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1. Introduction

The equations of the relativistic magnetohydrodynamics (RMHD) of a magnetoactive
plasma in a gravitational field were formulated in [1]‡ using the equality requirements
for the dynamic velocities of the plasma and the electromagnetic field§. These
equations were obtained on the basis of the Einstein and Maxwell equations. A
remarkable class of exact solutions of these RMHD equations was also found. It
explains the motion of a magnetoactive locally isotropic plasma in the field of a
plane gravitational wave (PGW). This class was called gravimagnetic shock waves

(GMSW). It describes essentially nonlinear processes which do not exist in the linear
approximation of magnetohydrodynamics and essentially relativistic processes in terms
of predominance of the massless electromagnetic component in the magnetoactive
plasma. It was shown in [2] that the GMSW in pulsar magnetospheres may be the
highly effective detectors of gravitational waves from neutron stars. Particularly, giant
pulses which sporadically appear in the radiation of some pulsars may be observational
results of energy transfer from a gravitational wave to GMSW. Estimations made
in [2]-[4] make it possible to connect giant pulses in radiation of the pulsar
B0531+21 with gravitational radiation in the basic mode of oscillations from this
pulsar. In fact, at present it is rather difficult to speak of identification of giant
pulses as an electromagnetic display of gravimagnetic shock wave evolution in the
pulsar magnetosphere and to unambiguously connect these pulses with the pulsar’s
gravitational radiation. Nevertheless, the idea of analyzing the effect of gravitational
waves from a compact astrophysical object on its own electromagnetic radiation is
highly productive for solving the problems of gravitational waves detection. In fact,
the main difficulties of gravitational waves detection in the Earth environment are:

(i) An extremely small amplitude of gravitational waves on Earth (h
<∼ 10−19) due

to significant distances from relativistic astrophysical objects.

(ii) A sporadic nature of events leading to radiation of gravitational waves inside
relativistic astrophysical objects with sufficient power. This does not allow one
to unambiguously connect a received signal with a fact of gravitation radiation
detection.

(iii) Impossibility to construct relativistic detectors with anomalous, highly effective
parameters for gravitational wave detection in conditions terrestrial laboratory
(superstrong magnetic fields, a highly anisotropic working body of the detector,
low level of background noise etc.).

It is possible to avoid these problems if one could transfer a detector directly to a
close neighborhood of a relativistic astrophysical object. In this case, one always
has a ready electromagnetic signal and there is no need to convert it to other forms,
which allows for conducting correlation analysis. If the working body of the detector
is the magnetosphere of a relativistic astrophysical object, the optimal parameters
for gravitational wave detection are achieved automatically: super-strong magnetic
fields, an ultrarelativistic equation of state, highly anisotropy etc. The fundamental
importance of the GMSW for gravitational theory, as a direct conversion effect of
gravitational wave energy into electromagnetic energy, leads to a necessity of a more
detailed and comprehensive researches. In [5], a strict foundation of the GMSW

‡ Before 2000 Yu.G. Ignatyev wrote his name as Yu.G. Ignat’ev.
§ This requirement is completely equivalent to the condition of plasma infinite conductivity, see
Ref.[1].
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hydrodynamic theory was formulated on the basis of the relativistic kinetic theory.
As has been shown in [1]-[4], a GMSW is realized in an essentially collisionless
nonequilibrium plasma in anomalously strong magnetic fields. The isotropy of a local
plasma electron distribution essentially is violated under such conditions due to strong
bremsstrahlung. Therefore, the anisotropy factor of a magnetoactive plasma is highly
essential for the efficiency of the GMSW formation mechanism. A hydrodynamic
model of GMSW in an anisotropic plasma was constructed in [6] for a specified relation
between parallel and perpendicular components of the plasma pressure. The analysis
in [6] was based on the general RMHD equations. Particularly, an elementary linear
relation was considered in [6]. This study has revealed a strong dependence of the
GMSW effect on the plasma degree of anisotropy. That fact has led to a necessity of
constructing a dynamic model for the motion of an anisotropic magnetoactive plasma
in the field of gravitational radiation.

Further, in [7] a detailed numerical model of GMSW has been carried out at
various parameters of the anisotropic magnetoactive plasma in the computer algebra
system Mathematica. This study was based on the numerical solution of the nonlinear
energybalance equation by means of special methods of numerical integration. The
results received in [7] have confirmed earlier made analytical estimations of the
magnetoactive plasmas behavior in a field of strong gravitational wave and have
defined more exactly some characteristics of GMSW.

However, at all variety of models of plasma only the case of monopolarized
gravitational wave with polarization e+ investigated in all quoted papers. It has been
thus shown that the case of monopolarized gravitational wave with polarization e× is
reduced to the case of e+ polarization state at the coordinate and physical quantities
transformations. However, the case of simultaneously existence of two polarizations
of a gravitational wave was not investigated. In this paper we consider such a case.
Thus it was possible to reduce some additional conditions, which in [1] have defined
the structure of potential electromagnetic field in a magnetized plasma, and thereby
give a more general meaning to results obtained in preceding papers. In this paper
adopted a system of units where (c = G = h̄ = 1).

2. Self-consistent RMHD equations in a gravitational field

2.1. Frozen-in condition of magnetic field in plasma

In [1] under the assumption of equality of dynamic timelike velocity vi of a plasma
and electromagnetic field‖:

p

T ij v
j = εpvi;

f

T ij v
j = εfvi; (v, v) = 1 (1)

on the basis of conservation of the total energy-momentum tensor of a plasma and
electromagnetic field,

T ij =
p

T
ij+

f

T
ij , (2)

T ij
,j = 0 (3)

full self-consistent system of relativistic magnetohydrodynamic equations for
magnetized plasma in arbitrary gravitational field has been obtained. It describes the

‖ The index “p” refers to the plasma, the index “f” to the field, a comma denote covariant derivatives.
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motion of a relativistic plasma and an electromagnetic field in the given gravitational
field.

In particular, it was shown that at positivity of the first invariant of an
electromagnetic field:

Inv1 = FijF
ij = 2H2 > 0 (4)

and equality to zero of the second invariant:

Inv2 =
∗
F ij F

ij = 0 (5)

necessary and sufficient condition for the solvability of equations (1) is the frozen-

in condition of magnetic field in plasma, i.e., equality to zero of the accompanying
intensity of the electric field Ei:

Ei = Fjiv
j = 0. (6)

In formulas (4)-(6) and further: Fij - antisymmetric Maxwell tensor,
∗
F ij - dual

Maxwell tensor.
∗
F ij=

1

2
ηijklF

kl, (7)

where ηkilm - covariantly constant discriminant tensor (Levi-Civita’s tensor) [8].
At the frozen-in condition (6) fulfilment, the condition of dynamic velocities

equality (1) is always satisfied, regardless of the conditions (4)-(5). On the basis
of rigorous kinetic model of plasma one of the authors has shown that the frozen-in
condition is a consequence of the drift approximation, i.e., the smallness of Larmor
length for electrons λe = c/ωc in comparison with the characteristic inhomogeneity
scale, r:

Λ =
c

rωe
≪ 1; ωc =

eH

me
, (8)

where ωc is Larmor frequency for electrons.

2.2. Self-consistent equations of magnetohydrodynamics

The complete system of self-consistent RMHD equations for a plasma in a gravitational
field, obtained in [1], consists of Maxwell equations of the first group:

∗
F

ik
,k = 0; (9)

Maxwell equations of the second group:

F ik
,k = −4πJ i

dr (10)

with spacelike drift current:

J i
dr = −

2F ik
p

T l
k,l

FjmF jm
; (Jdr, Jdr) < 0 (11)

and a conservation law of the total energy-momentum of the system:

p

T
ik
,k+

f

T
ik
,k = 0. (12)

The continuity equation for the drift current must be satisfied in consequence of Eq.
(10):

J i
dr ,i = 0. (13)



Exact solutions of relativistic magnetohydrodynamics equations 5

It should be noted some useful strict consequences of magnetohydrodynamics
equations:

∗
F ik J

k
dr = 0; (14)

vi
p

T
ik
i,k = 0; (15)

Hi
p

T
k
i,k = 0. (16)

2.3. Maxwell tensor representation by accompanying intensities

The components of Maxwell tensor is conveniently represented by a pair of spacelike
vectors of accompanying intensities of electric, Ei (6), and magnetic, Hi, fields [9]:

Ei = Fjiv
j ; Hi =

∗
F ji v

j , (17)

so that:

(E,E) = −E2; (H,H) = −H2; (v, E) = 0; (v,H) = 0. (18)

Then Maxwell tensor and dual to it can be expressed through a pair of spacelike
vectors of this accompanying intensities [9]:

Fij = viEj − vjEk − ηijklv
kH l; (19)

∗
F ij= viHj − vjHk + ηijklv

kEl, (20)

where:
1

2
FijF

ij =
1

2

∗
F ij

∗
F

ij = (E,E)− (H,H) = H2 − E2; (21)

1

2
Fij

∗
F

ij = (E,H). (22)

The energy-momentum tensor (EMT) of the electromagnetic field
f

T
i
k =

1

4π

(

F i
lF

l
k +

1

4
δikF

lmFlm

)

(23)

can also be represented by the triplet of vectors v, E,H (see [1]). In the case of
coincidence plasma’s and electromagnetic field’s dynamic velocities (1) the EMT is
expressed through a pair of vectors, v,H [1]:

f

T
i
k = − 1

8π

[

(δik − 2vivk)H
2 + 2HiHk)

]

, (24)

so:
f

T≡
f

T
i
i = 0. (25)

It is easy to verify that the vector v and the spacelike unit vector of the magnetic field
h –

hi =
Hi

H
; (h, h) = −1; (v, h) = 0 (26)

– are actually the eigenvectors of the tensor
f

T ik:
f

T
i
kv

k = εHv
i; (27)

f

T
i
kh

k = εHh
i, (28)

where the invariant

εH =
H2

8π
(29)

is the energy density of the magnetic field.
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2.4. Energy-momentum tensor of magnetoactive plasma

The energy-momentum tensor of a relativistic anisotropic magnetoactive plasma in
gravitational and magnetic fields is (see, for example, [6]):

p

T
ij = (ε+ p⊥)v

ivj − p⊥g
ij + (p‖ − p⊥)h

ihj , (30)

where p⊥, p‖ - plasmas pressure in the directions orthogonal and parallel to the
magnetic field, respectively. Trace of the energy-momentum tensor (30) is:

p

T≡
p

T
i
i = ε− p⊥ − 2p‖ ≥ 0 (31)

and because of the virial theorem (see [10]) it is non-negative:

p⊥ + 2p‖ ≤ ε. (32)

It is easy to verify that the vectors v and h are also eigenvectors of the energy-
momentum tensor of plasma (see (27), (28))

p

T
ikvk = εvi; (33)

p

T
ikhk = −p‖hi. (34)

3. Solving RMHD equations in the PGW metric

3.1. The metric of a plane gravitational wave

The vacuum PGW metric is (see, for example, [11]):

ds2 = 2dudv − L2dΣ2, (35)

where:

dΣ2 = cosh 2γ(e2β(dx2)2 + e−2β(dx3)2)− 2 sinh 2γdx2dx3 (36)

- is a metric of “plane”(x2, x3); β(u), γ(u) - amplitudes of the polarization e+ and e×,
respectively; u = 1√

2
(t−x1) is the retarded time, v = 1√

2
(t+x1) is the advanced time.

The amplitudes of PGW are arbitrary functions of the retarded time u, and L(u) is
a background factor of PGW, which defined by single nontrivial vacuum Einstein’s
equation¶:

L′′ + L(cosh2 2γβ′2 + γ′2) = 0. (37)

At inversion of the coordinates in the plane (x2, x3) and transformation of the PGW
amplitude:

x2 = x′3; x3 = x′2; β′ = −β; γ′ = γ (38)

two-dimensional metric transforms into itself. Under rotations in the plane (x2, x3)
by the π/4 angle:

x2 =
1√
2
(x′2 + x′3); x3 =

1√
2
(x′3 + x′2) (39)

two-dimensional metric is transformed to:

dΣ′2 = (cosh 2γ cosh 2β + sinh 2γ)(dx′2)2+

(cosh 2γ cosh 2β − sinh 2γ)(dx′3)2 + 2 cosh2γ sinh 2βdx′2dx′3.
(40)

¶ The prime denotes differentiation with respect to the retarded time u.



Exact solutions of relativistic magnetohydrodynamics equations 7

If β = 0, i.e., in the case of PGW with a single polarization e×, we get from (40):

dΣ′2 = e2γ(dx′2)2 + e−2γ(dx′3)2

– a PGW metric with a single polarization of e+.
For a weak gravitational wave:

|β(u)| ≪ 1; |γ(u)| ≪ 1; L2(u) = 1 +O2(|β, γ|) (41)

rotation (39) is equivalent to the transformation of inversion:

β′ = γ; γ′ = −β. (42)

3.2. Initial conditions

Let in the absence of PGW (u ≤ 0):

β(u ≤ 0) = 0; β′(u ≤ 0) = 0; L(u ≤ 0) = 1, (43)

plasma is homogeneous and at rest:

vv(u ≤ 0) = vu(u ≤ 0) = 1/
√
2; v2 = v3 = 0;

ε(u ≤ 0) =
0
ε; p‖(u ≤ 0) =

0
p‖; p⊥(u ≤ 0) =

0
p⊥, (44)

and homogeneous magnetic field is directed in the (x1, x2) plane:

H1(u ≤ 0) =
0

H cosΩ ; H2(u ≤ 0) =
0

H sinΩ ;

H3(u ≤ 0) = 0 ; Ei(u ≤ 0) = 0, (45)

where Ω is the angle between the axis 0x1 (the PGW propagation direction) and the
magnetic field H.

As we noted above, the effect of a PGW with polarization e+ on a homogeneous
plasma at the initial conditions (44)-(45) was considered in the quoted papers [1]-[6].
Taking into account transformational properties of the metric noted in section 3.1, it
means that the effect of a monopolarized PGW on a homogeneous plasma has been

considered earlier when the projection of vector
0

H on the plane of PGW’s front is
parallel to the polarization axis. The case, when this projection coincides with the
direction x2 or x3, can be reduced to the case of polarization e+ or e× using the
substitution (38). And vice versa: the case of different polarizations e+ or e× can be
reduced to the case with different projections on the direction x2 or x3 under rotation
in the PGW’s front plane by the angle π/4 together with rotation of the vector of
magnetic field intensity. For understanding of a mechanism of strong PGW interaction
with an anisotropic magnetoactive plasma it is essentially important to consider the
combined case, when a PGW possesses both polarization states simultaneously, and
the projection of the vector of magnetic field intensity on the PGW’s front plane is
parallel to the axis of one of them. The initial conditions (44)-(45) correspond to this
case.

3.3. Symmetry of the problem

As is well known, the metric (35) permits the group of motions G5, associated with
three linearly independent in a point Killing vectors:

ξi

(1)

= δiv ; ξi

(2)

= δi2 ; ξi

(3)

= δi3 . (46)
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In consequence of the Killing vectors existence in the metric (35), all of the geometric
objects, including the Christoffel symbols, the Riemann tensor, the Ricci tensor
and, consequently, the energy-momentum tensor of a magnetoactive plasma, are
automatically conserved at motions along the Killing’s directions:

L
ξα
gij = 0;⇒ L

ξα
Rij = 0;⇒ L

ξα
Tij = 0, (47)

where L
ξ
Tij is a Lie derivative in the direction of ξ:

L
ξ
Tij = Tij,kξ

k + Tkjξ
j

,i + Tikξ
k

,j . (48)

Further we require that tensors of energy-momentum of the plasma
p

T ij and the

electromagnetic field
f

T ij inherit the symmetry separately:

L
ξα

p

T ij= 0; (49)

L
ξα

f

T ij= 0; (α = 1, 3). (50)

Consequences of (50) are:

L
ξα
Fij = 0, L

ξα

∗
F ij= 0 =⇒ L

ξα
H = 0, L

ξα
Ei = 0, L

ξα
Hi = 0. (51)

Consequences of (49) and (51) are:

L
ξα
ε = 0, L

ξα
vi = 0, L

ξα
p⊥ = 0, L

ξα
p‖ = 0. (52)

Thus, all observed physical quantities P inherit the symmetry of the metric (35):

L
ξα

P = 0; (α = 1, 3), (53)

i.e., taking into account the explicit form of Killing vectors (46):

p = p(u); ε = ε(u); vi = vi(u); (54)

Fik = Fik(u); Hi = Hi(u); hi = hi(u). (55)

3.4. Maxwell tensor

In this section we obtain an expression for the vector potential of the electromagnetic
field in the metric (35), taking into account the initial conditions (44)-(45). This
method differs from the method used in [1]. It is based only on the first group of
Maxwell equations and the initial conditions and therefore have greater generality.
The vector potential conformed with the initial conditions (45) is:

Av = Au = A2 = 0;

A3 =
0

H (x1 sinΩ− x2 cosΩ); (u ≤ 0). (56)

These conditions conform with follow components of Maxwell tensor:

F23(u ≤ 0) = −
0

H cosΩ; Fv3(u ≤ 0) =
1√
2

0

H sinΩ; Fv2(u ≤ 0) = 0;

Fu2(u ≤ 0) = 0; Fu3(u ≤ 0) = − 1√
2

0

H sinΩ; Fuv(u ≤ 0) = 0. (57)
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As known (see [10]), the first group of Maxwell equations (9) is equivalent to the
existence condition of a vector potential. It can be written as:

1√−g∂j
√−g

∗
F

ij = 0. (58)

Considering (55), we get:

L2
∗
F

uα = C(α) (= Const); α = {v, 2, 3}, (59)

setting here and further the following order of the coordinates:

Coords := [v, u, x2, x3], (60)

Let us establish a connection between the components of Maxwell tensor with the
components of tensor dual to it:

∗
F

uv = − 1

L2
F23;

∗
F

u2 =
1

L2
Fv3;

∗
F

u3 = − 1

L2
Fv2;

∗
F

v2 =
1

L2
Fu3;

∗
F

v3 =
1

L2
Fu2;

∗
F

23 = − 1

L2
Fuv. (61)

Then the initial conditions (45) give:

L2
∗
F

uv = −F23 =
0

H cosΩ; (62)

L2
∗
F

u2 = Fv3 =
1√
2

0

H sinΩ; (63)

L2
∗
F

u3 = −Fv2 = 0. (64)

Thus, the second invariant of the electromagnetic field is equal to:

Inv2 = Fik

∗
F

ik =
2

L2
(Fv3Fu2 − F23Fuv), (65)

So, taking into account (63), (64), the equality to zero of the second invariant of an
electromagnetic field (5) is reduced to the relation:

L2
∗
F

v3 ≡ Fu2 = −
√
2Fuv cotΩ. (66)

As it is known (see for example [10]), the first group of Maxwell equations is equivalent
to the existence condition of a vector potential Ai:

Fik = ∂iAk − ∂kAi. (67)

Let us notice that as opposed to Maxwell tensor, the components of the vector
potential Ai can depend on the variables v, x2, x3. We write down expressions (62)-
(66) relative to the vector potential Ai using definition of Maxwell tensor (67):

∂3A2 − ∂2A3 =
0

H cosΩ; (68)

∂vA3 − ∂3Av =
1√
2

0

H sinΩ; (69)

∂vA2 − ∂2Av = 0; (70)

∂uA2 − ∂2Au = −
√
2 cotΩ(∂uAv − ∂vAu)) (71)

Introducing new functions:

Ã2 = A2−
0

H cosΩ x3 ≡ A2 − δA2; (72)

Ãv = Av +
1√
2

0

H sinΩ x3 ≡ Av − δAv, (73)

Ã3 = A3, (74)
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where:

δA2 =
0

H cosΩ x3; δAv = − 1√
2

0

H sinΩ x3; δA3 = 0, (75)

let us reduce the relations (68) and (69) to the form similar to (70):

∂3Ã2 − ∂2A3 = 0; (76)

∂vA3 − ∂3Ãv = 0. (77)

Let us notice that the renormalization of the component of the vector potential (72),
(73) keeps the relation (70) invariable. But then it is possible to write down the system
of equations (70), (76), (77) as:

∂σÃδ − ∂δÃσ = 0; (σ, δ = v, 2, 3) (78)

and to consider it as equations on a three-dimensional hypersurface V 3 = {v, x2, x3}.
As it is known, the unique solution of equations (78) on V 3 is a gradient function:

Ãσ = ∂σΦ, (σ = v, 2, 3), (79)

where Φ = Φ(u, v, x2, x3) is an arbitrary scalar function. The value of the potential
function corresponding to the initial conditions (56) is:

Φ(u ≤ 0) = x3
0

H

(

1√
2
(v − u) sinΩ− x2 cosΩ

)

. (80)

Thus

Aσ = ∂σΦ + δAσ. (81)

As it is known (see, for example, [10]), it is possible to impose one gauge
condition on 4 components of a vector potential. We choose this condition in the
form corresponding to the initial conditions (56):

Au = 0. (82)

Then for the nonconserved components of the Maxwell tensor Fuσ is valid:

Fuσ = ∂uσΦ; (σ = v, 2, 3). (83)

But then condition (71) can be written down in the form:

∂u(A2 +
√
2 cotΩAv) = 0. (84)

Integrating (84) with the initial conditions (56), we obtain:

A2 +
√
2 cotΩAv = 0. (85)

Taking into account the identity:

δA2 +
√
2 cotΩδAv ≡ 0, (86)

we obtain the linear differential equation from (85):

∂2Φ+
√
2 cotΩ∂vΦ = 0.

Integrating it, we obtain:

Φ = Φ(v
√
2 sinΩ− x2 cosΩ, u, x3), (87)

where Φ is an arbitrary function of its arguments. Using now the initial condition (80)
we obtain finally:

Φ = x3
0

H

(

1√
2
(v − ψ(u)) sinΩ− x2 cosΩ

)

, (88)
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where ψ(u) is an arbitrary function of the retarded time, satisfying the initial
condition:

ψ(u ≤ 0) = u. (89)

Thus, the final expression for components of the vector potential becomes:

A2 = Av = Au = 0; A3 =
0

H

(

1√
2
(v − ψ(u)) sinΩ− x2 cosΩ

)

. (90)

The components of the Maxwell tensor relative to the potential (90) are equal to:

Fvu = 0; F2u = 0; F3u =
1√
2

0

H ψ′ sinΩ;

F2v = 0; F3v = − 1√
2

0

H sinΩ; F23 = −
0

H cosΩ (91)

and are defined only by one unknown function ψ(u). For the components of the dual
Maxwell tensor (7) we get:

∗
F

vu =
1

L2

0

H cosΩ;
∗
F

2u = − 1√
2L2

0

H sinΩ;
∗
F

3u = 0;

∗
F

2v =
1√
2L2

0

H ψ′ sinΩ;
∗
F

3v = 0;
∗
F

23 = 0. (92)

3.5. Accompanying intensities and the frozen-in condition

According to (17), we define the components of the vector of accompanying intensity
of the electric field, Ei, as:

Ev = − 1√
2

0

H sinΩ v3; Eu =
1√
2

0

H ψ′ sinΩ v3;

E2 =
0

H cosΩ v3; E3 =
1√
2

0

H sinΩ(vv − ψ′vu)−
0

H cosΩ v2. (93)

Thus, the frozen-in condition of magnetic field in plasma (6) reduces to two equalities:

v3 = 0;
1√
2
(vvψ

′ − vu) sinΩ + v2 cosΩ = 0. (94)

As a result, covariant components of the Maxwell tensor, contravariant components
of the dual Maxwell tensor and contravariant components of the velocity vector are
defined by the expressions, obtained in [1], but now they are already defined for a
more general metric of a gravitational wave and at weaker assumptions. In the quoted
paper, in particular, to obtain the explicit form of the Maxwell tensor components
and the velocity vector components, the analysis of the drift current components was
carried out using the conservation law of this current. As it was shown above, for
achievement of this purpose three assumptions are sufficient:
1. inheritance of the space symmetry by the energy-momentum tensor of the electro-
magnetic field and by the energy-momentum tensor of the plasma separately;
2. the equality to zero of the second invariant of the Maxwell tensor;
3. the frozen-in condition of magnetic field in plasma.

Thus, the analysis of the first group of Maxwell equations and initial conditions
is sufficient.
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Calculating further the covariant components of the dual Maxwell tensor, subject
to (92), we get:

∗
Fuv=

0

H

L2
cosΩ;

∗
Fu2=

0

H√
2
e2β cosh 2γψ′ sinΩ;

∗
F v2= −

0

H√
2
e2β cosh 2γ sinΩ;

∗
F v3=

0

H√
2
sinh 2γ sinΩ;

∗
Fu3= −

0

H√
2
sinh 2γψ′ sinΩ;

∗
F 23= 0. (95)

Covariant components of the vector of magnetic field intensity relative to the
Maxwell tensor (92) are equal to:

Hv = −
0

H

L2

(

vv cosΩ +
1√
2
v2 sinΩ

)

; (96)

Hu =

0

H

L2

(

vu cosΩ− 1√
2
v2ψ′ sinΩ

)

; (97)

H2 = − 1√
2

0

H cosh 2γe2β sinΩ(vvψ
′ + vu); (98)

H3 =
1√
2

0

H sinh 2γ sinΩ(vvψ
′ + vu). (99)

It is thus easy to show on the basis of formula (92):

H3 =
∗
F

i3vi = 0, (100)

i.e., the third contravariant coordinate of the vector of the magnetic field intensity, as
well as the vector of dynamic velocity of the plasma, is equal to zero. Also it is easy to
be convinced of orthogonality of the velocity vector and the magnetic field intensity
(18):

Hiv
i ≡ 0. (101)

The square of the magnetic field intensity, i.e., a scalar H2, most easier to calculate by
means of the relation (21), using the explicit form of contravariant (92) and covariant
(95) components of the dual Maxwell tensor:

H2 =

0

H 2

L4
(L2ψ′ cosh 2γe2β sin2 Ω+ cos2 Ω) . (102)

The frozen-in conditions of magnetic field in plasma (94) establishes the connection
between nonzero contravariant components of the velocity vector v2, vv = vu, v

u = vv.
Besides, there is still the normalization relation of velocity vector (1). Therefore,
the only one independent coordinate of the velocity vector remains, and the
electromagnetic field is defined by only one unknown function of the retarded time,
ψ(u). Using (96)-(102) the normalization relation of velocity vector can be written in
the equivalent form:

[

vv cosΩ + v2
1√
2
sinΩ

]2

=
H2

0

H 2

v2vL
4 − sin2 Ω

2
L2 cosh 2γe2β . (103)
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3.6. Drift current

Let us calculate components of a drift current, using Maxwell equations (10),
considering the dependence of Maxwell tensor components only on the retarded time
(55):

J i
dr = − 1

4πL2
∂u(L

2F iu). (104)

Then:

Jv
dr = Ju

dr = 0 ; (105)

J2
dr = −

0

H sinΩ

2
√
2πL2

cosh 2γ · γ′ ; (106)

J3
dr = −

0

H sinΩe2β

2
√
2πL2

(sinh 2γ · γ′ + cosh 2γ · β′) . (107)

Calculating scalar product of the vector of the magnetic field intensity and the vector
of drift current density, using (98), (99), (105), (106), (107), we get:

(Jdr, H) =

0

H 2

4πL2
(vvψ

′ + vu)(γ
′ − β′

2
sinh 4γ). (108)

Thus, the presence of the second polarization of a gravitational wave leads to
violation of the orthogonality of the vectors of drift current density and magnetic
field intensity+.

Using expression (11), it is possible to show that the equality (105) is carried out
only in the case of transverse propagation of the PGW (Ω = π/2).

3.7. Integrals of the motion

Because of existence of the motions (46), Killing equations are satisfied:

ξ
(α)

i,k + ξ
(α)

k,i = 0, (α = 1, 3). (109)

Therefore conservation laws of the total EMT in a field of PGW after consistently
transvection with all Killing’s vectors (46) can be written down in the form:

1√−g (∂k
√−g ξ

(α)

iT k
i ) = 0; (α = 1, 3). (110)

Taking into account the fact that EMT components can depend only on the retarded
time, we obtain following integrals [1]:

L2 ξ
(α)

iTvi = Ca = Const; (α = 1, 3) . (111)

In this paper we consider only the case of transverse propagation of the PGW (Ω =
π/2). Then, substituting expressions for the EMT of the plasma and electromagnetic
field in the integrals (111), using relations (99)-(103) and also initial conditions (43),
(44), we lead integrals of the motion to the form:

2L2(ε+ p‖)v
2
v − (p‖ − p⊥)

0

H 2

H2
cosh 2γe2β = (

0
ε +

0
p)∆(u) ; (112)

+ We remind that in case of monopolarized gravitational waves these spacelike vectors are mutually
orthogonal [1].
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L2(ε+ p‖)vvv2 = 0 ; (113)

L2(ε+ p‖)vvv3 = 0 , (114)

where:
0
p=

0
p⊥ ; (115)

and so-called the governing function of GMSW is introduced:

∆(u) = 1− α2(cosh 2γe2β − 1) , (116)

with dimensionless parameter α2:

α2 =

0

H 2

4π(
0
ε +

0
p)
. (117)

Solving (112) with respect to vv we obtain expressions for coordinates of the velocity
vector as functions of the scalars : ε, p‖, p⊥, ψ

′ and the explicit functions of the
retarded time:

v2v =
(
0
ε +

0
p)

2L2(ε+ p‖)
∆(u) +

(p‖ − p⊥)

(ε+ p‖)

0

H 2

H2

cosh 2γe2β

2L2
; (118)

From (112) we get:

v2 = 0 . (119)

We obtain the coordinate vu from a normalization relation of velocity vector, using
(118), (119) :

vu =
1

2vv
, (120)

and from the frozen-in condition (94) we get the value of a derivative of potential ψ′:

ψ′ =
1

2v2v
, (121)

using it, the scalar H2 is defined from relation (102) as:

H2 =

0

H 2

L2

cosh 2γe2β

2v2v
. (122)

Let us notice that in the case of an isotropic plasma (p⊥ = p‖ = p) the expression
(118) becomes:

v2v =
(
0
ε +

0
p)

2L2(ε+ p)
∆(u) ; (123)

From RMHD system of equations it is possible to obtain a following differential
equation in the PGW metric:

L2ε′vv + (ε+ p‖)(L
2vv)

′ +
1

2
L2(p‖ − p⊥)vv(lnH

2)′ = 0 . (124)

Finally, the equation (124) is the differential equation on 3 unknown scalar functions:
ε, p‖ and p⊥. Such underdefiniteness is a known consequence of the incompleteness
of hydrodynamic description of a plasma. To solve this equation it is necessary to
impose two additional connections between functions ε, p‖, p⊥, i.e., an equation of
state:

p‖ = f(ε) ; p⊥ = g(ε) . (125)



Exact solutions of relativistic magnetohydrodynamics equations 15

4. Barotropic equation of state

4.1. General formulas

Let us consider a barotropic state of an anisotropic plasma, when the connections
(125) are linear:

p‖ = k‖ε ; p⊥ = k⊥ε , (126)

The equation (124) is easy to integrate at the connections (126), and we get one more
integral:

ε(
√
2L2vv)

(1+k‖)H(k‖−k⊥) =
0
ε

0

H
(k‖−k⊥) . (127)

Thus, formally the problem is solved, as it is reduced to the solution of the algebraic
equations system which, however, is still too difficult to solve and analyse. The solution
is essentially defined by two dimensionless parameters: k⊥ and k‖. Further we consider
the special cases of these parameters.

4.2. Transverse propagation of the PGW

In the case of a barotropic equation of state at the connections (126) substitution of
(122) in (118) leads to result:

v2v =
1

2

0
ε

L2ε
∆(u) . (128)

Substituting (122), (128) in (127), we obtain the closed equation relative to the variable
ε, solving which, we get definitively:

ε =
0
ε
[

∆1+k⊥L2(1+k‖)(cosh 2γe2β)k‖−k⊥

]−g⊥
; (129)

vv =
1√
2

[

∆L(k‖+k⊥)(cosh 2γe2β)
k‖−k⊥

2

]g⊥

; (130)

H =
0

H

[

∆L(1+k‖)(cosh 2γe2β)−
1−k‖

2

]−g⊥

, (131)

where

g⊥ =
1

1− k⊥
∈ [1, 2] . (132)

In particular, for ultrarelativistic plasma with zero parallel pressure:

k‖ → 0 ; k⊥ → 1

2
(133)

we obtain from (129)-(132):

vv =
1√
2
L∆2(cosh 2γe2β)−1/2 ; (134)

ε =
0
ε L−4∆−3(cosh 2γe2β) ; H =

0

H L−2∆−2(cosh 2γe2β) . (135)
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5. Energy balance equation

In [1] was shown that the singular state, which exists in a magnetized plasma under
the condition 2β0α

2 > 1 on the hypersurface:

∆(u∗) = 0 , (136)

is removed using the back effect of the magnetoactive plasma on the GW. That leads to
the efficient absorption of GW energy by the plasma and restriction on the amplitude
of the GW. An exact solution of the PGW energy transformation to the energy of
the shock wave is possible only on the basis of the self-consistent system of Einstein’s
equations and magnetohydrodynamics equations. However, qualitative analysis of this
situation can be carried out using a simple model of energy balance proposed in [2].
The energy flow of the magnetoactive plasma is directed along the direction of the
PGW propagation, i.e., along the axis 0x1. Let β∗(u) and γ∗(u) are the vacuum
amplitudes of the PGW. In WKB-approximation:

8πε≪ ω2 , (137)

where ω is the characteristic PGW frequency and ε is the matter energy density, all
the functions still depend only on the retarded time (see [12]). Thus, β(u) and γ(u)
are the amplitudes of the PGW subject to absorption in plasmas; T ij is the total
energy-momentum tensor of the plasma and the electromagnetic field (2).

5.1. Integral law of energy conservation

Ref. [1] suggested a semiquantitative solution of this problem on the basis of a simple
model of energy balance. Due to its extreme importance, we do not restrict ourselves to
[1] and return to a more complete study of the problem of energy transmission from
a GW to magnetoactive plasma. However, instead of solving Einstein’s equations,
we make use of their consequence, the conservation law of the total momentum of
the system “plasma + gravitational waves”. Clearly, this model is only approximate
and cannot replace a rigorous solution of Einstein’s equations. According to [10], an
arbitrary gravitational field provides the conservation of the system’s momentum:

pi =
1

c

∫

(−g)(T i4+
g

T
i4)dV, (138)

where
g

T ik is the energy-momentum pseudotensor of the gravitational field and the
integration covers the whole 3-dimensional space. Let us take into account that
the above solution is plane-symmetric and depends on the retarded time u only.
Consequently the integration over the “plane” (x2, x3) in (138) reduce to simply
multiplying by an infinite 2-dimensional area. Dividing both sides of (138) by this
area and bearing in mind that with Ω = π/2 among the 3-dimensional flow only P 1is
nonzero, we obtain the conservation law of the surface density of the momentum P 1

Σ:

P 1
Σ =

1

c

+∞
∫

−∞

(−g)(T 14+
g

T
14)dx (= Const). (139)

Let the right semispace x > 0 be filled with magnetoactive plasma and the left one
x < 0 with matter which does not interact with a weak GW. Let further the whole
gravitational momentum be concentrated in the interval u ∈ [0, uf ] where tf =

√
2uf

is the gravitational pulse duration. Since the integral in Eq. (139) is conserved all the
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time, let us consider it at t0 < 0, when the GW has not yet reached the magnetoactive
plasma, and −tf > t > 0), when the GW has reached the plasma. Taking into account
that the vacuum solution depends only on the retarded time, we get for the integral
in Eq. (139):

uf
∫

0

g

T
14
0 du =

t
√
2

∫

0

(T 14+
g

T
14)du +

uf
∫

t/
√
2

g

T
14
0 du, (140)

where
g

T 14
0 =

g

T 14(β∗(u), γ∗(u));
g

T 14 =
g

T 14(β(u), γ(u)). Transferring one of the
integrals to the left-hand side of Eq.(140), we obtain the relation:

u
∫

0

g

T
14
0 du =

u
∫

0

(T 14+
g

T
14)du, (141)

where the variable u = t/
√
2 > 0 can now take any positive values.

A similar law may be written for the plasma total energy; in this case instead of
Eq.(141) we obtain:

u
∫

0

g

T
44
0 du =

u
∫

0

(T 44 − E0+
g

T
14)du,

where E0 is the total energy density of the unperturbed plasma.

5.2. Local analysis of the conservation law

Since the relation (141) must be valid at any values of the variable u, the corresponding
local relation should be satisfied:

T 41(β, γ)+
g

T
41(β, γ) =

g

T
41(β∗, γ∗) , (142)

where
g

T 41(β, γ) is the energy flow of a weak GW in the direction 0x1 (see [10]):

g

T
41 =

1

16π

[

h′223 +
1

4
(h′22 − h′33)

2
]

=
1

4π

[

(γ′)2 + (β′)2
]

. (143)

The prime denotes differentiation with respect to s. At substituting (143) into (142)
and changing variables to v, u, we obtain:

2π
[

T vv − T uu
]

+ (γ′)2 + (β′)2 = (γ′∗)
2 + (β′

∗)
2. (144)

In the case of transversal PGW propagation and at a barotropic equation of state of
an anisotropic plasma we obtain:

T vv − T uu =

(

1

4v2v
− v2v

)(

ε(1 + k⊥) +
H2

4π

)

. (145)

Further, using the solutions of magnetohydrodynamics for a barotropic equation of
state of plasma (129), (130), (131) and dimensionless parameter α2 (117), we rewrite
the energy balance equation (144) as:

0

H 2

4L2

(

∆
− 4

1−k⊥ L
−

4(k‖+k⊥)

1−k⊥ (cosh 2γe2β)
−

2(k‖−k⊥)

1−k⊥ − 1

)(

1

α2
+ 1

)

+

(γ′)2 + (β′)2 = (γ′∗)
2 + (β′

∗)
2. (146)
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Let us expand the expression in brackets by the smallness of the PGW amplitudes
(41) but hold the term with ∆−1, since the parameter α2 in a strongly magnetized
plasmas can be so large that the condition 2α2β > 1 is satisfied. Then energy balance
equation takes the form:

0

H 2

4

(

∆−4g⊥ − 1
)

(

1

α2
+ 1

)

+ (γ′)2 + (β′)2 = (γ′∗)
2 + (β′

∗)
2. (147)

Since in linear approximation by the smallness of the amplitudes β and γ the governing
function (116) does not depend on the function γ(u):

∆(u) = 1− 2α2β +O(β2, γ2) , (148)

and the functions β(u), γ(u) are arbitrary and functionally independent, then up to
β2, γ2, the relation (147) should be decompose into two independent parts:

2
0

H
2g⊥(1 + α2)β + (β′)2 = (β′

∗)
2, (149)

(γ′)2 = (γ′∗)
2. (150)

Here, according to the meaning of local energy balance equation, we consider short
gravitational waves (137), so we can neglect the squares of the PGW amplitudes in
comparison with the squares of their derivatives with respect to the retarded time.
Thus, according to (150):

γ∗(u) = γ(u), (151)

i.e., in the linear approximation a weak gravitational waves with polarization e× does
not interact with a magnetized plasma. This coincides with the conclusion of the
paper [13].

Thus, in the linear approximation the PGW with e× polarization passes through
a magnetoactive plasma without absorption, and the energy balance equation takes
the form obtained in [6]. Further conclusions are similar to the case of propagation of
the PGW with only one polarization e+.
If α2 ≫ 1 the Eq. (147) can be written in the form (see also [2]):

ξ2V (q) + q̇2 = q̇2∗ , (152)

where q = β/β0, the dot denotes differentiation with respect to dimensionless time
variable s:

s =
√
2ωu, (153)

(ω - the PGW frequency), V (q) - potential function which in a weak PGW becomes:

V (q) = ∆−4g⊥(q)− 1, (154)

where ξ2 is so-called the first parameter of GMSW [2]:

ξ2 =

0

H 2

4β2
0ω

2
. (155)

Let us introduce the new dimensionless parameter:

Υ = 2α2β0 (156)

- (the second GMSW parameter) and rewrite (148) in a weak PGW as:

∆(q(s)) = 1− 2α2β0q(s) = 1−Υq(s). (157)
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It leads from (157):

q̇ = − ∆̇(q)

Υ
. (158)

To analyze the system behavior, let us suppose that the moment s = 0 corresponds
to the front edge of a GW, while:

β∗ ≈ β0(1− cos(s)) ⇒ q∗ ≈ 1− cos(s). (159)

According to (157)-(159) the system starts with negative value of the governing
function derivative and with function value equal to 1:

∆̇(s) ≈ −Υsin s ≈ −Υs;

∆(s) ≈ 1−Υ(1− cos s) ≈ 1−Υ
s2

2
;

(s→ +0). (160)

The energy balance equation (152) according to (154), (158), (159) becomes:

∆̇2 + ξ2Υ2
[

∆−4g⊥ − 1
]

= Υ2 sin2(s). (161)

The minimum value of the governing function at s = π/2 is equal to:

∆min =

(

1

ξ2
+ 1

)−γ⊥

, (162)

where:

γ⊥ =
1

4g⊥
=

1− k⊥
4

⇒ 1

8
≤ γ⊥ ≤ 1

4
. (163)

The maximum accessible density of a magnetic energy is

(

H2

8π

)

max

=

0

H 2

8π

√

1 +
1

ξ2
(164)

and it does not depend on a plasma equation of state. Also the plasma velocity in a
GMSW does not depend on an equation of state. And the maximum plasma energy
density without magnetic field depends on the exponent of plasma anisotropy:

εmax =
0
ε

(

1 +
1

ξ2

)
1
4 (1+k⊥)

(165)

It is maximum for ultrarelativistic plasma with zero parallel pressure.

6. Conclusion

Thus, the generalization of the results of [1]-[3] in the case of gravitational wave
with two polarizations has been obtained and has been shown that in the linear
approximation the polarization e× does not interact with a magnetized plasma. This
fact is a justification for applicability of the previously obtained results for the case of
arbitrarily polarized gravitational wave.
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