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Abstract. Since its emergence, quantum mechanics has been a challenge for
an understanding of reality which is based on our intuition in a classical world.
Nevertheless, it has often been tried to impose this understanding of reality on
quantum theory - with limited success. Instead, it might be a better alternative
to redefine the meaning of physical reality. This is the objective of the paper.
A consideration of the quantum measurement process, conditional probabili-
ties and some well-known typical quantum physical experiments provides the
reasoning for the following three hypotheses: (1) Prior to a first measurement,
a physical system is not in a quantum state. (2) Physical reality is all that
and only that about which (classical) information is available in the universe.
(3) Information creation is an independent process and is not covered by the
Schrödinger equation. It is the first step of the quantum measurement process
and does not have a classical counterpart. The first hypothesis makes sense only
if the quantum measurement process can be described without presupposing an
initial state for the system under consideration. This becomes possible by the
objective conditional probabilities which represent the transition probabilities
between the outcomes of successive quantum measurements and have been in-
troduced by the author in some recent papers. The second hypothesis holds as
well in the classical case, but a certain incompleteness of reality is typical of
quantum mechanics and the origin of many quantum phenomena. Classically,
the existence of a complete reality is presumed, and hypothesis 3 has no mean-
ing then.

1 Introduction

Since its emergence, quantum mechanics has been a challenge for an under-
standing of reality which is based on our intuition in a classical world. Nev-
ertheless, it has often been tried to impose this understanding of reality on
quantum theory - with limited success. Instead, it might be a better alternative
to redefine the meaning of physical reality.

It is therefore the objective of this paper to make the attempt to propose
a definition of what physical reality in a quantum world might be. This will
be motivated by the consideration of some well-known typical quantum exper-
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iments which shall be discussed at a more abstract level since it is not the
intention of the paper to go into the details of their many different technical
implementations. The following three hypotheses will then be presented:

1. Prior to a first measurement, a physical system is not in a quantum state.

2. Physical reality is all that and only that about which (classical) informa-
tion is available in the universe.

3. Information creation is an independent process and is not covered by the
Schrödinger equation.

Information creation is the first step of the quantum measurement process and
does not have a classical counterpart. The second step is the actual perception
of the information by an individual observer.

The first hypothesis makes sense only if the quantum measurement process
can be described without presupposing an initial state for the system under
consideration. This becomes possible by the objective conditional probabili-
ties which are the transition probabilities between the outcomes of successive
measurements and have been introduced in [10] and [11].

Therefore, the paper starts with a consideration of classical and quantum
mechanical conditional probabilities from which the objective conditional prob-
ability is derived then. In the subsequent sections, the double-slit experiment
and some further experiments are studied to provide the motivation for the
second and the third hypothesis.

The second hypothesis holds as well in the classical case, but a certain in-
completeness of reality is typical of quantum mechanics and the origin of many
quantum phenomena. Classically, the existence of a complete reality is pre-
sumed and hypothesis 3 has no meaning then.

The paper shall be a rather basic study considering only non-relativistic
quantum mechanics, although the three hypotheses might have some impact
beyond this. The meaning of information in the hypotheses and in the whole
paper is classical since the output of a quantum measurement is classical in-
formation. This is emphasized here to avoid any confusion with the so-called
quantum information.

2 Conditional probability

Classical probability theory uses a σ-algebra of sets as a mathematical model
of the system of events, and a probability measure µ allocates to each event a
number from the unit interval. For a given event e with µ(e) > 0, the conditional
probability is defined as another probability measure µe satisfying µe(f) =
µ(f)/µ(e) for all events f with f ≤ e. The usual notation is to write µ(d | e)
instead of µe(d) for any event d. A σ-algebra is a Boolean lattice and satisfies
the distributive law d = d ∩ e + d ∩ ec which immediately implies that the
conditional probability is uniquely defined and has the following shape:

µ(d | e) = µe(d) = µ(d ∩ e)/µ(e) (1)
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This conditional probability is usually understood as the probability of the event
d after the event e has already been observed. The additional knowledge due
to the observation of the event e transfers the original probability measure µ to
the new updated probability measure µe.

The standard Hilbert space model of quantum mechanics represents the
observables as self-adjoint linear operators on the Hilbert space. The observables
the spectrum of which contains only the numbers 0 and 1 form the events.
Therefore, events are self-adjoint idempotent linear operators. I.e., they are
orthogonal projections and there is a one-to-one correspondence between the
events and the closed linear subspaces of the Hilbert space. Two specific events
are the zero operator 0 and the identity operator I. The event I − e is also
denoted by e′ and is interpreted as the negation of the event e. A pair of events
e and f is called orthogonal if their operator product vanishes (i.e., ef = 0);
the interpretation is that the two events mutually exclude each other. We write
f ≤ e if the identity ef = f holds; this coincides with the usual order relation
for self-adjoint operators and is interpreted as the logical implication.

A probability measure µ - now also called state - allocates to each event a
number from the unit interval and satisfies µ(I) = 1 and µ(e+ f) = µ(e) +µ(f)
for any orthogonal event pair e and f . Due to Gleason’s theorem [3] and its
generalizations [5], [8] such a probability measure has a unique extension to a
positive linear functional defined for all bounded linear operators on the Hilbert
space (assuming that the dimension of the Hilbert space is not two). This
extension is again denoted by µ.

For an event e and a state µ with µ(e) > 0, in this situation, a conditional
probability shall again be another probability measure µe satisfying µe(f) =
µ(f)/µ(e) for all events f with f ≤ e. The issue of conditional probabilities in
quantum mechanics has been studied from many different directions (e.g., [4],
[6]) and [13]); here the same simple way of extending the classical conditional
probabilities to quantum mechanics is used as, e.g., by Beltrametti and Cassinelli
[1].

It shall now be studied whether such conditional probabilities exist and how
they look. Assume that d is any further quantum event. The quantum events
do not form a Boolean algebra and we cannot use the distributive law. Instead,
we have the following decomposition: d = ede + e′de + ede′ + e′de′. If the
conditional probability µe exists, then µe(e) = 1, µe(e

′) = 0 and the Cauchy-
Schwarz inequality for states implies that 0 = µe(e

′de) = µe(ede
′) = µe(e

′de);
thus µe(d) = µe(ede). Since ede lies in the closed linear hull of those events f
with f ≤ e by the spectral theorem, we get

µ(d | e) = µe(d) = µe(ede)/µ(e) (2)

This conditional probability µe is identical with the state that occurs in the
Lüders - von Neumann measurement process: a measurement with the result
e transfers the initial state µ to the final state µe. Therefore, the quantum
measurement process is identical with the transition from an initial probabil-
ity measure to the conditional probability where the condition is given by the
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information provided by the measurement result. In analogy to the classical
probabilities, this might suggest to understand a quantum measurement as a
mere observation of a certain property of a physical system. However, the as-
sumption that this property already preexists before the measurement takes
place is very problematic in quantum mechanics. The conditional probability
in equation 2 does not behave like a classical one. For instance, it can become
independent of the underlying state µ in some special situations.

3 Objective probability

If ede = λe holds for two quantum events e and d with some real number λ, the
conditional probability becomes µ(d | e) = λ and is independent of the state µ.
The value of this probability stems from the algebraic relation between the two
events and not from any probability measure or state. It is denoted by P(d | e).

The relation ede = λe holds, for instance, when e is the orthogonal projection
on a one-dimensional subspace of the Hilbert space; then λ = 〈ψ | d | ψ〉 / ‖ψ‖2
with |ψ〉 being any non-zero vector in this subspace, and

P(d | e) =
〈ψ | d | ψ〉
‖ψ‖2

(3)

Moreover, if d is the orthogonal projection on another one-dimensional subspace
containing the non-zero vector |ξ〉, equation 3 becomes

P(d | e) =
| 〈ψ | ξ〉 |2

‖ψ‖2 ‖ξ‖2
(4)

The term on the right-hand side of equation 4 is a very familiar quantum me-
chanical expression and is usually understood as the ‘transition probability be-
tween the states |ψ〉 and |ξ〉’, although the interpretation of the square of the
absolute value of a complex number as a probability comes a little unmoti-
vated and, furthermore, a transition probability should refer to events and not
to states. This interpretation is more or less enforced by the experimental
evidence, but not motivated by the mathematical model itself. However, the
left-hand side of equation 4 has an intrinsic probabilistic interpretation from the
very beginning, and it is clear that it is the conditional probability of the event
d after the observation of the event e and that this probability does not depend
on any initial state of the quantum system.

Outcomes of quantum measurements are events, and P(d | e) is the proba-
bility of the outcome d with a future measurement testing d versus d′, after a
first measurement testing e versus e′ has had the outcome e. The importance of
this special probability P(d | e) lies in the fact that it depends only on the two
measurement outcomes (e and d), but not on any initial state of the physical
system. It is therefore not necessary to assume that a physical system is in
a certain, perhaps unknown, quantum state before the measurement testing e
versus e′ starts. Moreover, P(d | e) is independent of any measuring apparatus
or method.
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The special probabilities P(· | ·) are transition probabilities between the
outcomes of successive measurements and depend on nothing else but the mea-
surement outcomes. If the probability P(d | e) does not exist, the knowledge of
the outcome e of the first measurement is not sufficient for any prediction con-
cerning the occurrence of d or d′ with a future measurement. However, P(d | e)
exists for all events d if e is the orthogonal projection on a one-dimensional sub-
space of the Hilbert space (i.e., a minimal event) and, in this case, the situation
after the measurement can be described by the state µ(·) := P(· | e).

If the events e and d commute, ede = ed is an event below e and ede = λe
can hold only with λ = 0 or λ = 1; i.e., only the trivial cases when e and
d are orthogonal or when e ≤ d are possible, and either (P(d | e) = 0 or
P(d | e) = 1. Only these two cases are also possible with classical probabilities.
This shows that the non-trivial cases of the special probability P(· | ·) are a
new non-classical phenomenon. The existence of such non-trivial cases easily
follows using equation 4 with orthogonal projections e and d on any two different
non-orthogonal one-dimensional subspaces of some Hilbert space.

Gathering more information means replacing e by another event f with f ≤ e
and a minimal non-zero event provides maximum information. In the classical
situation, only the two trivial cases with the values 0 and 1 for the conditional
probability under a minimal non-zero event occur, but in quantum mechanics
non-trivial cases and all values in the unit interval [0, 1] are possible.

So far, it has been seen that the special probability P(d | e) is a property of
the event pair e and d. It does not depend on any underlying initial state or
probability measure nor does it depend on any measuring apparatus or method.
It cannot be improved by gathering additional information when the measure-
ment result e is a minimal event (projection on a one-dimensional subspace of
the Hilbert space). This shows that the probability P(· | ·) has a certain objec-
tive character and it shall therefore be called an objective conditional probability
in this paper.

The significance of objective probability for quantum mechanics has already
been recognized by other authors. To base the interpretation of quantum me-
chanics on the interpretation of objective probability is the last one of Mermin’s
six desiderata [9] and later in this article he writes ‘Central ... is the doctrine
that the only proper subjects of physics are correlations among different parts
of the physical world. Correlations are fundamental, irreducible and objective’.
Bub and Pitowski [2] write ‘Hilbert space imposes ... objective probabilistic
constraints on correlations between events’. The definition of the objective con-
ditional probability via its state-independence provides it with a mathematical
foundation as well as a clear interpretation.

4 The first hypothesis

The objective conditional probabilities perfectly describe the transition proba-
bilities between measurements without requiring the assumption that the phys-
ical system under consideration is in a certain state prior to the first measure-
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ment. These probabilities can be tested by physical experiments although the
estimation of a probability requires more than one single measurement.

There is neither a stringent reason for the assumption that a physical system
is in a certain quantum state prior to a first measurement nor for the assump-
tion that it is not. However, the potential state prior to a first measurement
cannot be verified by any physical experiment and the assumption that there
is no such state is more appropriate for an empirical science dealing only with
experimentally verifiable phenomena. This becomes the first hypothesis.

Hypothesis 1: Prior to a first measurement, a physical system is not in a quan-
tum state.

When a measurement outcome e is a minimal event, the situation after the mea-
surement can be described by the state µ(·) := P(· | e). Such a first measurement
is often called ‘preparation’, although there is no real reason for the distinction
between ‘measurement’ and ‘preparation’. A situation with a ‘preparation’ and
a ‘measurement’ is the same as a situation with a ‘first measurement’ and a
‘second successive measurement’. To ‘prepare’ a specific quantum state, the
first measurement must be repeated with new inputs until the desired result is
achieved.

Note that the objective conditional probability P(d | e) covers also cases
when e is not a minimal event; P(d | e) does then not exist for all d, but for
some d. E.g., consider the two matrices

e =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 and d = 1
2


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1


Then ede = e/2 and P(d | e) = 1/2 although e is not minimal (it is a projection
on a two-dimensional subspace). In this case, the situation after a measurement
with the outcome e cannot be described by a quantum state (neither by a pure
one nor by a mixed one; the calculation of a mixed state would require the
knowledge of the state prior to the measurement). Therefore, the objective con-
ditional probabilities cover more situations than the common ‘preparation and
measurement’ approach, where it is assumed that the ‘preparation’ determines
a unique state.

Though the proposal to understand the Lüders - von Neumann measurement
as a non-classical probability conditionalization rule has been known for some
time [4], the state-independence of the conditional probabilities in certain cases
appears to have gained only little attention so far. A deeper understanding of
these objective conditional probabilities requires the consideration of repeated
conditionalization.
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5 Repeated conditionalization

The conditional probability of a further event d in the state µ after having
observed a sequence of n events e1, e2, ..., en(n > 1) is inductively defined via

µe1,e2,...,en :=
(
µe1,e2,...,en−1

)
en

if µe1,e2,...,en−1
(en) > 0. Again µ(d | e1, e2, ..., en) shall also be written for

µe1,e2,...,en(d). With classical probabilities, this becomes

µ(d | e1, e2, ..., en) =
µ(d ∩ e1 ∩ · · · ∩ en)

µ(e1 ∩ · · · ∩ en)
= µ(d | e1 ∩ e2 · · · ∩ en) (5)

With the quantum model, it becomes

µ(d | e1, e2, ..., en) =
µ(e1e2 · · · enden · · · e2e1)

µ(e1e2 · · · en · · · e2e1)
(6)

If e1e2 · · · enden · · · e2e1 = λe1e2 · · · en · · · e2e1 for some real number λ, this
conditional probability is again independent of the state and is denoted by
P(d | e1, e2, ..., en). This objective conditional probability exists e.g., if the
operator product e1e2 · · · en does not vanish and if one of the events is the
projection on a one-dimensional subspace. Assume that this is ek (1 ≤ k ≤
n). Then e1e2 · · · enden · · · e2e1 = αe1e2 · · · ek · · · e2e1 and e1e2 · · · en · · · e2e1 =
βe1e2 · · · ek · · · e2e1 for some α ≥ 0 and β > 0 such that P(d | e1, e2, ..., en) =
α/β.

If P(d | en) exists, the objective conditional probability under the event
sequence e1, e2, ..., en exists as well and P(d | e1, e2, ..., en) = P(d | en). I.e., the
previous observations e1, e2, ..., en−1 can completely be ignored in this case.

Moreover, P(en | e1, e2, ..., en) = 1 always holds, but P(ek | e1, e2, ..., en) = 1
need not equal 1 for k < n (e.g., if P(ek | en) exists and P(ek | en) 6= 1). This
means that, if the same property is tested a second time without other tests in
between, the second test will always provide the same outcome as the first one.
However, if other properties have been tested in between, there is a chance that
the last test provides another outcome although the same system property is
tested again as in the first test. The information gained from the first test seems
to have been destroyed by the information about the other properties tested in
between.

This behavior of the objective conditional probabilities might be quite sur-
prising from a classical point of view, but is totally in line with quantum exper-
iments (e.g., consider a series of spin measurements along different spatial axes
with an electron or photon).

The classical conditional probability µ(en | e1, e2, ..., en) does not depend
on the sequential order of the events e1, e2, · · · , en and is identical with the
conditional probability under the single event e1 ∩ e2 · · · ∩ en. However, in
the quantum case, a logical ‘and’-operation like ∩ is not generally available
and observing an event e1 first and an event e2 second becomes different from
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observing e2 first and e1 second. Timely order seems to have more significance
then than in the classical case.

With the common Hilbert space model, the quantum events form a lattice.
However, the observation of the event series e1, e2, ..., en is not identical with
the observation of the single event e1 ∧ e2 · · · ∧ en. E.g., consider two non-
orthogonal one-dimensional subspaces of a Hilbert space and the corresponding
projection operators e1 and e2; then e1 ∧ e2 = 0, but P(d | e1, e2) = P(d | e2)
as well as P(d | e2, e1) = P(d | e1) both exist for all events d. If a logical ‘and’-
operation were available, one would expect ‘e1 and e2’ = e2 as well as ‘e2 and
e1’ = e1. This shows that the lattice operation ∧ cannot be a candidate for
the logical ‘and’-operation and, moreover, that a logical ‘and’-operation cannot
make any sense in the quantum case. Only if two events e1 and e2 commute,
e1e2 = e2e1 = e1 ∧ e2 can be considered to be something like ‘e1 and e2.’

6 The double-slit experiment

Now assume that the event e is the sum of two orthogonal events e1 and e2 and
consider the conditional probability of another event d under e in a state µ with
µ(e1) > 0 and µ(e2) > 0. In the classical case, the distributive law again implies
the following identity:

µ(d | e) =
1

µ(e)
(µ(d | e1)µ(e1) + µ(d | e2)µ(e2)) (7)

In the quantum case, the identity ede = e1de1 +e2de2 +e1de2 +e2de1 holds and
thus

µ(d | e) =
1

µ(e)
(µ(d | e1)µ(e1) + µ(d | e2)µ(e2) + 2Reµ(e1de2)) (8)

where Reµ(e1de2) denotes the real part of a complex number µ(e1de2). If
neither e1 nor e2 commutes with d, the last term 2Reµ(e1de2) on the right-
hand side of equation 8 need not vanish (although e1 and e2 are orthogonal)
and, moreover, can be negative as well as positive. This term is responsible
for a certain deviation from the sum of the first two terms on the right-hand
side of equation 8 which are identical with the classical case in equation 7. In
quantum mechanics, this deviation is called interference and is often explained
by allocating wave-like properties to quantum particles.

In the same way, interference occurs with the objective conditional prob-
ability P(d | f, e); it is assumed that f is the orthogonal projection on a
one-dimensional subspace such that this probability exists. Equation 8 then
becomes:

P(d | f, e) =
1

P(e | f)
(P(d | f, e1)P(e1 | f) + P(d | f, e2)P(e2 | f) + 2Reλ) (9)

where λ is the complex number with fe1de2f = λf and Reλ its real part.
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Now consider the well-known double-slit experiment with a micro-physical
particle (e.g., a photon or electron). Let f be the event that the particle has
the linear momentum ~p. Let ek (k = 1, 2) be the events that the particle passes
through slit 1 and 2, respectively, and let d be the event that the particle is
detected at a certain fixed location x behind the screen with the two slits. Then
the different objective conditional probabilities in equation 9 own the following
interpretations:

P(d | f, e1) = probability that a particle with the linear momentum ~p will
be detected at x, when slit 1 is open and slit 2 is shut.

P(d | f, e2) = probability that a particle with the linear momentum ~p will
be detected at x, when slit 1 is shut and slit 2 is open.

P(d | f, e) = probability that a particle with the linear momentum ~p will
be detected at x, when both slits are open.

P(e1 | f) = probability that a particle with the linear momentum ~p will
pass through slit 1.

P(e2 | f) = probability that a particle with the linear momentum ~p will
pass through slit 2.

P(e | f) = probability that a particle with the linear momentum ~p will
pass through any one of the two slits.

The interference patterns that are observed with the double-slit experiments
with micro-physical particles and that contradict the behavior of the classical
conditional probabilities find now their explanation in the interference term
2Reλ in equation 9. With the equations 8 and 9, interference becomes an
intrinsic property of the conditional probabilities. Its origin lies in the algebraic
structure of the system of quantum events which does not anymore satisfy the
distributive law of Boolean algebra.

As soon as it it possible to find out through which one of the two slits the
particle passes, however, there is no interference, and instead of equation 8 the
equation 7 or instead of equation 9 the following one has to be used:

P(d | f, e) =
1

P(e | f)
(P(d | f, e1)P(e1 | f) + P(d | f, e2)P(e2 | f)) (10)

The fact that some information is available in principle makes an important
difference in quantum mechanics. It is not necessary that a human observer
knows this information; it is sufficient that it exists. In this cases, the equations 7
or 10 are valid. When the information exists and is perceived by an observer, the
probability valid for this observer becomes the conditional probability µ(d | ek)
or P(ek | f), assuming that the event ek has occurred (k = 1 or k = 2).

In quantum mechanics, a two-step process is encountered; the first one is
the creation of the information, and the second one is the actual perception of
the information by an individual observer. The second step is identical with
the transition to a conditional probability in classical probability theory. The
first one is specific to quantum mechanics and does not occur with classical
probabilities since the mathematical model (σ-algebras) in principle assumes
the availability of all information from the beginning. These considerations
shall be continued studying some other experiments.
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7 Further experiments

A micro-physical particle is sent through a serial arrangement of three measure-
ment apparatuses. Each one tests a certain property (A or B) of the particle;
the first one and the last one test the same property (A: e versus e′) while the
second one in the middle tests another property (B: f versus f ′). After passing
through the first apparatus the particle is blocked if the measurement outcome
in this first apparatus is e′ and the particle is sent to the second apparatus in
the middle only if the outcome is e.

A concrete realization of this arrangement can be implemented by using
electrons and measuring their spin along the x-axis in the first and in the third
apparatus and measuring their spin along the y-axis in the second apparatus in
the middle. The event e corresponds to ‘the spin along the x-axis is +~/2’, e′

to ‘the spin along the x-axis is −~/2’, f to ‘the spin along the y-axis is +~/2’,
and f ′ to ‘the spin along the y-axis is −~/2’.

Figure 1: The basic arrangement

Figure 2: Blocking one path

Figure 3: Insertion of a detector

The basic arrangement is shown in Figure 1. The two outlet paths of the ap-
paratus in the middle are joined and fed into the third apparatus which tests the
same particle property (A) as the first apparatus. Therefore the measurement
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outcome of the third apparatus is e with probability 1:

P(e | e, f + f ′) = P(e | e, I) = P(e | e) = 1 (11)

In the next arrangement (Figure 2), one of the two outlet paths of the ap-
paratus in the middle is blocked and, surprisingly, the measurement outcome e′

becomes possible with a non-zero probability in the third apparatus although
this is the negation of e which was the measurement outcome of the first appa-
ratus in the series:

P(e | e, f) = P(e | f) = 1/2 (12)

Here, the first =-sign holds whenever f is a minimal event and the second
one holds in the concrete case with the electron spin. Then P(e′ | e, f) =
1− P(e | e, f) = 1/2.

In the third arrangement (Figure 3), a detector D is inserted in one of the
outlet paths of the apparatus in the middle. It detects the particle, stores this
information, and lets the particle pass. Both outlet paths of the apparatus in the
middle are then joined and fed into the third apparatus as in the arrangement
shown in Figure 1. Nevertheless, both measurement outcomes (e and e′) do
occur in the third apparatus with non-zero probability as they do in the second
arrangement (Figure 2):

P(e | e, f)P(f | e) + P(e | e, f ′)P(f ′ | e) (13)

= P(e | f)P(f | e) + P(e | f ′)P(f ′ | e)

= 1/2

Here, the first =-sign holds whenever f and f ′ are minimal events and the
second one holds in the concrete case with the electron spin since each of the
four conditional probabilities equals 1/2 then. The probability of the event e′

is P(e′ | e, f) = 1− P(e | e, f) = 1/2. When the observer reads the information
stored in the detector, the probability becomes P(e | e, f) = P(e | f) or P(e |
e, f ′) = P(e | f ′) depending on whether the particle was detected by D or not.

When the outcome of the B measurement is known by the observer, the
same conditional probability is obtained as in equation 12. Interesting are the
difference between the first arrangement displayed in Figure 1 and the third one
displayed in Figure 3 when the observer has not checked the information stored
in the detector D and the question why different rules for the calculation of the
probability have to be applied here.

If a particle uses the upper path in Figure 3, there is no interaction of it with
the detector and nevertheless the presence of the detector in the other path is
responsible for a dramatical change of the probabilities for the measurement
outcomes in the third apparatus. If the detector is present, the probability of
e′ is non-zero while it is zero without the detector (Figure 3). Only the mere
fact that information about the path of the particle is available in principle can
be the reason for the different probabilities; then equation 13 is the rule for the
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calculation of the probability while this is equation 11 in the case when no such
information exists.

Instead of using electrons, similar experiments can be executed with with
photons and their spin (i.e., with light and its polarization). Even small atoms
have been used in such experiments and particularly in the third arrangement
(Figure 1), where an excited atom then emits a photon in the detector D ren-
dering possible the later look-up whether or not the atom has passed through
the detector.

8 Physical reality and the second hypothesis

The experiments considered in the last two sections seem to indicate that a
physical phenomenon ‘becomes reality’ in some cases and that it does not in
other ones. Depending on this, different rules for the probability calculation
have to be used. With the arrangement of Figure 1, none of the two paths
between the second and the third apparatus ‘becomes reality’ while the path
does ‘become reality’ in the other two cases (Figures 2 and 3). Also with the
double-slit experiment, it does neither ‘become reality’ that the particle passes
through slit one nor that is passes through slit two; ‘reality becomes’ only that
it passes through one of them without specifying which one. First, it must be
noted that physical reality is meant here; philosophy may consider other non-
physical realities. Second, the wording ‘to become reality’ does not have a clear
meaning as long as there is no definition of what physical reality is. To find
such a definition is the objective of this section.

The creation of reality appears to be identical with the creation of informa-
tion. This suggests that something is physically real if information about it is
available.

On the other hand, physical reality must be experimentally verifiable - at
least in principle. This requires the availability of information stored in nature
somehow, and something about which no information is available cannot be
considered a part of physical reality. If something is physically real, information
about it must be available. These considerations are summarized in the follow-
ing hypothesis as definition of physical reality.

Hypothesis 2: Physical reality is all that and only that about which some infor-
mation is stored somewhere somehow in the universe.

This does not require a (human) observer; relevant is only the fact that the in-
formation is stored such that it is available to a potential observer. The meaning
of information is classical here.

Moreover, a measuring apparatus set up by a human is not necessarily re-
quired. The same physical phenomenon that happens in such an apparatus also
occurs in nature without a human being involved. An apparatus is nothing else
but a part of nature intentionally arranged by a human to study a particular
phenomenon.
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The typical quantum phenomena require that something does not become
reality or that no information about it is created. With the double-slit exper-
iment, this is the actual path through either the first or the second slit. With
the arrangement shown in Figure 1, this is the measurement outcome in the
apparatus in the middle or the actual path between the this one and the third
apparatus.

Hypothesis 2 itself is also valid in a classical theory. It is not this hypothesis
that distinguishes the quantum case from the classical one, but the incom-
pleteness of the reality. Sometimes, quantum events do not become reality; no
information exists in the universe whether they are true or false. In the classical
case, it is always presumed that each event is either true or false, and proba-
bilities arise from a lack of knowledge about the reality. In the quantum case,
however, it is well-known that it is impossible to allocate a true- or false-value
in a consistent manner to each event [7]; this means that a complete reality is
not possible.

9 Quantum measurement and the third hypo-
thesis

In quantum mechanics, the Schrödinger equation results in unitary time evo-
lution operators. The time evolution can be allocated to the states, which is
the Schrödinger picture, or to the observables, which is the Heisenberg picture.
Mathematically, the two pictures are equivalent. However, in view of the first
hypothesis, the Heisenberg picture is to be preferred. One of the questions
around the quantum measurement process is whether this type of time evo-
lution is universally valid such that is also covers the quantum measurement
process. In the wording of the previous section, this question becomes whether
the creation of information is coverd by the Schrödinger equation.

Figure 4: The arrangement of Figure 3 with time scale

To study this, the experiment depicted in Figure 3 shall be reconsidered.
Suppose that the measurement outcome for a certain particle is f in the appa-
ratus in the middle and is e′ in the third apparatus. Such a path is shown in
Figure 4 where a time scale has also been added. The question at which time
the creation of information happens shall now be addressed.
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At what time t is the information created that the outcome in the apparatus
in the middle is f? This is not the time t = t0 when the particle passes through
the apparatus in the middle, but the time t = t1 when it would have passed
through the detector in the case of the outcome f ′. Until t = t1 the detector
could still be removed and this information would never be created as in the
arrangement depicted in Figure 1. At t = t1 the information is created that
the measurement outcome at the earlier time t = t0 was f ; at t = t0 itself this
information was not yet available.

Moreover, the fact that the particle does not pass through the detector im-
plies that it owns the property f in the time interval [t0, t2] on its path between
the second and the third apparatus. So, at time t = t1, an information is cre-
ated at the detector D that the particle owns the property f at this time point
although the particle is located at another distant place at this time point.
Therefore, it is possible to create information about a certain phenomenon hap-
pening spatially and timely separated from the location where the information
is generated. This motivates the last hypothesis.

Hypothesis 3: The process which creates information or physical reality is an
independent process and not covered by the unitary time evolution following from
the Schrödinger equation.

Classically, the existence of a complete reality or the availability of complete
information is always presumed and hypothesis 3 has no meaning then. Infor-
mation creation is the first step of the quantum measurement process and has
no counterpart in classical physics. The second step is then the actual percep-
tion of the information by an individual observer; as in the classical case, it is
a mere observation of a preexisting reality since that what is observed has been
created in the first step.

In daily life it is quite common that that information is deleted. Information
written on a piece of paper is destroyed by shredding or burning the paper. The
bits stored in computer are deleted by overwriting them with other bits. If no
copy of the information exits on another piece of paper, another computer or in
the brain of a human or in any other form, only then the information is really
destroyed. However, as long as copies exist, the information is still there, and
even if no copies exist, it may still be possible to reconstruct the information by
some physical process.

With the Schrödinger equation, the complete past and future evolution of a
state can determined from the state at a certain time point. The belief in the
universal validity of the Schrödinger equation would include that information
about a physical system at one point in time should determine it at any other
time and that physical information cannot be destroyed therefore.
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With hypothesis 3, however, there is no reason anymore to rule out that in-
formation can be deleted. In view of hypothesis 2, this gets a higher significance.
If the deletion of information were possible, this might have important conse-
quences in physics and philosophy which are beyond the scope of the present
paper.

10 Conclusions

An understanding of reality based on our intuition in a classical world is not
anymore appropriate for the quantum world, and it has therefore been proposed
to redefine the meaning of physical reality.

It has been argued that only the measurement outcomes represent physical
reality. It is not necessary that a measurement outcome is perceived by a human
observer; it is sufficient that some information about the outcome is available
to a potential observer. Moreover, a measuring apparatus set up by a human is
not necessarily required. The same physical phenomena that happen in such an
apparatus also occur in nature without a human being involved. An apparatus
is nothing else but a part of nature intentionally arranged by a human to study
a particular phenomenon.

Thus physical reality becomes identical with the information available in the
universe about the natural phenomena. The meaning of information is classical
here. A major difference to the classical case is the incompleteness of reality.
This incompleteness is a major source for the typical quantum phenomena.
Quantum interference occurs only if certain events do not become reality.

Moreover, the creation of information or, in other words, the quantum mea-
surement process, is an independent process. It is not covered by the unitary
time evolution following from the Schrödinger equation. There is no common
agreement on this view, but some other authors who have recently supported it
are J. Bub [2], I. Pitowsky [12] and J. Rau [14].

Since only the measurement outcomes represent physical reality, a quan-
tum measurement should not be described as a transition between states, but
as a transition between measurement outcomes. Since this transition is not
deterministic, transition probabilities between the measurement outcomes are
required. These are the objective conditional probabilities considered in sections
3 and 4 of this paper.
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