
βµ = − gβµ and H5

55 = ω, (66)

where ω is a constant of dimension (interval)−2,
and all other connection coefficients at the considered
point for such a basis are zero.
Let us now reformulate the results obtained in

terms of parallel transport. By virtue of condition
(18) of part V, for the connection coefficients corre-
sponding to the four-vector basis associated with the
same coordinate system one should have

Υα
βA = Hα

βA, (67)

which is the analog of equation (48) of part II. From
the results we have just obtained it then follows that
at the considered point all Υα

βA are zero, which means
that for four-vector fields the derivative 2 coincides
with derivative ∇· , and the parallel transport of four-
vectors corresponding to 2 (defined in accordance
with the interpretation of 2 discussed in section B of
part V) coincides with their transport defined by the
metric. This result can be obtained more directly by
observing that according to what has been said after
equations (66), the Z-components of the transported
five-vectors in the considered case are the same as in
the case of the connection examined in part II. Let
us now see what happens with the E-components.

11



It is evident that at ω = 0 the derivative 2 co-
incides with the derivative ∇· for five-vector fields as
well. Consequently, in this case a five-vector from E
is transported into a five-vector from E of the same
length (relative to 1), and the change in the fifth com-
ponent of any five-vector u in an active regular basis
at each infinitesimal step of the transport equals the
scalar product g of u with the infinitesimal tangent
five-vector that characterizes the element of the trans-
port path covered at that step. At ω 6= 0 the length
of the five-vectors from E is not conserved when the
transport is made along timelike or spacelike curves.
Consequently, the change in the E-component of any
five-vector u at each infinitesimal step of the trans-
port will in general be a sum of a quantity propor-
tional to the mentioned scalar product of u with the
infinitesimal tangent vector and of a quantity equal
to the change in the initial E-component of u at that
step.

Since at any ω the derivative2 for four-vector fields
coincides with the derivative ∇· , for such a connection
four-vector torsion is identically zero. In view of this,
one may wish to examine some other case of five-
vector affine connection, where the constraints on the
connection coefficients would not be so stringent and
four-vector torsion could be nonvanishing.

As it has been shown in section A, at any five-
vector connection with respect to which the met-
ric tensor is covariantly constant there exists a re-
lation between the derivatives 2 and D of any scalar,
four-vector or four-tensor field, expressed by equa-
tion (2), where σ(u) is a contraction of u with a cer-
tain bivector-valued five-vector 1-form s̃ whose com-
ponents sα5A in any regular basis are fixed and com-

ponents sαβA are uniquely determined by four-vector
torsion. The inverse theorem is also valid: if for a
given five-vector connection 2 there exists such a lin-
ear map σ : FF → FF ∧ FF that equation (2) holds
for any scalar, four-vector or four-tensor field, then
relative to this connection the metric tensor is co-
variantly constant. Consequently, requiring g to be
covariantly constant is equivalent to requiring equa-
tion (2) to hold at some σ for all four-vector fields,
since, as it has been shown in section A, the latter
condition is sufficient for equation (2) to hold for all
scalar and all four-tensor fields as well.

Since derivatives 2 and D both preserve the cor-
respondence between four- and five-vectors, from the
validity of equation (2) for four-vector fields it follows
that for any five-vector field w

[2u w]Z = [Dσ(u) w]Z (68)

at the same σ. Considering this, it seems natural to

examine the case where for any w

2u w = Dσ(u) w. (69)

Since equation (68) holds without any additional as-
sumptions, requirement (69) imposes constraints only
on those five-vector connection coefficients that de-
termine the E-component of the covariant derivative.
From equation (69) it follows that in any five-vector
basis

HA
BC = GA

BKL s
|KL|

C ,

and by using formulae (19), (22), (23), and (26) of
section B, for the five-vector connection coefficients
in an arbitrary active regular basis one finds that

HA
Bµ = GA

Bµ + (Mστ )
A
B s

|στ |
µ

HA
B5 = (Mστ )

A
B s

|στ |
5 ,

(70)

where GA
Bµ are ordinary connection coefficients for

the considered basis, associated with the derivative∇· .
Writing out the latter formulae in detail, one obtains

Hα
βµ = Gα

βµ − sαβµ, Hα
5µ = 0

Hα
β5 = −sαβ5, Hα

55 = 0
(71)

and

H5
βµ = − gβµ, H5

β5 = H5
5µ = H5

55 = 0, (72)

where sαβC ≡ gβωs
αω

C . Thus, all the connection co-
efficients except for Hα

βC in this case are the same as
in the case of the locally symmetric connection con-
sidered earlier, at ω = 0.
From the formulae obtained it follows that four-

vectors transported along a given curve according to
the transport rules associated with 2 can turn (all
together) arbitrarily with respect to the same four-
vectors but transported according to the rules fixed
by the metric. Furthermore, one can see that com-
pared to ordinary parallel transport, four-vectors can
experience an additional rotation that does not de-
pend on the direction of the transport and whose
magnitude at each infinitesimal step of the latter is
proportinal to |ds|, where ds is the infinitesimal in-
terval covered at that step. Finally, from the for-
mulae obtained it follows that the length of the five-
vectors from E does not change during the transport
and that at each infinitesimal step of the latter the
fifth component of a transported five-vector acquires
an increment equal to its scalar product g with the in-
finitesimal tangent five-vector that characterizes the
element of the transport path covered at that step.
To understand more clearly how general is the

case we have just considered, let us compare it with
the case where the parallel transport of five-vectors
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is constrained only by the following three require-
ments: (i) it should preserve the correspondence be-
tween four- and five-vectors; (ii) it should conserve
the scalar product g; and (iii) it should conserve the
length of the five-vectors from E . (The latter require-
ment seems quite reasonable if one considers that by
virtue of the first condition, the five-vectors from E
are transported into five-vectors from E , and that for
the latter there exists a natural measure determined
only by the differential structure of the manifold. In
addition, as it has been shown in section G of part IV,
the conservation of the length of five-vectors from E
is a necessary condition of the five-vector Levi-Civita
tensor being covariantly constant.)
Let us consider an arbitrary point Q, introduce in

its neighbourhood a system of local Lorentz coordi-
nates, and construct the corresponding active regu-
lar basis eA. As it has been shown earlier, the above
three conditions on five-vector parallel transport lead
to the following constraints on the five-vector connec-
tion coefficients corresponding to the basis eA:

Hα
5C(Q) = H5

5C(Q) = 0

and
gαωH

ω
βC(Q) + gωβH

ω
αC(Q) = 0.

A comparison of these relations with equations (6)
and (7) of part III, which determine the components
of the five-tensor SS introduced in that paper, makes
it apparent that under the considered constraints the
connection coefficients at Q can be presented as

HA
BC = (Mστ )

A
B r

|στ |
C + (M5τ )

A
B r5τC , (73)

where rAβ
C = − gβωHA

ωC . If, as in the case of the
tensor RR considered in part III, one puts

rα5C = − r5αC ,

the quantities rAB
C will become antisymmetric in A

and B, and one will be able to rewrite formula (73)
as

HA
BC = (MKL)

A
B r

|KL|
C , (74)

which is similar to equation (13) of part III. It is
apparent that the quantities rAB

C are analogs of the

quantities Sαβ
C introduced in section A, and one can

easily prove that the five-vector 1-form constructed
according to the formula

r̃ ≡ r
|AB|

C eA ∧ eB ⊗ õC

will be the same at any choice of the local Lorentz
coordinates.
The fact that with respect to the indices A and B

the connection coefficients HA
BC for the considered

basis have the same form as the parameters of an
infinitesimal Poincare transformation is certainly not
a coincidence. Indeed, at such a choice of the five-
vector basis fields, the first four basis five-vectors at
the point Q′ with coordinates xα(Q′) = xα(Q)+ dxα

are orthonomal to the second order in dxα, so under
the considered constraints one will have

[eA(Q
′)]transported to Q = eB(Q)CB

A,

where C5
5 = 1, Cα

5 = 0, and Cα
β ∈ SO(3,1) to the

second order in dxα. Consequently, for such a basis
the connection coefficients HA

BC(Q) should have the
same form with respect to the indices A and B as the
components of the tensor SS constructed from param-
eters of an infinitesimal Poincare transformation.
It is evident that in any regular basis rαβC = Sαβ

C ,

where Sαβ
C are the components of the 1-form S̃ in the

associated four-vector basis, so these components of r̃
determine how the Z-components of transported five-
vectors turn relative to the Z-components of the same
five-vectors but transported according to the rules
fixed by the metric. The components r5αC = −rα5C
determine the change in the E-component of a trans-
ported five-vector, and since they can be arbitrary,
this component can change arbitrarily, and its varia-
tion in general will not be correlated in any way with
the Riemannian geometry of space-time.
Let us now determine how the 1-form r̃ is related

to five-vector torsion. The latter can be defined ac-
cording to a formula similar to formula (12). Namely,
for any five-vector fields u and v one puts

2uv −2vu− [u,v] ≡ −2 t(u,v). (75)

As in the case of the ordinary covariant derivative,
it is a simple matter to prove that t(u,v) is a linear
function of u and v and therefore can be presented
as a contraction of u∧v with a certain five-vector 2-
form t̃, which I will call the five-vector torsion tensor.
Defining the components of the latter according to
the formula

t̃ = t A
|KL| eA ⊗ õK ∧ õL,

one can show that in any five-vector basis for which
all the commutators are zero one has

t A
KL = HA

[KL],

which is the analog of formula (14). Substituting ex-
pression (74) into the latter equation, one obtains

t A
KL = − rA[KL],

which is the analog of equation (15). In detail, the
latter means that

t A
µν = − rA[µν] and t A

µ5 = − 1
2 r

A
µ5.
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A comparison of the first of these equations at A =
α with equation (15) makes it apparent that in any
regular basis

rαβµ = gασgβτ (tστµ − tτµσ − tµστ ),

where tστµ ≡ t ω
στ gωµ, so the components of the five-

vector torsion tensor determine all the components of
the 1-form r̃ except for the symmetric part of r5µν .
By comparing formulae (70) for an active regular

basis associated with some system of local Lorentz co-
ordinates at the considered point with formula (74),
one finds that in the case of the five-vector affine con-
nection satisfying requirement (69) one has

rαβC = sαβC and r5βC = δβC = − s5βC ,

so

t µ
αβ = − sµ[αβ], t µ

α5 = − 1
2 s

µ
α5, t 5

αC = 0. (76)

Therefore, in this paricular case the components t µ
AB

can be arbitrary and the components t 5
AB are iden-

tically zero.

E. Five-vector curvature tensor

In this section I will consider the five-vector analog
of the curvature tensor for the derivative 2 and will
discuss some of its basic properties and one important
physical application. This tensor can be defined in
exactly the same way as in section E of part V I have
defined the five-vector analogs of the field strength
tensor: as a five-vector 2-form, R, whose values are
tensors of rank (1, 1) over V5 and which is such that
for any five-vector field w regarded as a five-vector-
valued 0-form

ddw = R(w),

where the notation R(w) means that the value of R
acts on the value of w as a linear operator. By using
the analog of formula (45a) of part V for five-vector
forms and derivative 2, one can find that

< R ,u ∧ v > = 2u2v −2v2u −2[u,v], (77)

where the expression in the left-hand side is simply
the value of the 2-form R on the bivector u∧v. From
this formula one can easily obtain a familiar expres-
sion for the components of R in a five-vector basis for
which all the commutators are zero, in terms of the
corresponding five-vector connection coefficients:

RA
BCD = ∂CH

A
BD − ∂DHA

BC

+ HA
KCH

K
BD −HA

KDHK
BC .

If the basis is a standard one, then by virtue of equa-
tions (20) of part V and (67) one will have

Rα
5CD = ∂CH

α
5D − ∂DHα

5C +Hα
ωCH

ω
5D

+ Hα
5CH

5
5D −Hα

ωDHω
5C −Hα

5DH5
5C = 0

and

Rα
βCD = ∂CH

α
βD − ∂DHα

βC

+ Hα
ωCH

ω
βD −Hα

ωDHω
βC

= ∂CΥ
α
βD − ∂DΥα

βC

+Υα
ωCΥ

ω
βD −Υα

ωDΥω
βC ,

which means that at any five-vector connection that
satisfies requirement (18) of part V, in any standard
basis the components Rα

5CD are identically zero and
the components Rα

βCD are completely determined by
the connection coefficients for four-vector fields.
Let us now calculate the components of R for the

connection that satisfies condition (69). By using for-
mulae (71) and (72) one finds that in any active reg-
ular basis

Rα
5CD = R5

5CD = 0, Rα
βµν = R(∇)α

βµν ,

R5
βCD = − 2gβωs

ω
[CD] = 2tCDβ,

Rα
βµ5 = −{ ∂µsαβ5 +Hα

ωµs
ω
β5 + sαω5H

ω
βµ },

(78)

where R(∇)α
βµν are the components of the Rie-

mann tensor corresponding to the ordinary covariant
derivative ∇ related to 2 according to equation (12)
of part V, in the associated four-vector basis. From
the fact that g is covariantly constant it follows that

gαωR
ω
βCD + gβωR

ω
αCD = 0,

and comparing this equation and the first double
equation in (78) with equations (6) and (7) of part
III, we see that one can associate with R, in the way
now familiar to us, a certain five-vector 2-form, K,
whose values are five-vector bivectors and whose com-
ponents are related to those of R as

KAβ
CD = −KβA

CD = gβωRA
ωCD,

where gβω is the inverse of the 4×4 matrix gβω. From
formulae (78) one finds that in any active regular ba-
sis

Kα5
CD = −K5α

CD = 2sα[CD] = − 2t α
CD ,

Kαβ
µ5 = −{ ∂µsαβ5 +Hα

ωµs
ωβ

5 +Hβ
ωµs

αω
5 },

Kαβ
µν = gβωR(∇)α

ωµν .

(79)

Since in the rest of this section I will no longer deal
with the components of the five-tensor R itself, in
the following I will omit the superscript (∇) in the
notations for the components of the Riemann tensor
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corresponding to ∇ and of all other four-tensors con-
structed out of it.
Let us now try to construct the five-vector analog

of the Einstein tensor. Since the latter is related to
the four-vector Riemann tensor as

Gµ
α = 1

4 ǫαλρωR
ρω
στ ǫ

στλµ,

let us first consider the tensor

Y AB
CD = 1

4 sign ξ · ǫCDXRQ KRQ
ST ǫSTXAB. (80)

By using the formulae presented in section G of part
IV one can easily find that

Y µ5
α5 = 1

4 sign ξ · ǫα5λρω Kρω
στ ǫ

στλµ5

= Kσµ
σα − 1

2 δ
µ
αK

στ
στ = Rµ

α − 1
2 δ

µ
αR = Gµ

α,
(81)

where R is the scalar curvature and Rµ
α and Gµ

α are
the components of the Ricci tensor and Einstein ten-
sor in the associated four-tensor basis, all correspond-
ing to the derivative ∇. In a similar manner one finds
that

Y µ5
αβ = 1

2 sign ξ · ǫαβλρ5 Kρ5
στ ǫ

στλµ5

= −Kµ5
αβ + δµβK

σ5
ασ − δµαK

σ5
βσ

= 2 { t µ
αβ + δµα t σ

βσ − δµβ t
σ

ασ }
= 2 {T µ

αβ + δµα T σ
βσ − δµβ T

σ
ασ },

(82)

where T µ
αβ are the components of the four-vector tor-

sion tensor defined by equations (12) and (13), and
the combination in the curly brackets in the right-
hand side is known as the modified torsion tensor.
Formulae (81) and (82) have an interesting bearing

on physics. In accordance with what has been said in
part V, the five-vector connection 2 can be regarded
as a composite structure consisting of the ordinary
affine connection ∇ and of another structure, which
in the case we are now considering is fixed by a field of
four-vector bivectors whose components in any four-
vector basis coincide with the components sαβ5 of the
1-form s̃ in the associated active regular five-vector
basis. Now, if one supposes that despite the fact that
∇ is not necessarily torsion-free, the four-vector Ein-
stein tensor corresponding to it is still related to the
canonical stress–energy tensor by the Einstein equa-
tion, one will have

Y µ5
α5 = Gµ

α = kΘµ
α = − kMµ

α5, (83)

where k is Newton’s gravitational constant times
8πc−4 and MM is the stress–enegry–angular momen-
tum tensor introduced in part I. For the moment let
us pay no attention to the fact that the four-vector in-
dex µ in the right-hand side of the latter equation cor-
responds to the antisymmetrized pair of five-vector

indices µ5 in its left-hand side, and let us just con-
centrate on the lower indices. If one supposes that the
same relation as above exists between the quantities
Y µ5

AB and Mµ
AB at all other values of the indices A

and B, in addition to (83) one will have the equation

Y µ5
αβ = −kMµ

αβ , (84)

and considering that in any regular basis Mµ
αβ co-

incide with the components of the spin angular mo-
mentum, one can rewrite equation (84) as

T µ
αβ + δµα T σ

βσ − δµβ T
σ

ασ = − 1
2kΣ

µ
αβ , (85)

which is exactly the Kibble–Sciama equation that re-
lates four-vector torsion to spin.1

To understand how one can eliminate the discrep-
ancy between the upper indices in the left- and right-
hand sides of equations (83) and (84), one should
examine more closely the tensor MM, or rather, its
analog in the case where the Lagrangian density de-
pends on the five-vector covariant derivatives of the
fields.

F. Stress–energy–angular momentum five-tensor

Let us consider a situation where one has n matter
fields, ~Uℓ, whose values can be vectors or tensors of
any nature (the index ℓ runs 1 through n and lables
the fields, not their components) and where the La-
grangian density LL that describes these fields is a
function of the values of the fields themselves and of
their five-vector covariant derivatives. For our pur-
poses it will be sufficient to examine a simplified sit-
uation where there are no gauge fields. As in ordi-
nary theory, from the requirement of local isotropy
and homogeneity of space-time one can derive cer-
tain relations, from which, by using the equations of
motion for the considered fields, one can then de-
rive equations that can be interpreted as a conserva-
tion law for a certain tensor quantity whose compo-
nents in the limit of flat space-time coincide with the
five-vector analogs of the Noether currents associated

1Some authors hide the factor −
1
2

by defining the four-
vector torsion tensor with a different sign and by choosing a dif-
ferent normalization for the spin angular momentum. The sim-
plest way to compare the definitions of these quantities adopted
in a particular paper with ours is to evaluate the proportional-
ity factor between Σµ

αβ;µ
− 2T ω

µω Σµ

αβ
and gβµΘ

µ
α − gαµΘ

µ

β

(in our case it is unity) and the proportionality factor between
T

µ
αβ

and Γα
[µν]

(in our case the latter is unity, too, provided

the definition of the four-vector connection coefficients is the
same as ours). The sign and normalization of the stress-energy
tensor is fixed by the condition that Θ0

0 be the energy density
of matter.
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with the symmetry under global Poincare transfor-
mations. The formulation of the local isotropy and
homogeneity requirement is quite apparent and I will
not present it. The relations that follow from it are

0 =
∑

ℓ

{ ∂L

∂~Uℓ
Dµν~Uℓ +

∂L

∂(2~Uℓ)
Dµν(2~Uℓ) } (86)

and

0 =
∑

ℓ

{ ∂L

∂~Uℓ
Dµ5~Uℓ

+
∂L

∂(2~Uℓ)
Dµ5(2~Uℓ) } −

dL

dxµ
,

(87)

where the quantities 2~Uℓ, when differentiated, are re-
garded as (nonscalar-valued) five-vector 1-forms and
D in this case, and this is quite essential, is the bivec-
tor derivative whose action on five-vector fields is de-
fined according to equation (16) and not as it has
been described in the rest of section B. It is evident
that equations (86) and (87) can be presented as a
single equation:

0 = DABL−
∑

ℓ

{ ∂L

∂~Uℓ
DAB~Uℓ+

∂L

∂(2~Uℓ)
DAB(2~Uℓ) },

the right-hand side of which is nothing but the bivec-
tor derivative of the Lagrangian L regarded as a
scalar field whose value at each point is a function
of the values of n fields ~Uℓ and n fields 2~Uℓ.
The equations of motion for the fields ~Uℓ in this

case have the form

∂L

∂~Uℓ
= 2Â{

∂(eL)

∂(2Â
~Uℓ)

}, (88)

where e denotes the square root of minus the de-
terminant of the metric tensor and the hat over
A means that when one evaluates the derivative of
∂(eL)/∂(2A~Uℓ), this index should be treated as an
external one. By using these equations of motion,
from equation (86) one obtains that

(∂α + e−1∂αe)Mα
µν−MA

ωνH
ω
µA−MA

µωH
ω
νA

=
∑

ℓ

∂L

∂(2α~Uℓ)
(gαν2µ − gαµ2ν)~Uℓ,

(89)

where

MA
µν = −

∑

ℓ

∂L

∂(2A~Uℓ)
Dµν~Uℓ. (90)

It is apparent that the latter quantities are direct
analogs of the components of the total spin angular

momentum. The right-hand side of equation (89) can
be presented as

{ δαµL−
∑

ℓ

∂L

∂(2α~Uℓ)
2µ~Uℓ } ·H5

να

− { δανL−
∑

ℓ

∂L

∂(2α~Uℓ)
2ν~Uℓ } ·H5

µα,

whence it is seen that if one takes

MA
µ5 = −MA

5µ = δAµL−
∑

ℓ

∂L

∂(2A~Uℓ)
2µ~Uℓ , (91)

from equation (89) one will get

0 = (∂α + e−1∂αe)Mα
µν

− MA
KνH

K
µA −MA

µKHK
νA

= MA
µν ;A + (HK

KA −HK
AK)MA

µν

= MA
µν ;A − 2 t K

AK MA
µν = (

∗
2AMM)Aµν ,

(92)

where the semicolon denotes the covariant differen-

tiation associated with 2 and the operator
∗

2A ≡
2A − 2 t K

AK is the direct generalization of the cor-

responding four-vector operator
∗

∇α ≡ ∇α − 2T ω
αω .

By analogy with the usual terminology, the expres-
sion in the right-hand side of (92) will be called the
modified divergence.
Definition (91) may seem somewhat surprizing. In-

deed, considering definition (90), one would expect
that

MA
µ5 = −MA

5µ = δAµL−
∑

ℓ

∂L

∂(2A~Uℓ)
Dµ5~Uℓ . (93)

In this connection let me observe that owing to the
invariance of the Ẽ–Z̃ decomposition for five-vector 2-
forms, the componentsMA

µν andMA
µ5 are absolutely

independent from each other. In particular, one can
equally well take the latter to be given by formula
(91) or by formula (93). However, depending on how

the components MA
µ5 are selected, the Z̃-component

of the modified divergence of MM will have different
values, and equation (89) tells us that MA

µ5 can be

chosen in such a way that this Z̃-component would
be zero.
The expression for the E-component of the men-

tioned divergence can be found from relation (87) by
using once more the equations of motion (88). Simple
calculations give

(
∗
2AMM)Aµ5 = MA

στK
|στ |

µA + 2MA
σ5s

σ
[µA], (94)

which, by using formulae (79), can be cast into the
following form:

(
∗
2AMM)Aµ5 = MA

STK
|ST |

µA. (95)
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Let us now observe that in the latter equation and
in formula (91) the five-vector index µ in the right-
hand side corresponds to the pair of antisymmetrized
indices µ5 in the left-hand side. To eliminate this
discrepancy let us first introduce the quantities δABC

defined as

δAµ5 = − δA5µ = δAµ and δAµν = − δAνµ = 0, (96)

where the symbol δAµ with only one lower index is de-
fined in the usual way. It is easy to see that the quan-
tities δABC are components of the Lorentz-invariant
five-tensor which when acting on five-vector bivectors
as an operator, transforms each of them into the five-
vector from Z that corresponds to the E-component
of this bivector.
Secondly, let us define a new type of bivector

derivative, whose operator will be denoted as D. By
definition, let us take that in any active regular basis

Dµν = Dµν but Dµ5 = 2µ . (97)

The same can also be expressed as follows:

DA = ∇a + M̃AZ ,

where a, as in formula (25), denotes the five-vector
from Z that corresponds to the E-component of AA.
It is evident that at zero torsion the derivatives D

and D coincide. To distinguish these two kinds of
bivector derivative one from the other, one can call
the first of them metric and the second one affine.
Let me also mention that the connection coefficients
for D, which I will denote as G

A

BKL and which can
be defined according to a formula similar to equation
(17), are related to the connection coefficients for the
derivatives 2 and D in the following way:

G
A

Bµ5 = HA
Bµ and G

A

Bµν = GA
Bµν .

By using the new notations one can present formu-
lae (90) and (91) as a single equation:

MA
CD = δACD L−

∑

ℓ

∂L

∂(2A~Uℓ)
DCD~Uℓ , (98)

where now there is complete correspondence between
the five-vector indices in the right- and left-hand sides
of the equation. To achieve the same in equation (95),
to the expression in the right-hand side of the latter
one should assign an additional index 5, doing this
in such a way that the expression as a whole would
be antisymmetric with respect to the transposition
5 ↔ µ. It is evident that this additional index should
be assigned toKST

µA, and consequently equation (95)
will acquire the form

(
∗
2AMM)Aµ5 = MA

STK
|ST |

µ5A , (99)

where one should put

KST
µ5A = −KST

5µA = KST
µA . (100)

If in addition to this, one should wish that the equa-

tion (
∗
2A MM)Aµν = 0 could be presented in a similar

form, one should require also that

KST
µν A = 0 . (101)

It turns out that the tensor with such components
can be defined in a manner similar to how one defines
the curvature tensor, only instead of corresponding to
the commutator of two identical derivatives, it will
correspond to the commutator of the derivatives 2u

and DA , acting on four-vector fields. In order to ob-
tain an operator that depends linearly on u and AA,
from the mentioned commutator one should subtract
a certain nontrivial combination of the derivatives 2

and D , whose purpose is similar to that of the last
term in the right-hand side of formula (77) and which
is selected in such a way that the components of the
resulting analog of the curvature tensor have the de-
sired form. Omitting the details, let me only present
the final formula:

[2u,DA ] − D(2uA) + ∇(DAu)

= A|BC| uEK
|ST |

BC E · DST ,

where the quantities in the right- and left-hand sides
are regarded as operators acting on four-vector fields.
By using the components of this new tensor, one

can present equation (99) and the similar conserva-

tion law for the Z̃-component of MM as a single equa-
tion:

(
∗
2AMM)ABC = MA

STK
|ST |

BC A . (102)

Furthermore, this tensor enables one to eliminate the
discrepancy between the upper indices in equations
(83) and (84). Indeed, for that one should take the
analog of the Einstein tensor to be

Y A
BC = 1

8 sign ξ · ǫBCXPQ KPQ
RST ǫRSTXA. (103)

By using formulae (100) and (101), one easily finds
that

Y α
µ5 = −Gα

µ and Y α
µν = − 2T (mod)α

µν ,

where T (mod) α
µν are the components of the modified

torsion tensor mentioned in section E:

T (mod) α
µν ≡ T α

µν + δαµ T
σ

νσ − δαν T
σ

µσ .

Consequently, the Einstein and Kibble–Sciama equa-
tions can be presented as follows:

Y α
BC = kMα

DC . (104)
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Since neither Gα
µ nor T (mod) α

µν depend on sαβ5 and
since

Y 5
µ5 = Y 5

µν = 0, (105)

from these equations one can say nothing about the
components of five-vecor torsion corresponding to 25.
What case equations (104) and (105) correspond to
will be said in the next section.

G. Five-vector generalization of the Einstein

and Kibble–Sciama equations

As is known, the Einstein and Kibble–Sciama equa-
tions can be obtained from the action principle if the
Lagrangian describing the geometry of space-time is
taken (in our notations) to be (−1/2k)R, where R
is the curvature scalar constructed out of the four-
vector curvature tensor, and the varied parameters
are the components gµν of the metric tensor and the
components T µ

αβ of the four-vector torsion tensor.
Let us suppose that the graviational equations in the
case of five-vector affine connection can be obtained
in a similar way. By virtue of equations (79) and

owing to the antisymmetry of the quantities sαβ5 in
their upper indices, one has

KAB
AB = 2Kα5

α5 +Kαβ
αβ

= 4sαα5 + gβωRα
ωαβ = gβωRωβ = R ,

and since the components Rα
βµν are independent of

sαβ5, to obtain a full system of equations from the
action principle in the case of five-vector affine con-
nection, to the Lagrangian (−1/2k)R one should add
some additional term, which I will denote as Ladd.
Thus,

Lgeom = (−1/2k)R+ Ladd .

As varied parameters let us choose gµν and t µ
αβ =

T µ
αβ , and also the six quantities sαβ5. By direct cal-

culation one finds that

2e−1 δ(eLgeom)

= δgµν · { k−1G{µν} − k−1(
∗

∇ω T
(mod))µων

− k−1(
∗

∇ω T
(mod))νωµ + gµνLadd

+ 2 (δLadd/δgµν) }
− δT α

µν · { 2k−1gαω (T (mod) µων − T (mod) νωµ

+ T (mod) µνω )− 2(δLadd/δT
α

µν ) }
+ δsαβ5 · { 2 (δLadd/δs

αβ
5) } ,

where Gµν = Gµ
σg

σν , T (mod) µων = gµσgωτ T (mod) ν
στ ,

and the derivative
∗

∇ω acts on T (mod) as on a four-
tensor. Varying with respect to the same parame-
ters the part of the Lagrangian density that describes

matter, one obtains

2e−1 δ(eLmatter) = − δgµν · {Θ{µν} + 1
2 (

∗

∇ωΣ)
µων

+ 1
2 (

∗

∇ωΣ)
νωµ + gστs

µσ
5Mντ5}

− δT α
µν · { gαω (Σµων − Σ νωµ

+ Σµνω ) } − δsαβ5 · {M 5
αβ},

where Θµν = Mµ
5σ g

σν , Σµνα = gµσgντMα
στ ,

Mµν5 = gµσgντM 5
στ , and

∗

∇ω acts on Σ as on a four-
tensor. Requiring the variation of the total action to
vanish, one obtains

G{µν} − (
∗

∇ω T
(mod))µων − (

∗

∇ω T
(mod))νωµ

+ kgµνLadd + 2k(δLadd/δgµν)

= kΘ{µν} − kgστs
σ{µ

5M
ν}τ5

+ 1
2k(

∗

∇ωΣ )µων + 1
2k(

∗

∇ωΣ ) νωµ ,

(106)

then

(T (mod)µλν − T (mod) νλµ + T (mod) µνλ)
− kgλω(δLadd/δT

ω
µν )

= − 1
2k(Σ

µλν − Σ νλµ +Σµνλ) ,

(107)

and finally

δLadd/δs
αβ

5 = 1
2 M 5

αβ . (108)

One should notice that none of the components
M 5

µ5 act as a source. Moreover, none of them have
any effect on the conservation law for MM, since in the
right-hand side of equation (102) they appear only in
the term

M5
σ5K

σ5
µ5 = 2M5

σ5s
σ
[µ5] = M5

σ5s
σ
µ5 ,

and in the left-hand side, only in the term

(
∗
25MM)5µ5 = M5

µ5 ;5 − 2 t K
5K M5

µ5

= M5
µ5 ;5 + (HK

K5 −HK
5K)M5

µ5

= −M5
σ5H

σ
µ5 = M5

σ5s
σ
µ5 .

Consequently, their contributions cancel out. In view
of this, in addition to the “canonical” tensor MM,
whose components are given by formula (98), one can
introduce the “dynamical” tensor MM, which will dif-
fer from the former only in that its M 5

µ5 components
will be identically zero.
Let us now try to select Ladd in such a way that

the field equations resulting from equations (106)–
(108) in which the role of the source is played byMα

µ5

and Mα
µν would differ as little as possible from the

Einstein and Kibble–Sciama equations, respectively.
In the latter case this can be achieved quite easily:

18



one has only to require that Ladd be independent of

T α
µν . Equation (107) will then give

T (mod)αβµ = − 1
2kΣ

αβµ,

which is equivalent to equation (85). Substituting
this value of T (mod) into equation (106), one obtains

G{µν} + kgµνLadd + 2k(δLadd/δgµν)

= kΘ{µν} − kgστs
σ{µ

5M
ν}τ5

.
(109)

It is impossible in general to get rid of the second term
in the left-hand side of this equation, and as one will
see below, there is no need to. One can, however, try
to select Ladd in such a way that the last term in the
left-hand side would calcel out with the last term in
the right-hand side. This requirement gives one the
second condition on Ladd:

δLadd/δgµν = − 1
2gστs

σ{µ
5M

ν}τ5
, (110)

and equation (109) then acquires the form

G{µν} + kgµνLadd = kΘ{µν}.

As one can see, the symmetric parts of Gµν and
kΘµν are no longer equal to each other. However,
one can try to choose Ladd in such a way that the
antisymmetric parts of these tensors would coincide:

G[µν] = kΘ[µν]. (111)

If one succeeds, then after adding the latter two equa-
tions one will obtain

Gµν + kgµνLadd = kΘµν . (112)

To derive from requirement (111) a constraint on
Ladd, let us recall the differential identity that relates
the modified four-dimensional divergence of T (mod) to
the antisymmetric part of the Einstein tensor:

(
∗

∇αT
(mod))αµν = G[µν].

Combining this identity with equation (111) and us-
ing (85) and (102), one finds that

0 = (
∗

∇αΣ)
α
µν + 2Θ[µν] = (∂α + e−1∂αe)Mα

µν

− Mα
ωνΓ

ω
µα −Mα

µωΓ
ω
να + gµα Mα

5ν − gνα Mα
5µ

= (∂α + e−1∂αe)Mα
µν

− Mα
ωνH

ω
µα −Mα

µωH
ω
να −Mα

5νH
5
µα −Mα

µ5H
5
να

= (
∗
2AMM)Aµν +M 5

KνH
K
µ5 +M 5

µKHK
ν5

= −M 5
ωνs

ω
µ5 −M 5

µωs
ω
ν5 ,

whence it follows that

Mµ 5
ω sων5 − sµω5 Mω 5

ν = 0, (113)

meaning that the quantities sµν5 and Mµ 5
ν regarded

as matrices with respect to the indices µ and ν should
commute with each other. Together with equation
(108), the latter relation gives us one more constraint
on Ladd.
Let us finally recall that in the case of arbitrary

four-vector torsion the Einstein tensor satisfies the
differential identity

(
∗

∇αG )αµ = Rστ
µα T (mod) α

στ − 2T σ
µα Gα

σ .

Combining the latter with equations (85) and (112)
and using (94), one has

0 =
∗

∇α (Θ
α
µ − δαµLadd) +Rστ

µα · 1
2Σ

α
στ

+ 2T σ
µα (Θα

σ − δασLadd)
= (∂α + e−1∂αe)Mα

5µ −Mα
5ωΓ

ω
µα − ∂µLadd

+ R
|στ |

µα Mα
στ + 2T σ

µα Mα
5σ

− (e−1∂µe− Γω
µω + 2T ω

µω )Ladd

= − (
∗
2αMM)αµ5 +R

|στ |
µα Mα

στ

+ 2 sσ[µα]Mα
σ5 − ∂µLadd

= − K
|στ |

µAMA
στ − 2 sσ[µα]Mα

σ5

+ R
|στ |

µα Mα
στ + 2 sσ[µα]Mα

σ5 − ∂µLadd

= − ∂µLadd −K
|στ |

µ5M5
στ ,

from which, using formulae (79), one obtains the last
condition on Ladd:

∂µLadd = 1
2 { ∂µsστ5 +Hσ

ωµs
ωτ
5

+ Hτ
ωµs

σω
5 }M5

στ .
(114)

The simplest way to satisfy requirement (113) is to
take sστ5 proportional to M5

στ . As one can see from
equation (108), for that one should choose

Ladd = a · gασgβτh55sαβ5 s
στ
5, (115)

where a is a certain constant and the factor h55 has
been introduced so that the latter would not depend
on the normalization of the fifth basis vector. Ac-
cordingly, one has

2a h55sστ5 = 1
2 M5

στ . (116)

It is a simple matter to check that at such Ladd con-
ditions (114) and (110) are also satisfied. Indeed,
by differentiating (115) and using the covariant con-
stancy of g, one obtains that

∂µLadd = 2a h55sστ5 · sστ5 ;µ

= 1
2 { ∂µsστ5 +Hσ

ωµs
ωτ
5 +Hτ

ωµs
σω
5 }M5

στ .

Similarly, by varying (115) with respect to gµν and
using (116), one obtains

δLadd = δgµν · 2a gστh55sµσ5 s
ντ
5

= δgµν · { 1
2 gστs

µσ
5 Mντ5 } ,
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whence follows (110).
The dimension of the constant a can be easily es-

tablished from formula (115). Since in the normalized
regular basis h55 is dimensionless and the components
sαβ5 have the same dimension as sαβµ, the expression
following a in formula (115) should have the same di-
mension as R, so a−1 should have the same dimension
as k. In view of this, let us put a = (−1/2k) ̺, where
̺ is some unknown dimensionless constant, whose
value should be found experimentally. One will then
have

Lgeom = (−1/2k) (R+ ̺ · gασgβτh55sαβ5 s
στ
5), (117)

and the gravitational equations in the four-tensor no-
tations will acquire the following form:

Gµν − gµν 1
2 εXστX

στ = kΘµν

T α
µν + δαµ T

σ
νσ − δαν T

σ
µσ = − 1

2 kΣ
α
µν

Xµν = − 1
2 ε

−1k Ξµν ,

(118)

where I have denoted Xµν ≡ sµν5 · |h55|1/2 , Ξµν ≡
M5

µν · |h55|−1/2 , and ε ≡ ̺ signh55. Turning back

to the five-tensor notations and using the tensor Y A
BC

introduced in the previous section, one obtains

Y α
µ5 + δαµ ̺ s

|στ |
5 s

5
στ = kMα

µ5

Y α
µν = kMα

µν

− 2̺ s 5
µν = kM5

µν ,

(119)

where s 5
µν ≡ sµν5 h

55. We thus see that from our
point of view equations (104) and (105) correspond
to the particular case where M5

µν = s 5
µν = 0. To

present equations (119) as a single five-tensor equa-
tion, one should introduce still another five-tensor,
whose components are

Zα
µ5 = δαµ s

|στ |
5 s

5
στ , Zα

µν = Z5
µ5 = 0, Z5

µν = − 2s 5
µν .

By using the latter, one can present equations (119)
as

Y A
BC + ̺ZA

BC = kMA
BC ,

where it is assumed that MA
BC are the components

of the “dynamical” tensor MM.

H. Bivector derivative for the fields

of nonspacetime vectors and tensors

In section C of part V I have defined the five-vector
covariant derivative for the fields whose values are
nonspacetime vectors or tensors, thereby obtaining
a certain five-vector generalization of the traditional
gauge field theory framework. It turns out that one

can do the same with the bivector derivative and ob-
tain a more particular generalization where the five-
vector gauge fields introduced in part V are viewed
as composite quantities constructed from more ele-
mentary connection coefficients—from those associ-
ated with the bivector derivative. This latter gener-
alization is obtained by postulating that for the fields
of nonspacetime vectors and tensors there exists a
derivative whose argument is a five-vector bivector
and that for all such fields this derivative is related
to their five-vector covariant derivative according to
equation (2), where σ(u) is the same as it is for four-
vector fields.
Let us first discuss the formal side of the matter.

As in section C of part V, let us consider a set VV of
all sufficiently smooth fields whose values are some
n-dimensional nonspacetime vectors, which I will de-
note as ~U, ~V, ~W, etc. Defining the bivector derivative
for such fields is equivalent to specifying a map

D : FF ∧ FF × VV → VV .
The latter should satisfy the usual requirements: for
any scalar functions f and g, any bivector fields AA
and BB, and any fields ~U and ~V from VV ,

D(fA+gB)~U = f · DA~U + g · DB~U (120a)

DA(~U + ~V) = DA~U + DA~V (120b)

DA(f~U) = DAf · ~U + f · DA~U, (120c)

where the bivector derivative of the scalar field f is
defined as in section A. To define in a natural way
the bivector derivative for all other tensor fields over
VV , let us postulate that the action of D on the con-
traction and tensor product obeys the Leibniz rule.
If ~Ei (i = 1, . . . , n) is some set of basis fields from

VV , one can define for it the connection coefficients
associated with the derivative D according to the for-
mula

DAB~Ei = ~EjC
j
iAB, (121)

where, as usual, DAB ≡ DeA∧eB
and eA is the se-

lected five-vector basis. I will call these connection
coefficients the bivector gauge fields. Using them, one
can obtain the following expression for the compo-
nents of the bivector derivative of an arbitrary field
~U = U

i~Ei:

(DAB~U)
i = DABU

i + Ci
jABU

j ≡ U
i
:AB.

Therefore, in any active regular basis

U
i
:α5 = ∂αU

i + Ci
jα5U

j and U
i
:αβ = Ci

jαβU
j .

Under the transformation e′A = eBL
B
A of the five-

vector basis the bivector gauge fields transform sim-
ply as

C′ i
jAB = Ci

jSTL
S
AL

T
B.
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Under the transformation ~E ′
i = ~EjΛ

j
i of the basis in

VV these gauge fields transform as

C′ i
jAB = (Λ−1)ikC

k
lABΛ

l
j + (Λ−1)ikDABΛ

k
j ,

so in any active regular basis one has

C′ i
jα5 = (Λ−1)ikC

k
lα5Λ

l
j + (Λ−1)ik∂αΛ

k
j

C′ i
jαβ = (Λ−1)ikC

k
lαβΛ

l
j .

(122)

Thus, in such a basis the quantities Ci
jα5 transform

as ordinary gauge fields, while the quantities Ci
jαβ

transform as components of a tensor and cannot be
nullified at a given space-time point by an appropriate
choice of the basis in VV .
Let us now write down explicitly the relation be-

tween the derivatives 2 and D for the considered type
of fields. As it has been said above, for any field ~U
from VV one should have

2v~U = Dσ(v)~U (123)

at any v. For ~U = ~Ei and v = eA one has

~EiB
i
jA = 2A~Ej = Dσ(eA)~Ej

= s
|KL|

ADKL~Ej = ~EiC
i
jKLs

|KL|
A .

Consequently,

Bi
jA = Ci

jKLs
|KL|

A, (124)

so in any active regular basis one has

Bi
jα = Ci

jα5 + Ci
jµνs

|µν|
α

Bi
j5 = Ci

jµνs
|µν|

5.
(125)

The latter formulae elucidate the meaning of the
bivector gauge fields. Within the traditional gauge
field theory scheme, the parallel transport of non-
spacetime vectors is independent of torsion in the
sense that there is no direct relation between the lat-
ter and the corresponding gauge fields associated with
the covariant derivative. According to the scheme
we are now discussing, the parallel transport of non-
spacetime vectors is torsion-dependent, which man-
ifests itself in an additional rotation of transported
vectors compared to the case where torsion is zero.
Let me also note that the scheme with ordinary gauge
fields can be viewed as a particular case of the one
we are now considering, which corresponds to the sit-
uation where the bivector gauge fields Ci

jµν in any
regular five-vector basis are all identically zero.
As in the case of four-vector and five-vector fields,

the bivector derivative operator for the fields of non-
spacetime vectors can be split into two parts:

DA = DAE + DAZ . (126)

The first operator in the right-hand side can be re-
garded as a function of the four-vector A that cor-
responds to the E-component of the bivector AA (or
as a function of the corresponding five-vector from
Z), and it is a simple matter to show that when re-
garded this way, it has all the properties of an ordi-
nary covariant derivative, which permits one to de-
note this operator as ∇·A. It is easy to see that in
any four-vector basis the connection coefficients as-
sociated with ∇· , defined according to formula (37) of
part V, equal Ci

jµ5 provided that the latter are eval-
uated for the corresponding active regular five-vector
basis.
In a similar manner, the second operator in the

right-hand side of formula (126) can be viewed as
a function of the four-vector bivector B that corre-
sponds to AAZ , and by analogy with the case of four-

and five-vectors, I will denote it as M̂B. Naturally,
in the case of nonspacetime vectors the components

of M̂ will no longer equal (Mµν)
α
β or (Mµν)

A
B, but

instead, in any four-vector basis one will have

(M̂αβ)
i
j = Ci

jαβ ,

where the bivector gauge fields in the right-hand side
are to be evaluated in the corresponding regular five-
vector basis. The latter fact reflects the fundamental
difference between the case of four- and five-vectors
and the case of nonspacetime vectors in relation to the
bivector derivative: whereas for the former the oper-

ator M̂ is fixed and its components are constructed
from the Lorentz-invariant quantities gαβ and δαβ, for

the latter the operator M̂ can be as arbitrary as is al-
lowed by the constraints imposed on D and its compo-
nents represent an independent element of the geome-
try associated with the considered type of nonspace-
time vectors, just as within the traditional scheme
this is done by ordinary gauge fields. Such a state
of affairs has a certain logic to it. Since the com-

ponents of the operator M̂ for four-vector fields are
fixed, the additional rotation of such vectors in the
process of their parallel transport compared to the
case where torsion is zero but the Riemannian geom-
etry is the same, is determined only by the quantities
sµνA, and having found the latter this way, one can
then make a similar comparison for the transport of
considered nonspacetime vectors and determine the

combinations Ci
jµνs

|µν|
A, from which, knowing the

torsion, one can find the quantities Ci
jµν themselves.

Thus, in the case of nonspacetime vectors, too,
the bivector derivative can be presented as in for-

mula (25), only now both ∇· and M̂ are independent
of metric. Let me also stress that the derivative ∇·
should not be mixed up with the “differential part”
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of the operator 2, which earlier I have denoted as ∇
and which is related to 2 according to formula (12)
of part V. That these two derivatives are different is
already seen from the fact that the connection coef-

ficients for ∇ equal Bi
jα = Ci

jα5 + Ci
jµνs

|µν|
α, and

not Ci
jα5 as they do for ∇· .

Let us now consider the analog of the field strength
tensor. From everything that has been said in section
C it is apparent that the latter can be defined by the
equation

< FF,AA ⊗ BB > = DADB − DBDA − D[A,B ], (127)

where the operators on both sides act on the fields of
the considered nonspacetime vectors. Consequently,
the components of FF have the following symmetry
properties:

F
i
jKLMN = − F

i
jLKMN = − F

i
jKLNM

F
i
jKLMN = − F

i
jMNKL,

(128)

and one can easily derive for them the following ex-
pression in terms of the corresponding bivector gauge
fields:

F
i
jKLMN = DKLC

i
jMN − DMNCi

jKL

+ Ci
sKLC

s
jMN − Ci

sMNCs
jKL

− Ci
jSTQ

|ST |
KLMN ,

(129)

where QST
KLMN are the commutation constants for

basis bivector fields, which are defined in the follow-
ing evident way:

[ eK ∧ eL, eM ∧ eN ] = eS ∧ eT Q
|ST |

KLMN .

By using definition (50) one can easily prove that for
any active regular coordinate basis one has QST

κ5µ5 =
0, Qσ5

κ5µν = 0, and Qστ
κ5µν = δσµG

τ
νκ − δσνG

τ
µκ −

δτµG
σ
νκ + δτνG

σ
µκ, where Gσ

µκ are the connection co-
efficients for five-vector fields, associated with the
derivative ∇· , so in this basis one has

F
i
j κ5µ5 = ∂κC

i
jµ5 − ∂µC

i
jκ5

+ Ci
sκ5C

s
jµ5 − Ci

sµ5C
s
jκ5

(130)

and

F
i
j κ5µν = ∂κC

i
jµν + Ci

sκ5C
s
jµν

− Ci
sµνC

s
jκ5 − Ci

jωνG
ω
µκ − Ci

jµωG
ω
νκ.

(131)

Likewise, one can prove that for the indicated ba-
sis the commutation constants QST

κλµν are given by
equation (51), so one has

F
i
j κλµν = Ci

sκλC
s
jµν − Ci

sµνC
s
jκλ

− gκµC
i
jλν + gκνC

i
jλµ

+ gλµC
i
jκν − gλνC

i
jκµ .

(132)

As in the case of bivector analogs of the Rie-
mann tensor, one can express the components of FF
in terms of the corresponding four-vector quantities.
For that one should first introduce the ordinary gauge
fields, Ai

jα, associated with the derivative ∇· defined
above. Denoting the components of the four-vector
field strength tensor constructed out of them as F i

jαβ ,
one can rewrire equation (130) as

F
i
j κ5µ5 = F i

jκµ, (133)

which is the analog of formula (31). One can then in-
troduce a four-vector 2-form whose values are tensors
of rank (1, 1) over VV and whose components in any
four-vector basis coincide with the quantities Ci

jµν

evaluated for the corresponding regular five-vector
basis. Denoting the components of this 2-form as
Ei

jµν , one can rewrite equation (131) as

F
i
j κ5µν = ∂κE

i
jµν +Ai

sκE
s
jµν − Ei

sµνA
s
jκ

− Ei
jωνΓ

ω
µκ − Ei

jµωΓ
ω
νκ = Ei

jµν;κ ,
(134)

where the semicolon denotes the covariant differen-
tiation corresponding to ∇· . Finally, equation (132)
will acquire the form

F
i
j κλµν = Ei

sκλE
s
jµν − Ei

sµνE
s
jκλ

− gκµE
i
jλν + gκνE

i
jλµ

+ gλµE
i
jκν − gλνE

i
jκµ .

(135)

It is evident that formulae (133)–(135) will hold in
any active regular basis.

As RR, FF satisfies a differential identity, which can
be easily obtained from the general identity (61) and
which has the same form as equation (62):

DA < FF,BB ∧ CC > − < FF, [AA,BB ] ∧ CC >
+ cyclic permutations = D∆(A,B,C) ,

(136)

where FF is regarded as a tensor. It is interesting to see
how from this latter identity one can derive identity
(53) of part V for the five-vector field strength tensor
F. To this end let us first rewrite equation (136) for
the case where FF is regarded as an operator:

[DA, < FF,BB ∧ CC > ] − < FF, [AA,BB ] ∧ CC >
+ D[A,[B,C]] + cyclic permutations = 0,

where I have also written out explicitly the quantity
∆(AA,BB, CC). By making simple transformations one
can cast the latter equation into the form

[DA, (< FF,BB ∧ CC > +D[B,C] ) ]
+ cyclic permutations = 0.

(137)
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By using the definitions of the tensors FF and F, it
is not difficult to prove that for any two five-vector
fields v and w,

< FF, σ(v) ∧ σ(w) > + D[σ(v), σ(w) ]

= < F,v ∧w > + 2[v,w] ,

where σ is the same as in equation (123). Substitut-
ing this expression into the left-hand side of equation
(137) at AA = σ(u), BB = σ(v), and CC = σ(w), one
finds that

[ 2u, (< F,v ∧w > + 2[v,w ] ) ] + cyclic perm.

= [ 2u, < F,v ∧w > ] + < F,u ∧ [v,w ] >

+ 2[u, [v,w ]] + cyclic perm.

= 2([u, [v,w ]]+[v, [w,u ]]+[w, [u,v ]])

+ < dF,u ∧ v ∧w > = 0,

and since the commutators of five-vector fields satisfy
the Jacobi identity, from the latter equation it follows
that dF = 0.

To give the reader an idea of the consequences
the considered generalization of the traditional gauge
field theory framework leads to, let us see how the
formalism developed above applies to classical elec-
trodynamics. In this case the fields Aα and Eµν will
apparently lose their idices i and j, and formulae
(133)–(135) will acquire the following simpler form:

Fµ5α5 = Fµα, Fµ5αβ = −Fαβµ5 = ∂µEαβ ,

Fµναβ = − gµαEνβ + gναEµβ

+ gµβEνα − gνβEµα.

(138)

From the point of view of brother physicist, who typ-
ically does not care much for the fancy mathematics
that underlies a new concept or theory and is inter-
ested only in the result, the discussed generalization
comes to that in addition to the usual electromagnetic
interaction one introduces a new interaction mediated
by an antisymmetric tensor field. This is by no means
a new idea in physics, and the Lagrangian density for
the pair of fields Aα and Eµν at an appropriate nor-
malization of the latter is usually taken to be

− 1
4FαβF

αβ + 1
4 ∂µEαβ ∂

µEαβ − (∂µEµα)
2, (139)

see e.g. ref.[1]. If one does keep in mind the under-
lying mathematical concept, one would expect that
the Lagrangian density in formula (139) can be ex-
pressed in terms of the components of the five-tensor
FF as some bilinear combination of the latter. It is
not difficult to check that from the quantities FABCD

one can construct only two independent true scalars,

for instance, FABCD
FABCD and F

AC
AD F

BD
BC . Con-

sequently, the Lagrangian density can be expressed
in the following form:

a · FABCD
FABCD + b · FAC

AD F
BD

BC .

Substituting into this expression the values of the
components given by formulae (138) and considering
that in an active regular basis h55 = κ−2, one finds
that the above sum equals

(4a− b) · κ−4 · (FαβFαβ)

+ 4a · κ−2 · (∂µEαβ)(∂µEαβ)− 2b · κ−2 · (∂µEµα)
2

+ 4b · κ−2 · (FαβEαβ) + (8a− 4b) · (EαβEαβ).

Requiring that the coefficient in front of the combi-
nation FαβFαβ equal −1/4, one obtains

− 1
4F

αβFαβ + (− 1
4κ

2 + bκ−2) · (∂µEαβ)(∂µEαβ)

− 2bκ−2 · (∂µEµα)
2 + 4bκ−2 · (FαβEαβ)

− ( 1
2κ

4 + 2b) · (EαβEαβ).

It is evident that the coefficient b should be of di-
mension length−4, so one can put b = κ4d, where d is
simply a number, and obtain

− 1
4F

αβFαβ + (− 1
4 + d) · κ2 · (∂µEαβ)(∂µEαβ)

− 2d · κ2 · (∂µEµα)
2 + 4d · κ2 · (FαβEαβ)

− ( 1
2 + 2d) · κ4 · (EαβEαβ).

Redefining the antisymmetric tensor field according
to the rule Eαβ → (εκ)−1Eαβ , where ε is an unknown
nonzero number, and requiring the coefficient in the
second term to equal 1/4, one obtains

− 1
4F

αβFαβ + 1
4 ∂

µEαβ∂µEαβ − 1
2 (ε

2 + 1) (∂µEµα)
2

+ κ (ε2 + 1) · FαβEαβ − 1
2κ

2(ε2 + 2) · EαβEαβ .

Finally, requiring the coefficient in the third term to
be −1 one finds that ε2 = 1 and obtains

− 1
4F

αβFαβ + 1
4 ∂

µEαβ∂µEαβ − (∂µEµα)
2

+ 2κFαβEαβ − 3
2κ

2 EαβEαβ .
(140)

As one can see, in addition to the standard La-
grangian densities for the electromagnetic and anti-
symmetric tensor fields, one obtains an interaction
term between Fαβ and Eαβ and a term that has the
form of a mass term for the field Eαβ . Owing to the
first of these terms, Maxwell’s equation and the equa-
tion for Eαβ cease being independent from each other
and in vacuum acquire the following form:

∂αFαβ = 4κ ∂αEαβ , (141)
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∂2Eαβ + 2 ∂λ(∂αEβλ − ∂βEαλ) + 6κ2Eαβ

= 4κFαβ.
(142)

The general solution of these equations can be pre-
sented as follows:

Fαβ = F
(1)
αβ + F

(2)
αβ

Eαβ = E
(1)
αβ + E

(2)
αβ + E

(3)
αβ .

Here F
(1)
αβ is a solution of Maxwell’s equation in vac-

uum and
E

(1)
αβ = 2

3 κ
−1F

(1)
αβ .

F
(2)
αβ is the electromagnetic field created by the source

Cβ ≡ ∂αEαβ that satisfies the equation

∂2Cβ + 10κ2Cβ = 0.

The field F
(2)
αβ has a nonzero longitudinal component

and nonzero mass mph ≡
√
10κ, and one has

E
(2)
αβ = 1

4 κ
−1F

(2)
αβ .

E
(3)
αβ is a solution of the Kaluza-Klein equation

∂2E
(3)
αβ + 6κ2E

(3)
αβ = 0

and such that ∂αE
(3)
αβ = 0. It is not accompanied by

an electromagnetic field.
In the presence of matter the field equations ac-

quire the following form:

∂αFαβ = 4κ ∂αEαβ + jβ , (143)

∂2Eαβ + 2 ∂λ(∂αEβλ − ∂βEαλ) + 6κ2Eαβ

= 4κFαβ + κ−1jαβ ,
(144)

where jα and jαβ can be obtained by varying the
part of the action that describes the interaction of
matter with bivector gauge fields with respect to Aα

and Eαβ . The construction of a consistent model that
would describe the interaction of a classical charged
point particle with the field Eαβ is discussed in ref.[2].

When considering the bivector analog of the field
strength tensor and other similar quantities, it is con-
venient to introduce some new notations and termi-
nology. First of all, one may denote

eAB ≡ eA ∧ eB and õAB ≡ õA ∧ õB.

One will then have

< õAB, eCD > = < õA ∧ õB, eC ∧ eD >

= δACδ
B
D − δADδBC ≡ δAB

CD.

Secondly, for any two five-vector bivectors AA and BB
one can define

AA ∧ BB ≡ AA⊗ BB − BB ⊗AA. (145)

Thus, according to these notations the wedge prod-
uct of two bivectors is constructed as if AA and BB were
tangent vectors, i.e. by antisymmetrizing their tensor
product, and not as it is usually done in exterior cal-
culus, where, for example,

(a ∧ b) ∧ (c ∧ d) = a ∧ b ∧ c ∧ d.

In a similar manner, one may take that

õAB ∧ õCD = õAB ⊗ õCD − õCD ⊗ õAB, (146)

and postulate that

< õAB ∧ õCD, eKL ∧ eMN >
= < õAB, eKL >< õCD, eMN >

− < õAB, eMN >< õCD, eKL > .

In all these formulae five-vector bivectors and five-
vector 2-forms are treated as if they were tangent vec-
tors and 1-forms. In accordance with this, one can
call quantity (145) a “bivector” and quantity (146)
a “2-form”. To distinguish such “bivectors made
of bivectors” and “2-forms made of 2-forms” from
the bivectors and 2-forms made of tangent vectors
and 1-forms one may add the adjective “bivector”
to the corresponding noun. In that case, however,
one will have such awkward combinations as “bivec-
tor bivector” and such misleading terms as “bivec-
tor 2-form”. To avoid this, instead of the adjective
“bivector” one can use the adjective “adjoint”, adopt-
ing it from group theory. Thus, a five-vector bivector
can be called an adjoint vector ; a five-vector 2-form
can be called an adjoint 1-form; the wedge product
(145) will be an adjoint bivector ; and tensors RR and
FF will be operator-valued adjoint 2-forms.
One can go even further and introduce a new type

of indices that would replace the pairs of antisym-
metrized five-vector indices that lable the compo-
nents of five-vector bivectors and five-vector 2-forms
and the corresponding basis elements. I will call
such indices adjoint and will denote them with cap-
ital Gothic letters. By definition, an adjoint index
runs through ten values, which, for example, can be
chosen to be 01, 02, 03, 05, 12, 13, 15, 23, 25, and 35.
Then, instead of

AA = A|KL|eKL and BB = B|KL|õ
KL

one can write

AA = Aℜeℜ and BB = Bℜõ
ℜ,
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and instead of formula (29),

RR = Eα ⊗ Õβ
R
α
βℑℜ õℑ ⊗ õℜ

= 1
2 Eα ⊗ Õβ

R
α
βℑℜ (õℑ ⊗ õℜ − õℜ ⊗ õℑ)

= 1
2 Eα ⊗ Õβ

R
α
βℑℜ õℑ ∧ õℜ.

Definition (127) can now be presented in the form

< FF,AA ∧ BB > = DADB − DBDA − D[A,B ],

similar to the usual definition of the field strength
tensor. Finally, one can introduce a certain order
on the set of values of adjoint indices, for example,
01 < 02 < 03 < 05 < 12 < 13 < 15 < 23 < 25 < 35,
and present the above expression for RR as

RR = Eα ⊗ Õβ
R
α
β |ℑℜ|õ

ℑ ∧ õℜ,

where, as usual, the bars around the indices mean
that summation extends only over ℑ < ℜ.

I. Integration of adjoint forms

In conclusion of this paper let us briefly discuss one
more item that concerns the five-tensors which ac-
cording to the terminology introduced in the previ-
ous section are adjoint forms. Up to now I have dis-
cussed only the differential properties of such tensors
and have said nothing about their integration. Ob-
viously, one can take that the integral, say, of the
adjoint 2-form FF over a given surface by definition
equals the integral of the corresponding four-vector 2-
form F over the same surface. In that case, however,
the contribution to the integral will be given only by
the components of the type Fµ5 ν5, while the rest of FF
will be of absolutely no account. Considering this, it
will be more correct to formulate the question about
the integration of adjoint forms in the following way:
can one define the integral of an adjoint form as a

whole? It is evident that what one has in mind is a
certain “bivector” generalization of ordinary exterior
calculus, where the objects of integration will be ad-
joint forms and where the infinitesimal elements of
integration volumes will be characterized by adjoint
vectors or by antisymmetrized tensor products of the
latter. As in the case of ordinary exterior calculus,
the starting point for developing such a formalism is
the notion of a vector (in our case, of an adjoint one)
tangent to a curve, the definition of which I will now
discuss.
It is evident that there is no distinguished way

of putting into correspondence to an ordinary
parametrized curve a five-vector bivector with a
nonzero Z-component, and therefore one has to find

a more specific class of curves that possess some addi-
tional structure. The simplest and the most obvious
solution are the curves endowed with a rule for trans-
porting four-vectors along them, provided that this
transport is linear and conserves the scalar product
g. By using these rules of transport, at any point Q
of any such curve C one can evaluate the derivative
of any sufficiently smooth four-vector field W defined
in the vicinity of Q. By analogy with the derivative
of a scalar field along a parametrized curve, let us
denote this derivative as DCW|Q. Making use of the
mentioned properties of the transport in question, it
is not difficult to prove that at each point of C there
exists a five-vector bivector AA such that for any suf-
ficiently smooth four-vector field W

DCW = DAW. (147)

It can be shown that the four-vector corresponding to
the E-component of AA coincides with the four-vector
U tangent to the curve at that point and that the
Z-component of AA is a homogeneous function of U
in the sense that when the parametrization of the
curve is changed, it changes in the same proportion
as U. Equation (147) offers one a way of putting into
correspondence to each curve endowed with a trans-
port rule for four-vectors, at each its point a certain
five-vector bivector, which I will call the bivector (or
adjoint vector) tangent to the curve at that point.
Let us now consider integrals along such curves.

Defining them similarly to the integrals along ordi-
nary parametrized curves, one obtains that any such
integral can be presented as

∫ λb

λa

dλ φ(λ),

where λa and λb are the end-point values of the curve
parameter and φ(λ) is a certain numerical function,
which may also depend on the adjoint vector tangent
to the curve at the integration point. In the following
I will be interested only in the integrals whose value
is independent of the curve parametrization (at the
same transport rule). Such integrals will be called
invariant. As in ordinary exterior calculus, one can
prove that for a given integral to be invariant it is suf-
ficient that φ be a homogeneous function of the tan-
gent bivector. As in part IV, let us confine ourselves
to the case of integrals whose integrand depends on
the tangent bivector linearly.
Already at this stage it is best to ask the following

question: where may the transport rules discussed
above come from in the real world? To this natural
question there exists an equally natural answer: as
rules for transporting four-vectors along any given
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curve one should take the rules of parallel transport
fixed by the five-vector affine connection, which one
assumes to be defined throughout space-time. From
what has been said above it then follows that for any
parametrized curve the adjoint tangent vector will be
AA = σ(u), where u is the homogeneous tangent five-
vector for this curve at the considered point. As it
has already been said, the E-component of AA will be
the five-vector bivector corresponding to uZ and the
Z-component of AA will be completely determined by
the four-vector torsion 1-form S̃ introduced in section
A. In particular, when the latter is zero, AAZ is zero,
too, and the considered curve becomes equivalent to
an ordinary parametrized curve.
Let us now consider m-dimensional surfaces (m =

2, 3 or 4) endowed with transport rules for four-
vectors. Let us take one such surface, introduce on it
a certain parametrization λ(1), . . . , λ(m), and by using
the method described above, define at each its point
a set of m adjoint vectors (AA(1), . . . ,AA(m)), each of
which is tangent to the corresponding inner coordi-
nate line at that point. If, as in the case of curves, one
assumes that the rules of transport along the consid-
ered surface are determined by five-vector affine con-
nection, one will have AA(k) = σ(u(k)) for all k from
1 to m, where u(k) is the homogeneous tangent five-
vector to the coordinate line λ(k). An integral over
such a surface will have the form

∫

Λ

dλ(1) . . . dλ(m)φ(λ(1), . . . , λ(m)), (148)

where Λ is the range of variation of inner coordinates
and φ(λ(1), . . . , λ(m)) is some numerical function that
may also depend on the adjoint vectors tangent to co-
ordinate lines at the integration point. As in part IV,
let us confine ourselves to the case where φ is a linear
function of each of the tangent bivectors AA(k). Since
each of the latter, in its turn, is a linear function of
the corresponding homogeneous tangent five-vector,
integral (148) will actually be an integral of the type
considered in section B of part IV, and therefore it
will not depend on the surface parametrization only
if its integrand is completely antisymmetric in all the
tangent bivectors and each of the latter is taken to
be σ(u(k)Z), not σ(u(k)). Thus, the integrand of any
invariant integral of the considered type should be a
contraction of some adjoint m-form with the adjoint
multivector of rank m of the form

σ(u(1)Z) ∧ . . . ∧ σ(u(m)Z). (149)

In the following such integrals will be referred to as
integrals of the first kind. From what has been said
above it follows that any such integral can also be
regarded as an integral over the same surface of a

certain five-vector m-form, which is obtained from
the adjoint m-form mentioned above by substituting
into the latter as its arguments m samples of the 1-
form s̃ introduced in section A. This duality between
integrals of adjoint forms and integrals of ordinary
five-vector forms proves to be very useful.
Comparing the results we have just obtained with

those obtained for integrals along curves, we see that
for the latter the condition of invariance is less strin-
gent: for them it is enough that the integrand be
homogeneous in uZ , whereas for the integrals over
volumes of greater dimension it is necessary that the
integrand be a linear function of the Z-components
of all the tangent five-vectors. This weaking of
the invariance condition for integrals along curves
is evidently a consequence of the latter being one-
dimensional and results in that invariant integrals
are not only those whose integrand is a contraction of
some adjoint 1-form with the bivector σ(uZ ), but also
those whose integrand is a contraction of an adjoint
1-form with the bivector σ(u), and therefore is not
linear in uZ . For uniformity, only the integrals of the
former type will be considered as integrals of the first
kind, while the integrals whose integrand is propor-
tional to uE will be regarded as nonlinear integrals,
which I will not consider here.
Thus, for any m-dimensional volume (now m =

1, 2, 3, 4) an integral of the first kind has the form
∫

Λ

dλ(1). . . dλ(m)<ÑN , σ(u(1)Z) ∧ . . . ∧ σ(u(m)Z)>,

(150)

where ÑN is some adjoint m-form, which, naturally,
may depend on torsion itself. As one can see, in this
case the adjoint multivector that characterizes the
infinitesimal element of the integration volume is in-
dependent of σ(n) (according to the definition of the
homogeneous tangent five-vector, one has σ(u(k) E) =
|g(u(k),u(k))|1/2 · σ(n) for every k) and therefore is
determined only by that part of four-vector torsion
which corresponds to the derivative ∇u ≡ 2(uZ),
and which in the following will be referred to as ∇-
torsion. In order to construct an integral that would
explicitly depend on σ(n), let us recall the second
type of integrals of ordinary five-vector forms, where
the infinitesimal element of an m-dimensional inte-
gration volume is characterized not by the multi-
vector u(1)Z ∧ . . . ∧ u(m)Z but by the multivector
u(1) ∧ . . . ∧ u(m) ∧ 1. It is evident that for this type
of integrals of five-vector forms the corresponding in-
tegrals of adjoint forms have the following form:
∫

Λ

dλ(1). . . dλ(m)<ÑN , σ(u(1))∧ . . .∧ σ(u(m))∧ σ(1)>,

(151)
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where ÑN is now a certain adjoint (m + 1)-form. In-
tegrals of this type will be referred to as integrals of

the second kind. As in the case of integrals of the first
kind, one can regard integral (151) as an integral over
the same surface of an ordinary five-vector (m + 1)-

form, which can be obtained from ÑN by substituting
into the latter as its arguments m+ 1 samples of the
1-form s̃.

As one can see from the formulae obtained, in con-
trast to the case of ordinary five-vector forms, for
which the difference between integrals of the first and
second kind is more a formality and comes only to the
difference in the rank of the integrated form, for ad-
joint forms the difference between integrals (150) and
(151) is more significant: in the first case the adjoint
multivector that characterizes the element of the in-
tegration volume depends only on ∇-torsion, whereas
in the second case this multivector also explicitly de-
pends on the quantity σ(1), which is the value of
some independent bivector field. Another significant
difference between integrals (150) and (151) is the
following: since for any nonzero u ∈ Z the bivector
σ(u) is never zero, multivector (149) does not van-
ish at any five-vector torsion, whereas for the adjoint
multivector in integral (151) to be nonvanishing one
must have σ(1) 6= 0. Therefore, when speaking of
integrals of the second kind one should assume the
latter condition to be obeyed everywhere within the
integration volume.

In conclusion let me say a few words about the
situation with the generalized Stokes theorem, which
in the case of ordinary forms enables one to trans-
form integrals over a closed surface into integrals over
the volume the latter encloses. Owing to the men-
tioned correspondence between integrals of adjoint
forms and integrals of ordinary five-vector forms, a
similar transformation can also be performed with in-
tegrals (150) and (151). However, since in either case
the multivector that characterizes the element of the
integration volume is torsion-dependent, the volume
integral one obtains will in general not be an integral
of an adjoint form. As an example, let us consider
an integral of the type (150) over some closed three-
dimensional surface ∂V that limits a four-dimensional
volume V , and let us write this integral down in com-
ponents relative to an active regular basis associated

with some coordinate system xα. One has

∫

∂V

ÑN ∝
∫

∂V

dλ(1)dλ(2)dλ(3) Nℜ1ℜ2ℜ3 s
ℜ1
α1

sℜ2
α2

sℜ3
α3

× (u(1))α1(u(2))α2(u(3))α3

=

∫

V

d4x ∂ [ 0 ( sℜ1
1 sℜ2

2 sℜ3

3 ] Nℜ1ℜ2ℜ3 )

=

∫

V

d4x ∂ [ 0 ( sℜ1
1 sℜ2

2 sℜ3

3 ] ) · Nℜ1ℜ2ℜ3

+

∫

V

d4x sℜ1

[ 1 s
ℜ2

2
sℜ3

3
· ∂0 ]Nℜ1ℜ2ℜ3

=

∫

V

d4x Nℜ1ℜ2ℜ3 · ∂ [ 0 ( sℜ1
1 sℜ2

2 sℜ3

3 ] )

+

∫

V

d4x D[ℜ Nℜ1ℜ2ℜ3 ] · sℜ0 sℜ1
1 sℜ2

2 sℜ3
3 .

In the general case, the first integral in the right-hand
side is not zero and its integrand cannot be presented
as a contraction of some adjoint 4-form with a multi-
vector of the type (149) at m = 4. Consequently, the
sum of the two terms in the right-hand side, too, will
not be an integral of an adjoint form over V . The
latter fact, however, does not prevent one from us-
ing the generalized Stokes theorem when integrating
adjoint forms.
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