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Abstract

In this paper, we show new representations of one-sided Lévy stable distributions for
p)

irrational Lévy indices of the type (g)H which are not covered in [8] : for rational Lévy
indices. Furthermore, other equivalent representations for a distribution of a rational Lévy
index is described. We also give a simplest proof for the formulae which cover the cases for
rational Lévy indices. Finally we introduce the concepts of Lévy smashing and Lévy-smashed

gamma stochastic processes.

1 Introduction and preliminary results

In [8], Penson and Gérska obtained a general form of one-sided Lévy stable distributions expressed
as a Meijer G-function for rational Lévy indices by putting v = 0 and a = 1 in the formula 2.2.1.19
in vol. 5 of [10]. In [2], the role of Mathai transformation in the theory of fractional calculus,
which connects ordinary integral to fractional integral through their kernels, is described and a-

level space is defined. Furthermore it is insisted that fractional integral and derivative preserve

1_s
the Lévy structure defined in [2]. The Lévy structure is nothing but the integrand I;(F‘Zkf;)) of

the H-function representation of the Lévy distribution with o known as the Lévy index which lies
D)

between 0 and 1. Hence the case of simple irrational Lévy indices of the type <§> " can be handled.

In this paper, we provide formulae for one-sided Lévy distribution of irrational Lévy index for
0 < a < 1 and some techniques to generate infinitely many new representations of one-sided Lévy
distribution. Furthermore, we introduce the concept of Lévy smashing as a consequence of Lévy

effect on the family of gamma density functions and Lévy-smashed stochastic processes.

We will use the following integral representation of the gamma function:

I'(z) = p° / t=~te7Ptdt, R(p) > 0,M|(z) >0
0

n! n®
= i 0,1,2,3,-- .
n1—>r{oloz(z+1)~~(z+n)’ 27 0.1,

Pochammer symbol is defined as

) = blb+1)---(b+k—1), blo=1, b#0
B ~ T(a+k)
O

whenever the gammas exist.
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For H-function representations and their convergence conditions, consult with [6], [7]:

z%ds.

Hmn [ (a1,41),(a2,A2), ,(ap,Ap) ] _ L {H;n:l (b + BS>}{H;L 1 ( — U AJ'S)}
(b B (b2 Ba) (o Ba) | 27 J7 AT,y T (1= b — Bys) H{I = s (aj+Ajs)}

Generalized Wright function, which is well explained in [7] and which is a particular case of the

H-function, is

(a1,A1),(a2,A2), (ap,Ap) az +An) n
2y [Z|(b1 B1),(b2,B2), bq Bq)] Z H b B n'z
where a;,b; € Cand A;,Bj € Rt A;#0,B; #0,i=1,--- ,p,j=1,--- ¢ B, %"

—1 for absolute convergence.
Hypergeometric series, which is well explained in [6] and which is a particular case of the H-

function, is

P+ q ) ) y 2 Y y YqH o H‘?Zl(b‘]) n!
which is absolutely convergent for all z in C if p < g.
Definition 1.1 Lévy jump function is defined as follows

H L, j<mn, jnel*

qn j%la ]2”7 j,n€Z+.

Lemma 1.1 [ Stirling asymptotic formula | [6]

For |z| — oo and a a bounded quantity,
[(z+a)~ (2m)Y/22107 12072 (1.1)

Lemma 1.2

Q.

D - el
ig—jp\ _ UT i
(o) - il

m,n (ap,Ap)| _ mmn | Jk (ap,kAp)
Hy4 |:Z‘(bj,B:):| =k Hy, [z ‘(b:,kB:)}

and

where v,n,p,q,i,j € ZT and k > 0.

Proof. Use the formula in [6], p44, T'(8 + 1 —v) = % and the properties in [7], which

complete the proof.



ly

2 Lévy stable distribution of Lévy index (g)ﬁ

Let
ful2) 1}{%_%) “ids, 1>a> Re(sy) > 0 (2.1)
(1) = =— ¢ —=L—2"qp7"1ds,, o e(s . .
2mi J; ol'(1 — 1) ! !
1 s
Z%E(I__ES)) appears firstly in [5] in the literature. Then f,(x) is the well known Levy density function

having the Laplace transform e=*".

Theorem 2.1 Let 0 < o < 1 and p,q,l1,ly be arbitrary positive integers such that 0 < a =

lo o

Iy oy
A o 1
<§> <1, p<qandl—(§) .

If | is not a positive integer and Iy # lo, then

fap(z) = l—\/p_q_ e l Y (iz (B5R)

apPlge'( |( 1),

z(2m)"2" (G0 (47H )
i _ PR
_ I\/Pq plp vl ppl ‘(_%7_1)4..(_, ~1)(-1,-1) N l\/p—q ’IZ pjlf;
p(2m) 2 \atrqr) T | arlgrl ooy (et oy | T oy £\ il g
o, |2 OBl ) Gl =) Gl ) - (-, ) )
|t (st ) (55 ) (02 ) | -

Ifl=1 and l; = o, then

fan(z) = ﬂq, HaL0 { P’ }(

z(2m)"3" bl g

i |4
_ \/m q_l Hzl 2 <ql |:qi|7:1
— @’ qu 1 (uq JP)
22
(

va—p pp (1 a— JP) (1 p— 1)q JP)
,1Fq*2 {( 1) quq|(1_7 j )(1 % j ).(1_11(11_%[2](1_1)]. (2.3>

If I belongs to the set {2,3,4,---} and l; # lo, then

j=1

fon (@) = — VP2 10 [P |(% 1) (1) () (55 4)
() - (27T)q+1;p—l pH—2,g—1 xpqu (21)0(20)
Vel (PN

z(2m) T " o(2m) 2 g

(2.4)

lq Pq Pq

PP (2-[2],-0) (3 [3), ) (5[] ) ]
z) ’

X g-2Vp 1111 [_ pqu|(q i 1). <<171)q7j17,1)(q jpl 71).._<<p71)q7jp177



Proof. Here we use a transformation 1 — s; = as, then

1 I'(s) e 1 1 -«
falz) = 57 %L F(as)x Lds, - > Re(s) > — > 0. (2.5)

Now, by using the Gauss-Legendre formula (Multiplicative formula) for gamma function, namely

1—m 1 - 1
C(mz) = (27T)Tmmz_l e + 2

S
&
!
o
_|_
|
-
=
3
I
\.H
\.M

we have

o = (9 () -ee () (5 e o)

Apply to the integrand in (2.5), then

11 (s LI:%ZS
fan(@) = —5— ls( )ls 1 —
<27T) ? ppq 2F<E)F(; + 5) F(g + T)
by Iy
where a = 2] =2 (2) h = (g) i
q q \q a)

We use

m,n (ap,Ap) m,n k|(ap,kAp)
Hp,q [ (bg, Bq)} k H [ ‘(bq,kBq)]
in Lemma 1.2. Then
q [(gs) P
fon(z) = 2m7{ o) T pPls— 3T (1 <r z) Ly..D(ls 4+ 222 *
(2m) 2 pree T (Us)(Is + ) -+ - D(ls + B2)

s—1 1 -1 ls
. ]{(%)wq D +3)- T + )
L

= iz (ZW)TpPlsf%F(ls) (Is+ ) (zs+z%1)
1 q 1 s

N e L ) R G >[P’”} s

omi Jy lsr(zs)r(zs+%>...p<l5+;%1> o

1 -1 L

g Lj{ F(S+1)F<s—|—a>...r<s+q7> [ppl] B
B 2 o <~ | =

x(2m) s LF(ls—i—l)F(ls—i—%)...F<ls+p71) xPlg

l

L [ﬂ u,z»(;,z)wn(z%z)}

oom) 8 g () (52

Since we have the following

Hpq[ﬁ;q‘ul)(( )) (( Z)]

ad k Y (ke — 2\ (e — L ko+1
Z ( )Rl (ko — T2) - T(—ko — 2)0(—ko — 1) (ppl > 0
ot —lko + 2= plq)r(—zk0+ Pla) (kg + 2D

xPlgt
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DL S L R I )
=0 k! D(—lky + BLZOD(— lk1+qp—jl)---r(—lk1+_<f’*;>qwl)
+§: k2F( ky + =2 2) (— kg—%)F(—k2+%)---F(—k2+%) ( o )k2+§
lk +Pq 2pl) ( lkfg—}—q%zpl)r(—lk’g—}— (p—lz))g—Qpl)

xpqu

a’;pqu
+

(—1)f 1D (=kgo1 + D)0 (=kgo1 — 2) - T(—kg1 — 3)
+ b= D) (- (r—Da—(a—Dpl
) D(—lkyy + ) (—lky_y + Py D (—lkg + )

rq

ko_ g=1
y ( ppl ) q—1t7 B ( plp ) v |: ppl ‘(_qq%l’_l)...(_f _1)(_, -1) :|
=\ ] a1 — _
aPlqt wleqa ) TP gplga (-t -0 (R gy (= lamrle g
D
q

0 q—2
! .5Zq> ot [_xzjqq’“’%“ l—)l(xqp; g )2”5—0}
N P ) L [_ p” (a6 }
PPligz ) TP L arlqn (5 (e e
p(q—l)l§ PPl (11—l 1y (=) gy -1
+ W) —1¥p [—quthq(il)pz’l)(q (qpql)pz )_.(<p1>qp<q1>pz’l)]7

x(2m) 2 Pl
_ l\/pq plp \II B ppl ‘(_%7_1)...(_3’_1)(_%7_1)
2(2m) 5" \atrgl P pplga (1) (R gy (@ Namrls )

NS <pﬂq ) \D[ P ,(1—[3111,—1)(3—[3127—1)(z—[z]y—l)w(q;—[z;]q_f—l)]

— xpqu (P(I;qul ,-l) ( q;gpl 7—l)( (p*l]igfjpl 7—l)

where [é] is the Lévy jump function.

n
Note that the series are absolutely convergent satisfying the condition 23:1 Bi—>" A >-1=
P iy
bl

—lp+Q—1>—1:>q>lp:>%>l:>%>§<§) :>%>1><§>11:Ozsincea<1.

If [ belongs to the set {2,3,4,---}, then we have

o[ 0 (20
fian(#) )H,,,q{ | ) 2.6)

(2 aplqa ! OD),(5:1). (45

j{ r(s)r(s+§>...p<s+g>

ED(s)T (1s+ 1)1 (1s

:L
x(2m)*2"

1
E2m

+
"GI»Q

We use
I(ls) = (2m) 'z I* 2T (s)T (s + %) .T (s + T) .
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Hence we have

R (
x(%)‘” 72 2mi LD (s+1)..T(s

Va0 [P0 |(% 1) (FR1) (G ) (55 )
B z(2m) T PHE2 | glqa (3.0). (950 1)

Note that for [ € {2,3,4,---}, ¢ should be of the form kp, k = 4,5,6,--- and Iy < l5. 23:1 B; —
A; >Omeansq—1—(l—1)—l(p—1) >0=q>Ip= kp>Ip= k> I But this condition

is always satisfied since [ = (k) o

If we put [ =1 in (2.6), then

2] = i [l

flan(z) = —Y—— VPD a0 { P |(0 (1)

(a1) 53(271')% P | gpqa | (0.1),(5.1),, (% 2m) p=La=1 | Zpoql(
Z WU | = pp |(§i[%]2’71>(gf[%]3’71>"'<%*[%]q71,71)
S\ ) T g () ()

by applymg the formula I'(f + 1 —v) = ((I—ETI)) in Lemma 1.1

ql( )Huz < _Mil)
rlig LT (%)
e | ) )

For the case of [ = 1, the condition for their convergence is trivial since p < q.

j=1

Some special cases will be given. We will use (2.3) to show some known results.

we have

NI
-

Example 2.1 Whenp=1, ¢=4, a =

2 3,0

2o () Bt ) )

- ﬁ "(1)7 ) o o]+ wrer (1) () 2 o)

N

Njw



*mr H) r (‘%) oF [ﬁ‘(i)(g)}
x{%r( i) r (” i) oF [%‘(i)(i)}

G)F( 1) o8 o) o () () o8 [msleaea)
22)

2.2

|
l\?\w

[\J\H

We will use to show some new results.

Example 2.2 Letp=1, ¢q=2, 1, =2, I =1, a—% [ =2, then
V2 a0 2)
f(%,\/i)(x) .Z'\/_ H12 |:4x\[|(11 51):|

— ﬁ (L U, [_ 1 |(*§’*1) } + L U, [_ 1 |(%*1) ]) '
ry/m \ 4xV2 4zV2 ' (1-v2-V2) v 4zV2 ' (1-25-V2)

3 A process to generate more representations

For the same rational «, more representations of one distribution can be generated by using (2.3)
and (2.4).

Example 3.1 Whenp=1, ¢=2, a = % in (2.3), we have

1 0] 1~ 1 -1._ 1 -1
- H ’ —_— = F - —
Tgn(®) aym [455}(;1)} 212/ o {430 _} 2T oo (4$>

Example 3.2 Letp=1, q=4, 1, =2, [b=1, a = }1% = %, [ =21in (2.4), then we have
V8 a0l 4 (L) 1 =T(—v+3) (-1
f(%’Q)(x) - 27TLL’H 13 [ 244 |(i 1).(3:0).(% 1)] onws UZ:; v! (43952)
1 =T(-v—3) ( -1Y\" 1 1 1 1
= F — | —_ F - |~
Tt () "2 o [me | o >D

eI
Il
DO [—
—
=}
e
N2
Ak
\J

Note that exp (Z—;) = oF [ﬁkl)] i L o Fy {43 2|(3)} and by setting a = (%)
2 2

another representation can be born in the sum of faster convergent series.

4 Lévy smashing on the family of gamma density functions

and Lévy-smashed gamma stochastic process

Mellin transform of a density function in statistics shows its statistical structure and this technique

can be used as a tool to blend two independently distributed random variables. In this section,
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we show what Lévy effect could be and how we should understand it. To start with, consider
1

the Lévy density function ﬁ : EFO(‘ 2; ~*ds and the gamma density functions %

0<a<l, 0<yand 0 < x < o0.

'yfl
() ©
x~%ds is the one-sided Lévy density function

e~ * where

27rz L aF 1-s)
found in [5] constructed in a different way in [2] We will use the Mellin transformation of the

form [, hi(%)ha(t)%, where hi(z) and hs(z) are certain density functions. Then we have

/ % TE=2) oy Lt 1 TG /°° Tt
w1 f ol (1= s) Sr() t  omifoal(1—s) J, T(y) = “%
|

— %) 1
- ﬁ O[F(l _as> <S ]—?‘i_(z) ) _Sds by tranSformatlon S = 1 — a81,
1 ( ) F( - 0681) -1
) o 4.1
Cwi i Tes) TG) (4.1)
and its Laplace transform
% 1 F(S> F(ry - OZS) -1 1 F(S)F(’}/ — OéS) B
L = yr_— as d d _ 1 QSd
w /0 © i fiT(s) I() - YT, Tty
~ (D' (y+ k) , o

kU D(7)
When o = 1 in (4.1), (4.1) becomes gamma density ”fj(;)l e ®. So fay(x) is a one-sided function

5 in (4.1), then we have

concentrated at # = 1 for R™. To understand its effect, put a =

1 I I'(v — 1 1
L (Sl) (ry 281){];'58171(181, Sl — 23 (43)

2mi Jp, F(%Sl) ['(v)
_ 1 ['(2s)T(y —s) 5logs — 1 2257IP ()1 (s + %) I(y—
2mi Jp T'(s)  T'(v) 2mi Jp, Vrl(s) I'(7)
(D T(y+5+k) s T(y+1) 1) 72
=AY B (1+B) (4.5)
AT (y + 3) ()t
- VAl()

Fig. 1 shows the impact on the family of gamma functions.

) v 12ds  (4.4)

[NIES

ol

-

(1+ 4z) 77 (4.6)

gamma family Lévy smashed gamma family
(a) v=1 e < 2(1 + 4x)~3/2
(b) v=2 re — 12x(1 + 4a)~%/2
(c) v=3 sl o 6022(1 + 4a)~7/2
(d) v=4 yrte " < 28023 (1 + 4z)~9/2




0.5+

12*t* (1+4*t) (- (5/2))

2% (1L+4*t) “ (-(3/2))

0.5+

035

280*t 3%

PH160* (£E52) * (1+4*t) * (- (7/2) (1+4%E) ™ (- (9/2))

029
025

0154
0.z

0.15 (tAZ*exp(—t))/z

(£*3*exp(-t)) /6

01

0.054
0.05

! () ! (d)
Figure 1.

fly(x) = QLM . Fr((jg) F(g(_f)‘s) 1%~ 1ds is absolutely convergent series for all z since yp = a—a+1 =
1 > 0, see [7]. From the fig. 1, f)(x) will be called as Lévy-smashed gamma density functions

especially when the parameter 0 < a < 1. Note that a can be any positive real number.

The stochastic process X(t),t > 0 with X(0) = 0 and having stationary and independent

increments, where X (¢) has the density function 5- fL 8) Li—as) pas—1gs 0 < o < 1, will be

T(as) T(t)
called Lévy-smashed gamma stochastic process. The Levy smashed gamma stochastic process
X (t) has the distribution function,for ¢ > 0, 0 < a < 1, Flap(z) = 5= ¢, r(lifas L t‘;‘s z*ds.

From [1] and [9], we can prove that the Lévy-smashed gamma dlstrlbutlon with parameter « is

attracted to the stable distribution with exponent o, 0 < o < 1. Namely,

> 1 I(s) I'(n —
lim Lf(g) — lim e YE_—_ (5> (TL 043) no‘sxas_ldeI
n—o00 n n—oo fq 27‘(’2 L F(OzS) F(n)
.1 ['(s)T'(n — as) _ DT(n +ak) fy\ed .«
=1 - as asde — i (_) y
ni00 2717 L ['(n) * T nhee Z kE!'T'(n) n ‘



5 Remarks

In [3], they consider the signalling problem for the standard diffusion equation 2u(z,t) = D-2; o 7 u(x t)
with the conditions u(z,07) = 0 z > 0;u(0",¢) = h(t),u(4+o00,t) = 0, ¢ > 0. And they say ”
Then the solution is as follows u(x,t) fo G4z, T)h(t — 7)dT, where G(z,t) = Q%t’%exp—%;t.

Here G%(z,t) represents the fundamental solution (or Green function) of the signalling problem,

since it corresponds to h(t) = d(t). We note that

d Vi K z?
t) = t; = ——), t>0 = — 5.1
gs (33, ) pLS( v:u) \/ﬂt% easp( Qt)’ Z U, u 2D ( )

where prs(t; 1) denotes the one-sided Lévy-Smirnov pdf spread out over all non-negative ¢ (the
time variable). The Lévy-Smirnov pdf has all moments of integer order infinite, since it decays
at infinity as 3. However, we note that the absolute moments of real order v are finite only if
0<rv< % In particular, for this pdf the mean is infinite, for which we can take the median as
expected value. From Prg(tmeq; 1) = 3, 1t turns out that f,,.q ~ 2u, since the complementary

2

error function gets the value % as its argument is approximatively 1 5.

With the inspiration from the above paragraph, take the Lévy density function with the pa-

rameter o = 3, then the density function is well known to be f 7 exp(—+;). Put this in the mellin

dt : 0o Vi t
convolution formula [, hy(£)ho(t)%, then it becomes [; R exp (—4) ho(t)dt. 2ﬁx% exp (—L%)
has the same form with (5.1) when ¢ = u. Therefore the cases of Lévy smashing treated in section
4 can be thought of as superstatistics in Physics and Bayesian statistical analysis, subordination

in statistics, namely,

2 _ 2 t—1 d e8] t—1
= / 7{ s) _Sysds Y v :/ VY —exp (—i) y—e_ydy
o 2miJp 31 Ity 0 2\/_305 4z/) T(t)

(—D*» ot /Oo t—1+k+d -
_ _ e Yd = 2e”Yd
0 2yt iz B (40)F r(t) . Mr(tm Z o ’
“(-D)fr(t+k+132) 4Dt O 1
1 (=)D + +2)_ (+ 2)(47) (1+4x) ~3

o/al(t)z: &= k! (4a)t YN0

But in this paper, the concept of Lévy smashing is totally different from the point of view of

superstatistics in Physics and Bayesian statistical analysis, subordination in statistics.
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