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Abstract In this work we propose graphical representation of quantum states.
Pure states require weighted digraphs with complex weights, while mixed states
need, in general, edge weighted digraphs with loops; constructions which, to the
best of our knowledge, are new in the theory of graphs. Both the combinatorial
as well as the signless Laplacian are used for graph representation of quantum
states. We also provide some interesting analogies between physical processes
and graph representations. Entanglement between two qubits is approached by
the development of graph operations that simulate quantum operations, result-
ing in the generation of Bell and Werner states. As a biproduct, the study also
leads to separability criteria using graph operations. This paves the way for a
study of genuine multipartite correlations using graph operations.
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1 Introduction

Quantum mechanics deals with states living in the Hilbert space, allowing for
linear superpositions to be built up, a facility of immmense importance for
harnessing the power of quantum mechanics, but at the same time making it
computationally a formidable task. This can be most easily appreciated by
considering entanglement [1] in higher dimensions as well as in multi-partite
systems [2], all mathematically and computationally very formidable tasks. Any
tool that would aid in this regard would be very welcome. The theory of graphs
[3] is a well-developed mathematical theory that has found many applications
in diverse areas such as in network systems [4], optimization [5], algorithms [6].
Graphs have, by their very construction, the inbuilt feature of visualization.
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A pertinent question to ask is whether a graphical representation of quantum
states can be made? This would enable the incorporation of the mathematical
machinery of graph states into the problems of quantum mechanics and at the
same time bring in the attractive feature of visualization of quantum states.

A number of developments have taken place in this regard over the last
decade. One of the key ideas has been the incubation and understanding of
graph states: graphical representation of quantum states of a system such as a
spin system interacting via an Ising type of interaction. These states have been
used successfully to address stabilizer states, cluster states and some multi-
partite entangled states, all of which makes them very useful for quantum infor-
mation. They have been reviewed in [7]. In [8, 9], the question given a graph,
what is the corresponding quantum state was posed. Some limitations of these
approaches are that they prove to be inadequate to describe a number of gen-
eral quantum states. Here we pose and try to address the following question:
what is the general graphical representation of any quantum state? This task,
if accomplished, should lead to a general usage of ideas from graph theory into
quantum mechanics and at the same time lead to developments in graph theory
itself.

In earlier works, each vertex of a graph is taken to be a quantum state
with the edge representing an interaction between them. In contrast to this, in
our construction a single quantum system is represented by a graph. In other
words, in the earlier constructions a graph with n nodes represent a tensor
product of n Hilbert spaces while in our case the entire graph represents a single
Hilbert space. Earlier, the graphical construction of a quantum state relied upon
undirected unweighted graphs. Our construction proceeds by first considering
digraphs with complex edge weights of modulus one. This fails to capture all
possible quantum states. This is partially overcome by considering digraphs
with complex vertex weights, a construction which allows representation of all
pure states and many mixed states, but not all. This is overcome by digraphs
with complex edge weights and loops with real positive weights. To the best of
our knowledge, a number of these constructions are new. Until now we discussed
about the graphical representation of a single quantum system. To discuss the
correlation between systems, we need to have at least two of them. Therefore,
we attempt to realize the interaction between two quantum states by using
graph operations between the corresponding graph representations.

The use of graphs with complex edge weights have been considered in the
context of diverse areas such as proteomics [10], the large-scale study of proteins,
as well as in neural networks with complex associative memory [11] where it was
shown that a complexification of weights results in an increase in the power of
the memory by a factor greater than the increase in the degree of freedom.

The plan of the paper is as follows. In the next section, an introduction
is provided to graphs and specifically the Laplacian of the graph, both the
combinatorial as well as the relatively new concept of signless Laplacian [12].
This is followed by a discussion of some interesting analogies between graphs
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and physical systems. After that we come to the main body of the paper where
a construction of graphs corresponding to general quantum states is provided.
This leads naturally to a graph-theoretic discussion of some quantum states
useful in quantum information as well as the notion of entanglement. The
graphical representation of mixed states require an interesting new construction
of edge weighted digraphs with loops. The paper ends with our conclusions and
some possible future directions.

2 Introduction to Graphs

Graphs represent the essential topological properties of an interconnected sys-
tem by treating the system as a collection of subsystems and connections be-
tween the subsystems. Mathematically, a graph G is a pair of sets (V,E) where
V is a finite nonempty set of elements called vertices, and E is a set of unordered
pair of distinct vertices called edges [3]. Two vertices are said to be adjacent
if they are connected by an edge. The number of edges adjacent to a vertex is
called its degree.

Let G be a graph with V = {1, 2, . . . , n} and E = {e1, e2, . . . , em}. The
adjacency matrix associated with G, denoted by A(G); is the n× n symmetric
matrix defined as follows. The rows and the columns of A(G) are indexed by V .
If i 6= j then the (i, j)-entry of A(G) is 0 when vertices i and j are nonadjacent,
and the (i, j)-entry is 1 when i and j are adjacent. The (i, i)-entry of A(G) is 0
for i = 1, . . . , n.

Example 2.1. Consider the graph G :

?>=<89:;1
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❃❃
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?>=<89:;4 ?>=<89:;5
��
��
��
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�

?>=<89:;2 ?>=<89:;3

.

Then

A(G) =




0 1 1 1 0
1 0 1 0 0
1 1 0 1 1
1 0 1 0 1
0 0 1 1 0



.

A directed graph or digraph G is a graph with a function assigning to each
edge an ordered pair of vertices. The first vertex of the ordered pair is called the
initial vertex of the edge, and the second is the terminal vertex; together, they
are the endpoints. Thus each edge of a digraph is directed; and an undirected
edge can be considered as both way directed. An edge-weighted graph G is a
graph with a function w : E → R, defined by w(ej) = wj, j = 1, 2, . . . , m. The
function w is called an edge-weight function and wj is called the weight of ej .
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An unweighted graph can be considered as an edge-weighted graph with weight
function w(ej) = 1 for all j. Analogously, a vertex-weighted graph G is a graph
with a function w : V → R, defined by w(i) = wi, i = 1, 2, . . . , n. Then w is
called vertex-weight function and wi is called the weight of the vertex i.

A way of representing a quantum state by a graph; is the graph state [7]. The
density matrix of a graph state is identified with the combinatorial Laplacian
matrix associated with the graph. The details of such descriptions can be found
in for example, [9]. Indeed, the Laplacian matrix associated with a graph G
is defined by L(G) = D(G) − A(G) where D(G) = diag{d1, d2, . . . , dn}, di is
the degree of vertex i and A(G) is the adjacency matrix associated with the
graph G [13]. It is easy to check that L(G) is a symmetric positive semi-definite
matrix. The density matrix of a graph state is defined by σG = (1/d)L(G)
where d = d1 + d2 + . . .+ dn.

The approach of identifying quantum states by graph states mentioned above
has its own limitations. This happens due to the fact that the density matrix
defined by Laplacian matrix only produce scalar multiple of symmetric (real)
positive semi-definite matrices with entries 0 and 1; although, in general, the
density matrix associated with a quantum state is a Hermitian (complex) pos-
itive semi-definite matrix. Therefore, graph states constructed by the above
procedure represent only a certain class of quantum states.

We overcome this limitation by defining the density matrix as a scalar mul-
tiple of combinatorial Laplacian or signless Laplacian matrix associated with
edge-weighted and vertex-weighted digraphs with complex weights. Thus we
show that this approach of defining the density matrix opens up a new outlook
to the graphical representation of a quantum state. Further, we show that any
quantum state may not be represented by such a weighted digraph with complex
weights. Hence we introduce edge-weighted digraph with loops to represent a
quantum state. Below we provide an introduction to edge-weighted digraphs
with complex weights of modulus one, vertex-weighted and edge-weighted di-
graphs with loops, the edge weights being complex but the loops are character-
ized by real, positive weights.

2.1 Edge-weighted digraphs with complex weights of mod-

ulus one

In this section, we analyze the spectral properties of combinatorial Laplacian
and signless Laplacian matrices associated with edge-weighted digraphs with
complex weights. The combinatorial Laplacian matrix of edge-weighted di-
graphs with complex unit weights has been introduced by Bapat et al. in [14].
Indeed, the weight function

w : E → S
1
+ where S

1
+ = {z = a+ ib ∈ C : |z| = 1, b ≥ 0},

associated with a digraph G = (V,E) is given by a canonical weight function
w(ej) = eiθj , 0 ≤ θj ≤ 2π for all ej ∈ E. The in-degree p(v) and out-degree q(v)
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of a vertex v ∈ V , respectively, are given by

p(v) =
∑

ej∈E |w(ej)|, if v is terminal vertex of ej ∈ E

q(v) =
∑

ej∈E |w(ej)|, if v is initial vertex of ej ∈ E.
(1)

Thus the degree d(v) of a vertex v is defined by p(v) + q(v), that is, d(v) is the
sum of the modulus of weights of the edges adjacent to the vertex v.

The adjacency matrix A = (aij) corresponding to an edge-weighted digraph
is given by

aij =





w((i, j)), if (i, j) ∈ E;

w((i, j)), if (j, i) ∈ E;
0, otherwise.

(2)

To simplify the edge-weight notation, we write wij = w((i, j)) and wij =

w((i, j)). The combinatorial Laplacian L(G) and signless Laplacian matrixQ(G)
associated with an edge-weighted digraph G = (V,E) of order n are given
by L(G) = D(G) − A(G) and Q(G) = D(G) + A(G), respectively, where
D = diag(d1, d2, . . . , dn), di denotes the degree of the vertex i. Consider the
vertex-edge incidence matrices M± given by

M±
v,e =





1, if v is the initial vertex of e;
±wij , if v is the terminal vertex of e;
0, otherwise.

(3)

Then it is easy to verify that L(G) = M−(M−)† and Q(G) = M+(M+)† holds
and hence L(G) and Q(G) are Hermitian positive semi-definite matrices. In
addition to that we have

x†L(G)x =
∑

(i,j)∈E
|xi − wijxj |2 and x†Qx =

∑

(i,j)∈E
|xi + wijxj |2 (4)

for any vector x = [x1, x2, . . . , xn]
T where T denotes the transpose of a vector.

The Laplacian eigenvalues of a graph play an important role in the structural
analysis of a graph. For example, the multiplicity of combinatorial Laplacian
eigenvalue zero is equal to the number of connected components for an undi-
rected unweighted graph. It would be interesting to investigate whether the
same is true for edge-weighted digraphs with complex weights. The example
given below shows that an edge-weighted digraph may not have a Laplacian
eigenvalue zero that contradicts the fact that zero is always a Laplacian eigen-
value for a undirected unweighted graph.

Example 2.2. Consider the graph G :

?>=<89:;1 1 //

i
��

?>=<89:;2 i // ?>=<89:;3

?>=<89:;4
i

@@���������

.
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Then

L(G) =




2 −1 0 −i
−1 3 −i i
0 i 1 0
i −i 0 2




and the Laplacian eigenvalues are 0.4384, 1.0000, 2.0000, 4.5616.

In the following theorem we provide a necessary and sufficient condition for
a connected edge-weighted digraph having a Laplacian eigenvalue zero. Recall
that, a digraph is said to be connected if it is connected without considering
the directions of the edges.

Theorem 2.3. The least eigenvalue of the signless Laplacian or combinatorial
Laplacian of a connected digraph with complex edge-weights of unit modulus is
equal to 0 if and only if

{
W (P ) = W (P ′), if p− p′ ≡ 0 mod(2n)
W (P ) = −W (P ′), if p− p′ ≡ 0 mod(2n+ 1), n ∈ N.

holds for any two paths P, P ′ between any fixed two vertices where W (P ) (resp.
W (P ′)) is the product of the weights of the edges of P (resp. P ′).

Proof: We prove the result for signless Laplacian. Similar proof can be given
for the combinatorial Laplacian. Assume that 0 is an eigenvalue of the signless
Laplacian associated to a connected weighted digraph G = (V,E). Then, by (4)
we have |xi +wijxj |2 = 0, for some 0 6= x = [x1, . . . , xn]

T with xi corresponding
to the vertex vi for all i, for any edge e between vertices vi and vj with weight
wij. Let P and P ′ be two directed paths from u to v. Suppose P and P ′ are
given by

(vk1 , vk2), (vk2, vk3), . . . (vkp−1
, vkp), vk1 = u, vkp = v

(vl1 , vl2 , (vl2, vl3), . . . (vlp′−1
, vlp′ ), vl1 = u, vlp′ = v.

Then we have

xk1 = −wk1k2xk2 , xk2 = −wk2k3xk3 , . . . , xkp−1
= −wkp−1kpxkp (5)

for the path P , and

xl1 = −wl1l2xl2 , xl2 = −wl2l3xl3 , . . . , xlp′−1
= −wlp′−1

lpxlp′ (6)

for the path P ′. Consequently we have

xu = (−1)p−1W (P )xv, xu = (−1)p
′−1W (P ′)xv (7)

⇒
{
W (P ) =W (P ′), if p ≡ p′ mod(2n)
W (P ) = −W (P ′), if p ≡ p′ mod(2n+ 1), n ∈ N .

(8)

Note that if xi = 0 for some i, k1 ≤ i ≤ kp, l1 ≤ i ≤ lp′ then all the xis are zero.
Conversely, suppose the conditions hold. Then by defining the vector x

satisfying (7), (5) and (6), the result follows by (4).
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Corollary 2.4. Let G be a disconnected weighted digraph. The number of con-
nected components of G satisfying the condition given in the above theorem is
equal to the multiplicity of combinatorial Laplacian or signless Laplacian eigen-
value 0.

Proof: Let C1 be a connected component of G satisfying the condition given
in Theorem 2.3. Assume that x ∈ Cn is an eigenvector corresponding to the
eigenvalue 0 of the signless Laplacian QC1

of C1. Then we have

Q(G)

[
x
0

]
=

[
QC1

0
0 QG̃

] [
x
0

]
=

[
0
]

where G̃ is the graph G with C1 deleted. Thus 0 is a signless Laplacian eigen-
value of G. Similarly it is easy to check that if 0 is a signless Laplacian eigenvalue
of any connected component C of G satisfying the condition in the above the-
orem, then 0 is also a signless Laplacian eigenvalue of G. Thus we obtain the
result. Similar proof holds for a combinatorial Laplacian.

2.2 Vertex-weighted digraphs with complex weights

In this section, we introduce vertex-weighted digraphs with complex weights and
Laplacian matrices associated with it. Vertex weighted graphs with real weights
were considered in [15]. Let G = (V,E) be a digraph without loops and multiple
edges. Consider a function f : V → C \ {0} defined by f(vi) = wi; vi ∈ V. Then
the digraph G along with the function f is called a vertex-weighted digraph.
The degree of a vertex vi is given by di =

∑
vi∼vj

|wj| where vi ∼ vj means that

there is a directed edge in between vi and vj. We denote wij =
√
wiwj and

wij =
√
wjwi. The adjacency matrix A(G) = (aij) corresponding to G is given

by

aij =





wij, if i 6= j, (vi, vj) ∈ E
wij , if i 6= j, (vj , vi) ∈ E
0, otherwise.

The combinatorial Laplacian matrix L(G) and signless Laplacian matrix Q(G)
associated with G are defined in a similar fashion as the edge-weighted digraph.

The vertex-edge incidence matrices are denoted by N± where

N±
v,e =





√
wj, if v = vi is the initial vertex of e

±√
wi, if v = vj is the end vertex of e

0, otherwise.

Then, it is easy to verify that L(G) = N−(N−)† and Q(G) = N+(N+)†. Thus
L(G) and Q(G) are Hermitian positive semi-definite matrices. Further,

x†L(G)x =
∑

(vi,vj)∈E
|xi

√
wj − xj

√
wi|2 (9)

x†Q(G)x =
∑

(vi,vj)∈E
|xi

√
wj + xj

√
wi|2 (10)
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for any x = [x1 x2 . . . xn]
T ∈ Cn.

Let H(V ) denote the space of functions f : V → C; which assigns a complex
value f(v) to each vertex v. The function f can be represented as a column
vector in C|V | here |V | denotes the number of the vertices in V . Note that f = 0
function represents the graph without any edges. The function space H(V ) can
be endowed with the usual inner product:

〈f, g〉 =
∑

v

f(v)†g(v) (11)

where f(v)† denotes the conjugate transpose of f(v). Accordingly, the norm
of the function induced from the inner product is ‖f‖ =

√
〈f, f〉. Thus H(V )

could be considered to be a Hilbert space.
We denote W 1/2 = diag[

√
w1,

√
w2, . . . ,

√
wn] and 1 is the all-one vector.

Then we have the following result.

Theorem 2.5. Let L(G) be the combinatorial Laplacian matrix associated with
a vertex-weighted digraph G. Then W 1/2

1 is an eigenvector of L(G) correspond-
ing to the Laplacian eigenvalue 0.

Proof: We know that L(G) = N−(N−)† where N− is a vertex-edge incidence
matrix. Thus 0 is an eigenvalue of L(G) if and only if there is a nonzero vector
x ∈ Cn such that (N−)†x = 0. Setting x = W 1/21, the proof follows from the
fact that x†N− = 0.

Theorem 2.6. A vertex-weighted digraph G is connected if and only if the
algebraic multiplicity of combinatorial Laplacian eigenvalue 0 is 1.

Proof: Let G be a connected vertex-weighted digraph. Then 0 is a Laplacian
eigenvalue of L(G) corresponding to the eigenvector W 1/21. Now assume that a
nonzero vector x = [x1, x2, . . . , xn]

T ∈ C
n exists such that x†N− = 0. Suppose

xj 6= 0 for some 1 ≤ j ≤ n. From the definition of N− it follows that the jth
row of N− contains a nonzero entry at the junction of some column, say ith
column, that is, the column corresponding to the edge ei. Since G is loopless,
there will exist another nonzero entry at the ith column, say at the junction
of the kth row. Then we will have xk

√
wj − xj

√
wk = 0 where wj and wk

denote the weights at the jth and kth vertices, respectively. Thus we have
xk = (

√
wk/

√
wj)xj . Since the graph is connected, by induction process we can

show using similar arguments iteratively that x is a multiple of the all one’s
vector 1. (We mention that the other way of proving it by just using (9)). Thus
the algebraic multiplicity of 0 is one.

Conversely assume that the algebraic multiplicity of Laplacian eigenvalue 0 is
more than one. Then there will exist more than one linearly independent vectors
x such that x†N− = 0. Suppose that G is connected. Then this contradicts the
fact that any x satisfying x†N− = 0 is a multiple of 1. Hence G is disconnected.
This completes the proof.
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Corollary 2.7. A vertex-weighted digraph G has k connected components if and
only if the algebraic multiplicity of Laplacian eigenvalue 0 is k.

Remark 2.8. Any vertex weighted digraph may not have signless Laplacian
eigenvalue 0. Consider the following example.

Example 2.9. Consider the graph G :

WVUTPQRS1[−i] //

��

ONMLHIJK2[1] // ONMLHIJK3[i]

ONMLHIJK4[1]

<<③③③③③③③③③③

where ONMLHIJKj[z] denotes the vertex j with vertex-weight z. Then

Q(G) =




2
√
i 0

√
i√

−i 3
√
i 1

0
√
−i 1 0√

−i 1 0 2




and the signless Laplacian eigenvalues are 0.4384, 1.0000, 2.0000, 4.5616.

Theorem 2.10. A connected vertex-weighted digraph has a signless Laplacian
zero if and only if it does not contain a connected cycle of odd order.

Proof: Let G = (V,E) be a connected vertex-weighted digraph and 0 a
signless Laplacian eigenvalue of G corresponding to the eigenvector 0 6= x =
[x1, x2, . . . , xn]

T ∈ Cn. Then we have xi
√
wj = −xj

√
wi for any edge (vi, vj) ∈ E.

Suppose that G contains a cycle C of odd order l. Then for any vertex vi1
of C we have vi1 ∼ vi2 , vi2 ∼ vi3 , . . . , vil−1

∼ vil , vil ∼ v1 where u ∼ v in-
dicates a directed edge in between the vertices u and v. Consequently we
have xi1

√
wi2 = −xi2

√
wi1 , xi2

√
wi3 = −xi3

√
wi2 , . . . , xil

√
wi1 = −xi1

√
wil. This

yields xi1 = −xi1 ⇒ xi1 = 0. This essentially gives xi = 0 for all i since the
graph is connected. Thus we arrive at a contradiction. Therefore G does not
contain an odd cycle.

Conversely, assume that G = (V,E) is a connected vertex-weighted digraph
having no odd cycle. We define a nonzero vector x = [x1, x2, . . . , xn]

T ∈ Cn such
that xi

√
wj = −xj

√
wi for any edge (vi, vj) ∈ E. Then we have x†Q(G)x = 0

which implies that x is an eigenvector of Q(G) corresponding to the eigenvalue
0. This completes the proof.

2.3 Edge-weighted digraphs with loops

Let G = (V,E) be an edge-weighted digraph with loops (at least one vertex
contains a loop) of order n. Let w : E → C \ {0} be the weight function defined
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by w((i, j)) = wij if i 6= j, and w((i, j)) = ri > 0 if i = j. The adjacency matrix
A(G) = (aij) associated with G is defined as

aij =





wij, if (i, j) ∈ E;
wij , if (j, i) ∈ E;
ri, if (i, i) ∈ E;
0, otherwise.

The degree di of a vertex i ∈ V is given by di =
∑n

j=1 |aij|. The Laplacian and
the signless Laplacian matrices are defined by

L(G) = diag({di}ni=1)− A and Q(G) = diag({di}ni=1) + A, (12)

respectively. Notice that self-loops, even though apparent in the adjacency
matrix A(G), do not appear in the Laplacian matrix L(G). The vertex-edge
incidence matrix M− where

M−
v,e =





√
wij, if v is initial vertex of nonloop edge e;

−
√
wij , if v is terminal vertex of nonloop edge e;

0, otherwise

gives L(G) = M−(M−)† which implies that L(G) is Hermitian positive semi-
definite matrix. The vertex-edge incidence matrix M+ where

M+
v,e =





√
wij , if v is initial vertex of nonloop edge e;√
wij , if v is terminal vertex of nonloop edge e;√
r, if e is a loop with weight r at the vertex v ;

0, otherwise

gives Q(G) = M+(M+)† which implies that Q(G) is Hermitian positive semi-
definite matrix. Next we have

x†L(G)x =
∑

i 6=j,(i,j)∈E
|xi −

wij

|wij|
xj |2 (13)

x†Q(G)x =
∑

i 6=j,(i,j)∈E
|xi +

wij

|wij|
xj |2 +

∑

(i,i)∈E
ri|xi|2 (14)

for any x = [x1, x2, . . . , xn]
T ∈ Cn.We call ŵij = wij/|wij| the normalized weight

of the edge (i, j) of an edge-weighted digraph. Then we have the following
theorem.

Theorem 2.11. The least eigenvalue of the combinatorial Laplacian of a con-
nected edge-weighted digraph is equal to 0 if and only if

{
Ŵ (P ) = Ŵ (P ′), if p− p′ ≡ 0 mod(2n)

Ŵ (P ) = −Ŵ (P ′), if p− p′ ≡ 0 mod(2n+ 1), n ∈ N,

holds for any two paths P, P ′, which do not contain any loop, between any fixed
two vertices where Ŵ (P ) (resp. Ŵ (P ′)) is the product of the normalized weights
of the edges of P (resp. P ′).
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Proof: Let L(G) be the combinatorial Laplacian associated to a a connected
edge-weighted digraph with edge set E. Then by (39) we have

x†L(G)x =
∑

i 6=j,(i,j)∈E
|xi − ŵijxj |2, |ŵij| = 1

for any nonzero x = [x1 x2 . . . xn]
T ∈ C

n. Then the proof follows by applying
the similar arguments given in Theorem 2.3.

Corollary 2.12. Let G be a disconnected edge-weighted digraph. The number of
connected components of G satisfying the condition given in the above theorem
is equal to the multiplicity of combinatorial Laplacian eigenvalue 0.

Proof: The proof follows by using similar arguments given in Corollary 2.4.

Remark 2.13. It is easy to verify that x†Q(G)x 6= 0 for any nonzero x ∈ C
n.

Indeed, ri|xi|2 = 0 for some loop at the ith vertex if and only if xi = 0 which
implies that x = 0 for

∑
i 6=j,(i,j)∈E |xi − ŵijxj |2 to be zero as G is connected.

3 Physical Analogies

Here we present some analogies of graphs to physical systems. The purpose is
to highlight the importance of graphs in modelling diverse physical processes.

3.1 Connection to Diffusion and Schrödinger Equation

Consider a situation which models the flow of a system, such as gas, in a network
from vertex j to i, of an undirected graph, at a rate α(ψj − ψi), where ψj

represents the amount of the quantity at vertex j and α could be thought of as
the diffusion constant of the flow. The flow equation would be:

dψi

dt
= αΣjAij(ψj − ψi). (15)

Here Aij is the adjacency matrix that ensures that the only terms appearing
in the summation are those vertices that are connected by edges. Using the
fact that the degree of a vertex j, kj, is related to the adjacency matrix by
kj = ΣiAij , the Eq. (15) can be written as:

dψi

dt
= αΣj(Aij − δijki)ψj , (16)

which can be formally presented as:

dψ

dt
= α(A−D)ψ. (17)

Here ψ is a vector with components ψj and A, D are the adjacency and diagonal
matrices, with vertex degrees along the diagonal, respectively. If we represent
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the Laplacian of the graph to be L = A−D, then Eq. (17) has formal similarity
to a diffusion of a free particle or heat equation

∂ψ

∂t
= Ddiff ▽2 ψ, (18)

where ▽2 is the Laplacian and Ddiff is the diffusion constant with Ddiff ≡ −α.
An interesting analogy with quantum mechanics emerges if we observe that in
Eq. (18), if time t is made imaginary, i.e., if t = iτ , then the equation becomes:

∂ψ

∂τ
= iDdiff ▽2 ψ, (19)

which can be formally identified with the Schrödinger equation, of a free particle

∂ψ

∂τ
=

i~

2m
▽2 ψ. (20)

Thus the analogy −α ≡ Ddiff ≡ ~

2m
provides a formal connection of a simple

graph operation to the Schrödinger equation.

3.2 Random Walk On a Weighted Graph

Consider a stochastic evolution modelled by a random walk on a connected,
undirected garph with n nodes and weight wij ≥ 0 on the edge joining node i to
node j. A particle walks randomly from one node to another in this graph. The
random walk Xn, Xn ∈ 1, 2, ..., n, is a sequence of vertices of the graph. Given
Xn = i, the next vertex j is chosen from among the nodes connected to node
i with a probability pij =

wij

Σkwik
, i.e., probability is proportional to the weight

of the edge connecting i to j. The stationary distribution γj for this random
process depends only on the weight of the edges connected to the nodes and the
total weight of the edges emanating from a node w = Σi,j:j>iwij and has the
simple form

γj =
wj

2w
. (21)

From this the entropy rate of the stochastic process can be calculated and
shown to be dependent on the entropy of the stationary distribution and the
total number of edges of the graph.

3.3 Fock Space

In the wave function representation of Fock space, the antisymmetric wave-
function, for fermions, has the form of a determinant, specifically the Slater
determinant. Determinants have a very interesting graph theoretic representa-
tion [16]. Consider a square n × n matrix A = (Aij) such that the diagonal
elements of the matrix Aii represent weights of the directed self-loops at the
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ith vertices while the non-diagonal elements Aij represent the weights of the di-
rected edge from ith vertex to jth vertex, of the graph representing the matrix
A. This form is called the Coates digraph of A [16]. Some useful terminilo-
gies connected with the Coates digraph are the spanning subgraph, which is
the subgraph of a graph such that the vertices of both the graph and subgraph
coincide, and the linear subgraph, which is a spanning subgraph such that the
incoming degree is equal to the outgoing degree of each vertex and is equal to
one. This is illustrated below in the tadpole diagram:

◦A11 99
A12 ** ◦ A22eeA21

jj

corresponding to

A =

[
A11 A12

A21 A22

]
. (22)

Using the concept of the linear subgraph, a graph theoretic representation
of the determinant of a matrix A is given by

det(A) = (−1)nΣL∈L(A)(−1)c(L)w(L). (23)

Here A is a square matrix of order n, L is a linear subgraph of the Coates
digraph corresponding to A, c(L) is the number of cycles (loops covering all
the vertices) in L, L(A) corresponds to the set of all linear subgraphs of A and
w(L) is the weight of L and is equal to the product of the weights of the edges
of L. This formula of the determinant is called the Coates formula [17, 18, 19]
and is computationally identical to the standard definition of a determinant.
For e.g.: the determinant for the graph drawn in the figure above for A is
det(A) = A11A22−A21A12. A point to be noted here is that there is no restriction
on the elements of A to be complex, leading to complex weights, a concept we
find to be of immense importance in providing a graphical representation of
quantum states. In the context of the Slater determinant, the matrix elements
Aij would simply be replaced by complex functions corresponding to the n-
particle wavefunctions. The Slater determinant would then have a graphical
representation in terms of the Coates formula, Eq. (23).

The bosonic wavefunctions, on the other hand, have the form of a perma-
ment. Permanents have graph-theoretic interpretations as (a). sum of weights
of cycle covers of a digraph, and (b). sum of weights of perfect matchings in a
bipartite garph. The class of cycle covers, in the Coates graph, is a subclass of
the set of linear subgraphs. Corresponding to an n × n matrix A = (Aij), the
permanent is defined as

perm(A) = ΣσΠ
n
i=1ai,σ(i), (24)

where σ is a permutation over (1, 2, ..., n). In the case of the figure drawn above,
the permanent is A12A21.

An interesting consequence of the graphical interpretations of determinant
and permanent, as can be seen explicitly from the example of the graph drawn
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above, is that the determinant, defined from linear subgraphs, is an antisym-
metric function and hence can represent Fermions, while permanent, defined
from cycle covers, is a symmetric function and can hence be used to represent
Bosons. Thus the only class of particles in nature, Bosons or Fermions, have a
clear graph theoretic interpretation.

4 Establishing an Isomorphy between Quan-

tum States and Graphs

In this section, we construct an isomorphy between quantum states, both pure as
well as mixed, and graphs, that is, we ask the question that given any quantum
state what is its corresponding graph representation. Though a number of
quantum states, including the ones considered in the literature [7, 8, 9], can be
provided with a graph theoretic representation, it is not possible in general, to
establish an isomorphy between quantum states and graphs. We, however, find
that such a relationship can be established using vertex weighted digraphs with
complex weights, as discussed in Sec. (2.2), and edge-weighted digraphs with
loops (Sec. (2.3)).

4.1 Pure States and Mixed States

The density matrix representation of a quantum state is a Hermitian positive
semi-definite matrix with unit trace. The density matrix ρ corresponding to a
state satisfies Tr(ρ) = 1 as well as

{
Tr(ρ2) = 1, if the state is pure;
Tr(ρ2) < 1, if the state is mixed.

(25)

A quantum state, in general, can be represented as

ρ =
∑

i

pi|ψi〉〈ψi|, (26)

where 0 6= |ψi〉 ∈ C2 with norm one and
∑

i pi = 1, 0 ≤ pi ≤ 1. Thus ρ is a
convex combination of rank one matrices, in particular, rank one projections.
If ρ is just a projection with rank one then ρ is called a pure state, otherwise,
a mixed state.

The vector representation of a pure state is given by |ψ〉 = α|0〉+β|1〉, where
α, β ∈ C with |α|2 + |β|2 = 1.

A combinatorial Laplacian or signless Laplacian matrix associated to a ver-
tex or edge weighted digraph defined in section 2, can be identified with a
density matrix. Since the motivation of this paper is to associate a graph with
a quantum state described by ρ, we first try to construct a graph representation
of a pure state, that is, a graph with rank one Laplacian matrices. Next we do
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the same for a mixed state. We denote an edge or vertex weighted complete
bipartite digraph of order n as Kn. From now onwards we mean vertex or edge
weighted graph when we say ‘weighted digraphs’ unless otherwise stated.

Definition 4.1. The density matrix σG associated to a weighted digraph G is
given by

σG :=
1

d(G)
K(G) (27)

where d(G) is the total degree of G and K(G) ∈ {L(G), Q(G)}.
It is obvious to see that σG is a Hermitian positive semi-definite matrix as

L(G) and Q(G) are Hermitian positive semi-definite. Further, we have

λi(σG) =
1

d(G)
λi(K(G)), (28)

where λi(X) denotes the ith eigenvalue of X. We have the following result.

Theorem 4.2. The density matrix of a weighted digraph G has rank one if and
only if the graph is K2 or K̂2 := K2 ⊔ v1 ⊔ v2 ⊔ . . . vn−2., where v1, v2, . . ., vn−2

are isolated vertices.

Proof: Assume that σG has rank one and G contains n vertices. Then σG has
eigenvalue 1 with multiplicity one (since trace of σG = 1) and 0 is an eigenvalue
of multiplicity n−1. If n = 2 then obviously G = K2. If n 6= 2 then by Corollary
2.4 and Corollary 2.7, G contains n− 1 connected components. Thus G = K̂2.

Conversely, suppose G = K2 or K̂2. Then the eigenvalues of σG are 0 with
multiplicity n − 1 for G = K̂2 and multiplicity 1 for G = K2, and 1 with
multiplicity one. Hence the result follows.

Remark 4.3. We mention that the same result has been obtained in [9] for un-
weighted undirected graphs. Theorem 4.2 generalizes the same result for weighted
digraphs.

Theorem 4.4. Let G be a weighted digraph isomorphic to K2 or K̂2. Then σG
represents a pure state.

Proof: The density matrix σG has a simple eigenvalue 1 and other eigenvalues
are zeros. Since trace of any matrix is sum of the eigenvalues of the matrix, we
have Tr(σG) = 1 and Tr(σ2

G) = 1. Thus the result follows.
Thus, up to isomorphism, weighted digraph representations of pure states

are

1. Edge-weighted digraphs:

(a) ?>=<89:;1
w

��?>=<89:;2

(b) ?>=<89:;1
w

��

?>=<89:;3 ?>=<89:;4

?>=<89:;2

. . . ?>=<89:;n
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2. Vertex-weighted digraphs:

(a) WVUTPQRS1[w1]

��WVUTPQRS2[w2]

(b) WVUTPQRS1[w1]

��

WVUTPQRS3[w3] WVUTPQRS4[w4]

WVUTPQRS2[w2]

. . . WVUTPQRSn[wn]

0 6= w,w1, w2, . . . , wn ∈ C, n ∈ N.

Theorem 4.5. Let G be a weighted digraph of order n that is not isomorphic
to K2 and K̂2. Then G represents a mixed state.

Proof: Let the eigenvalues of σ(G) be λ1 ≤ λ2 ≤ . . . ≤ λn. By the definition
of σG we have Tr(σG) = 1 as

∑n
i=1

λi

d(G)
= 1 where d(G) =

∑n
i=1 λi. Then the

eigenvalues of σ2
G are

λ2

1

d(G)2
,

λ2

2

d(G)2
, . . . , λ2

n

d(G)2
. Thus

Tr(σ2
G) =

∑n
i=1 λ

2
i

d(G)2
=
d(G)2 − 2

∑n
i 6=j,i,j=1 λiλj

d(G)2
< 1.

Hence G represents a mixed state.
We recall the spectral value decomposition of any symmetric matrix M .

ThenM has orthonormal eigenvectors ψ1, ψ2, . . . , ψn corresponding to the eigen-
values λ1, λ2, . . . , λn, respectively. Then we have M = XΣXT where X =
[ψ1, ψ2, . . . , ψn] and Σ = diag[λ1, λ2, . . . , λn]. Thus the spectral decomposition
of

M = λ1|ψ1〉〈ψ1|+ λ2|ψ2〉〈ψ2|+ . . .+ λn|ψn〉〈ψn| =
n∑

i=1

λi|ψi〉〈ψi|. (29)

Therefore we have the following result.

Corollary 4.6. Any pure quantum state is represented by |ψ〉〈ψ| where |ψ〉 is
an eigenvector corresponding to the eigenvalue 1 of σK2

or σK̂2
.

Proof: The result follows by (29).

Corollary 4.7. Any mixed state is represented by

λ1
d(G)

|ψ1〉〈ψ1|+
λ2
d(G)

|ψ2〉〈ψ2|+ . . .+
λn
d(G)

|ψn〉〈ψn|

where G is not isomorphic to K2 or K̂2, d(G) =
∑n

i=1 λi, λi are eigenvalues
of σG and |ψ1〉, |ψ2〉, . . . |ψn〉 are the corresponding orthonormal eigenvectors re-
spectively.

Proof: The result follows by (29).
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Example 4.8. Edge weighted digraph representation of pure quantum states:
Consider graph G = K2 for a pure state with edge weight w ∈ S

+
1 . Then the

corresponding density matrix with respect to the Laplacian matrix is given by

σG =
1

2
L(G) =

1

2

[
1 −w

−w 1

]
,

where w = eiφ, 0 ≤ φ ≤ 2π. The eigenvalues of σG are 0 and 1 corresponding

to eigenvectors |ψ1〉 = 1√
2|z1|

[
z1
wz1

]
and |ψ2〉 = 1√

2|z2|

[
z2

−wz2

]
respectively, where

0 6= z1, z2 ∈ C. Thus the pure state is given by ρ = |ψ2〉〈ψ2|. Setting z2 =
reiθ, |z2| = r > 0, 0 ≤ θ ≤ 2π, the vector representation of the pure state is
given by

|ψ〉 = eiθ(
1√
2
|0〉 − 1√

2
e−iφ|1〉),

≡ 1√
2
|0〉 − 1√

2
e−iφ|1〉.

Further, the density matrix with respect to the signless Laplacian matrix is
given by

σG =
1

2
Q(G) =

1

2

[
1 w
w 1

]
.

Following a similar approach, as above, the corresponding vector representation
of the pure state is given by

|ψ〉 ≡ 1√
2
|0〉+ 1√

2
e−iφ|1〉, 0 ≤ φ ≤ 2π.

The results are similar for G = K̂2.

Remark 4.9. From the example above we observe that an edge weighted digraph
cannot represent all possible pure quantum states, α|0〉+ β|1〉, |α|2 + |β|2 = 1.
In the next example we consider the vertex weighted digraph.

Example 4.10. Vertex weighted digraph representation of pure quantum states:
Consider the vertex weighted graph G = K2 with nonzero weights w1, w2 ∈ C.

The density matrix with respect to the Laplacian matrix L(G) is given by

σG =
1

|w1|+ |w2|

[
|w2| −√

w1w2

−√
w2w1 |w1|

]
.

The eigenvalues of σG are 0 and 1 corresponding to the eigenvectors |ψ1〉 =[
z1√

w2w1

|w1| z1

]
and |ψ2〉 =

√
|w2|

|z2|
√

|w1|+|w2|

[
z2

−
√
w2w1

|w2| z2

]
, respectively. The pure state is
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given by ρ = |ψ2〉〈ψ2|. The vector representation of the pure state is:

|ψ〉 =
z2
√

|w2|
|z2|

√
|w1|+ |w2|

(|0〉 −
√
w2w1

|w2|
|1〉)

=
z2
√

|w2|
|z2|

√
|w1|+ |w2|

(|0〉 −
√
r1r2ei(φ1−φ2)

r2
|1〉)

=
z2
√

|w2|
|z2|

√
|w1|+ |w2|

(|0〉 −
√
r1
r2
ei(φ1−φ2)/2|1〉)

≡ |0〉 − reiφ|1〉,
where wj = rje

iφj , |wj| = rj, 0 ≤ φj ≤ 2π, φ = (φ1 − φ2)/2, r =
√
r1/

√
r2, j =

1, 2.
Further, the density matrix with respect to the signless Laplacian matrix is

given by

σG =
1

|w1|+ |w2|

[
|w2|

√
w1w2√

w2w1 |w1|

]
.

Following a similar approach, as above, we obtain the vector representation of
the pure state as:

|ψ〉 ≡ |0〉+ reiφ|1〉,
where wj = rje

iφj , |wj| = rj, 0 ≤ φj ≤ 2π, φ = (φ1 − φ2)/2, r =
√
r1/

√
r2, j =

1, 2. Thus, all possible single-qubit pure states are reproduced.

Remark 4.11. We mention that if weights of all the edges in a weighted digraph
G are 1, then L(G) coincides with the usual Laplacian matrix of an unweighted
undirected graph. This gives the construction of density matrix of a state asso-
ciated to a Laplacian matrix introduced by Braunstein et. al. in [9]. If weights
of the edges in G are ±1, then (viewing the edges of weight 1 as directed and
the edges of weight −1 as undirected) L(G) coincides with the Laplacian matrix
of a mixed graph.

The density matrix ρ = 1
2

[
1 0
0 1

]
cannot be identified as the Laplacian of a

weighted digraph, described above. These leads us to consider edge-weighted
digraphs with loops. It follows from the Remark 2.13, that the density matrix
σG = 1

d
Q(G), d =

∑n
i=1 di does not represent a pure qubit state for any edge-

weighted digraph G.

Theorem 4.12. The density matrix corresponding to the Laplacian matrix as-
sociated to an edge weighted digraph with loops G represents a pure state if and
only if G = K2 with loops or G = K̂2 with loops.

Proof: The proof follows from the proofs of Theorem 4.2 and 4.4.

Theorem 4.13. If G is an edge weighted digraph with loops not isomorphic to
K2 with loops and K̂2 with loops then G represents a mixed state.

Proof: The proof follows from the proof of Theorem 4.5.
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5 Generation of Entangled Quantum States

Entanglement is a key resource in quantum information processing [1, 20, 21, 22]
and is one of the first quantum correlation measures to be studied in detail. Sim-
ply stated, what is not separable is entangled, i.e., if any quantum system cannot
be represented as the product of two or more subsystems, then it is entangled.
To put our work in the perspective of quantum information processing tasks,
a natural question to ask is about the nature of graph operations that could
generate entangled quantum states. Let us elaborate on this.

Consider two quantum states described by the density operators

ρ1 =

[
1 0
0 0

]
and ρ2 = 1

2

[
1 1
1 1

]
, respectively. The tensor product of ρ1 and ρ2

is given by

ρ1 ⊗ ρ2 =




1
2

0 1
2

0
0 0 0 0
1
2

0 1
2

0
0 0 0 0


 . (30)

The state ρ1 ⊗ ρ2 is clearly a separable state. We can generate entanglement
between ρ1 and ρ2 by performing a quantum operation U on ρ1⊗ρ2, the resulting
output state being

ρ12 = U(ρ1 ⊗ ρ2)U
† =




1
2

0 0 1
2

0 0 0 0
0 0 0 0
1
2

0 0 1
2


 , (31)

where U =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


. The state ρ12 is now entangled.

We are now in a position to ask the question whether a quantum operation,
in particular entanglement, can be realized by a corresponding graph operation?
The answer is in affirmative. We address this question by providing a graph
operation in an example given below.

Example 5.1. Let the adjacency matrices of the graphs representing two single
qubit states ρ1 and ρ2 be

A(G1) =

[
0 1
1 0

]
, A(G2) =

[
1 0
0 0

]
. (32)

We assume that the adjacency matrix A(G1 ⊗G2), corresponding to the tensor
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product of single qubit states, is given by

A(G1 ⊗G2) = A(G1)J ⊗ A(G2)P + (A(G1)J)
† ⊗ (A(G2) + I)P †

=




0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0


 , (33)

where J =

[
0 0
0 1

]
, P =

[
0 1
0 0

]
. The degree matrix is given by

D =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 . (34)

Therefore, the Laplacian of a graph G1 ⊗G2 is given by

L(G1 ⊗G2) = D − A(G1 ⊗G2) =




1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


 (35)

The state corresponding to graph G1 ⊗G2, that is, σG1⊗G2
, is given by

σG1⊗G2
=

1

2




1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


 . (36)

Eq.(36) represents a Bell state.

Given two graphs G and H we can produce a new one by defining a suitable
operation on these two graphs. Several ways of defining such an operation are
available in the literature [23]. Parsonage et.al. [23] have defined a generalized
graph product by unifying a number of products, such as, tensor product, strong
product, lexicographic product. Given G and H of order n, the generalized
graph product is defined as

A(G⊗f,g H) ≡ AG∗H := A(G)⊗ f(A(H)) + In ⊗ g(A(H)), (37)

where f and g are defined on the adjacency matrices of the graphs G and H ,
respectively. Taking suitable f and g one can produce several new graphs.

By considering weighted digraphs G and H as the graph representation of
qubits, one can verify that the new graph produced by taking the generalized
graph product G⊗f,gH is always a separable state. We prove this by using the
following lemma.
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Lemma 5.2. [24] A 2× 2 block matrix A =

[
A11 A12

A21 A22

]
, A†

12 = A21, det(A11) 6=
0, is Hermitian positive semi-definite if and only if A11 > 0 and A22−A21A

−1
11 A12 ≥

0.

Theorem 5.3. Let G and H be weighted digraphs which represent single qubit
quantum states. The density matrices corresponding to the Laplacian matrices
associated with the product graph G⊗f,g H represent a separable state.

Proof: LetA(G) =

[
0 ω
ω̄ 0

]
for some 0 6= w ∈ C, f(A(H)) =

[
f11 f12
f̄12 f22

]
, f11, f22 ∈

R, and g(A(H)) =

[
0 g12
ḡ12 0

]
. Then by (37) we have

AG∗H =




0 g12 ωf11 ωf12
ḡ12 0 ωf̄12 ωf22
ω̄f11 ω̄f12 0 g12
ω̄f̄12 ω̄f22 ḡ12 0


 .

Thus the density matrix σG∗H corresponding to the Laplacian matrix of G ∗H
is given by

σG∗H =
1

d1 + d2 + d3 + d4




d1 g12 ωf11 ωf12
ḡ12 d2 ωf̄12 ωf22
ω̄f11 ω̄f12 d3 g12
ω̄f̄12 ω̄f22 ḡ12 d4


 , (38)

where di, i = 1, 2, 3, 4 is the sum of modulus of the ith row entries of AG∗H .
Since σG∗H ≥ 0, by Lemma 5.2 we have

[
d1 g12
ḡ12 d2

]
> 0 and (39)

[
d3 g12
ḡ12 d4

]
− 1

d1d2 − |g12|2
[
ω̄f11 ω̄f12
ω̄f̄12 ω̄f22

] [
d1 −g12

−ḡ12 d2

] [
ωf11 ωf12
ωf̄12 ωf22

]
≥ 0. (40)

The partial transposed state of σG∗H is given by

σTB =
1

d1 + d2 + d3 + d4




d1 ḡ12 ωf11 ωf̄12
g12 d2 ωf12 ωf22
ω̄f11 ω̄f̄12 d3 ḡ12
ω̄f12 ω̄f22 g12 d4


 . (41)

Case-I: det(A11) 6= 0, where A11 =

[
d1 ḡ12
g12 d2

]
. Using Eqs. (39), (40), it follows

that σTB ≥ 0, hence σG∗H represents a separable state [20].
Case-II: If det(A11) = 0, then we cannot apply lemma (5.2) to prove the positive
semi-definiteness of σTB . We overcome this difficulty by considering all possibile
cases where det(A11) = 0.
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From Eq. (38), the degrees d1 and d2 are given by

d1 = |ḡ12|+ |f11|+ |f12|, (42)

d2 = |ḡ12|+ |f12|+ |f22|. (43)

Using (42) and (43), we can re-write the matrix A11 as

A11 =

[
d1 ḡ12
g12 d1 − |f11|+ |f22|

]
. (44)

If det(A11) = 0 then |g12| (|f11|+ 2|f12|+ |f22|)+(|f11|+ |f12|) (|f12|+ |f22|) = 0
holds. The exhaustive cases which satisfy det(A11) = 0 are given below:

Subcase-I: d1 = |g12|, |f11| = |f22| = |f12| = 0. Hence, the matrix σTB = σ ≥
0.

Subcase-II: |g12| = |f11| = |f22| = |f12| = 0. Thus, the matrix σTB = σ ≥ 0.
Subcase-III: d1 = |f11|, |g12| = |f22| = |f12| = 0. Consequently, σTB = σ ≥ 0.
Subcase-IV: |g12| = |f11| = |f12| = 0. Then, σTB = σ ≥ 0.
From the above considerations, it can be concluded that the state repre-

sented by the density matrix σG∗H is separable. Hence the theorem.
It is evident that the states generated by Eq. (37) are always separable.

Thus, to generate entangled states we need to generalize the graph operations.
We define

A(G ∗H) :=

k∑

i=1

fi(A(G))⊗ gi(A(H)), (45)

where fi, gi, i = 1, . . . k, k ≥ 2, are functions defined on adjacency matrices of
the graphs G and H such that A(G ∗H) is Hermitian and diagonal entries are
zeros and ⊗ denotes the tensor product. Now by taking suitable choices of these
functions we observe that the graphs resulting from the operations (45) could
generate entangled states. In particular, we present a graphical construction of
all Bell states.

Example 5.4. Let J =

[
0 0
0 1

]
and X† be the conjugate transpose of a matrix

X. The adjacency matrices corresponding to the vertex weighted digraphs G with
vertex weights w1, w2 ∈ C \ {0}, and H with vertex weights w′

1, w
′
2 ∈ C \ {0},

are given by

A(G) =

[
0

√
w1w2√

w2w1 0

]
and A(H) =


 0

√
w′

1w
′
2√

w′
2w

′
1 0


 .

1. Setting the matrix functions fi, gi, i = 1, 2 as

f1(X) = XJ, f2(X) = (XJ)†, g1 = f1, g2 = f2, (46)

we obtain the non-maximally entangled states. For a particular set of
values of weights, this construction leads to Bell states. Here G and H
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represent the qubit pure states and the corresponding density matrices are
associated to either Laplacian or signless Laplacian.

Indeed, we have

A(G ∗H) =




0 0 0
√
w1w′

1w2w′
2

0 0 0 0
0 0 0 0√

w2w′
2w1w′

1 0 0 0



.

The density matrices corresponding to Laplacian and signless Laplacian
matrices associated to G ∗H are given by

σG∗H =
1

|w2w
′
2|+ |w1w

′
1|




|w2w
′
2| 0 0 −

√
w1w′

1w2w′
2

0 0 0 0
0 0 0 0

−
√
w2w′

2w1w′
1 0 0 |w1w

′
1|




and

σ′
G∗H =

1

|w2w′
2|+ |w1w′

1|




|w2w
′
2| 0 0

√
w1w

′
1w2w

′
2

0 0 0 0
0 0 0 0√

w2w
′
2w1w

′
1 0 0 |w1w

′
1|



,

respectively. These density matrices represents non-maximally entangled
states.

In particular, setting w1 = w′
1 = w2 = w′

2 = 1, that is, by considering
simple unweighted undirected graph representations G,H of the pure qubit
states we get the Bell states of the form |Φ∓〉 = 1√

2
(|00〉 ∓ |11〉).

2. Setting the matrix functions fi, gi, i = 1, 2 as

f1(X) = XJ, f2(X) = (XJ)†, g1 = f2, g2 = f1, (47)

we obtain

A(G ∗H) =




0 0 0 0

0 0
√
w̄1w2w̄′

2w
′
1 0

0
√
w̄′

1w
′
2w̄2w1 0 0

0 0 0 0


 .

The density matrices corresponding to Laplacian and signless Laplacian
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matrices associated with G ∗H are given by

σG∗H =
1

|w2w′
1|+ |w1w′

2|




0 0 0 0

0 |w2w
′
1| −

√
w̄1w2w̄

′
2w

′
1 0

0 −
√
w̄′

1w
′
2w̄2w1 |w′

2w1| 0
0 0 0 0


 and

σ′
G∗H =

1

|w2w
′
1|+ |w2w

′
1|




0 0 0 0

0 |w2w
′
1|

√
w̄1w2w̄′

2w
′
1 0

0
√
w̄′

1w
′
2w̄2w1 |w′

2w1| 0
0 0 0 0


 ,

respectively. These density matrices represents non-maximally entangled
states.

Setting w1 = w′
1 = w2 = w′

2 = 1, we get the Bell states of the form |Ψ∓〉 =
1√
2
(|01〉 ∓ |10〉).
For different choices of fi’s and gi’s we get a variety of entangled states and

separable states. A detailed study on these issues is being considered in [25].
It is obvious from the above examples that simple weighted digraphs with

complex weights represent a large class of quantum states. However, from Sec.
IV, it is clear that they fail to provide a graphical representation of all the
quantum states. A very important class of mixed states, Werner states, cannot
be represented by simple weighted digraphs. This phenomenon motivates us
to consider edge weighted digraphs with loops (at least one vertex contains a
loop). The corresponding density matrix with respect to the signless Laplacian
provides a graphical representation of Werner states.

Using the graph operation G ∗ H defined in (45) for the edge weighted
digraphs with loops, G and H, we can obtain graphs which represent entangled
pure and mixed states.

Example 5.5. Consider G and H to be edge weighted digraphs with loop at one
vertex of each of the graphs. Then we have

A(G) =

[
r1 w
w 0

]
and A(H) =

[
0 w′

w′ r2

]

and corresponding (signless) Laplacian matrices are given by

L(G) =

[
1 −w

−w 1

]
, L(H) =

[
1 −w′

−w′ 1

]
,

Q(G) =

[
2r1 + 1 −w
−w 1

]
, Q(H) =

[
1 −w′

−w′ 2r2 + 1

]

where r1 > 0 in the diagonal of A(G) is the weight of the loop at the 1st vertex
of G, with edge weight w ∈ S1

+ and r2 > 0 in the diagonal of A(H) is the weight
of the loop at the 2nd vertex of H with edge weight w′ ∈ S1

+.
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Let J =

[
0 0
0 1

]
, K =

[
0 w
0 0

]
, K ′ =

[
0 w′

0 0

]
, Z =

[
0 −1
1 0

]
. Then setting

f1(X) = XJ, f2(X) = JX, f3(X) = XK†, f4(X) = (ZX†Z)J,

g1(X) = f2(X), g2(X) = f1(X), g3(X) = XK ′†, g4(X) = f4(X)

and defining

G ∗H =

4∑

i=1

fi(A(G))⊗ gi(A(H))

we have

A(G ∗H) =




r1 0 0 0
0 0 ww′ 0
0 ww′ 0 0
0 0 0 r2


 .

Then the density matrices corresponding to the Laplacian and signless Lapla-
cian matrices are given by

σG∗H =
1

2




0 0 0 0
0 1 −ww′ 0
0 −ww′ 1 0
0 0 0 0


 (48)

and

σ′
G∗H =

1

2(1 + r1 + r2)




2r1 0 0 0
0 1 ww′ 0
0 ww′ 1 0
0 0 0 2r2


 , (49)

respectively.
Setting w = w′ in Eq. (48), and since their modulus is one, we get the Bell

states of the form |Ψ−〉, while Eq. (49) represents a Werner state.

6 Conclusions and Future Directions

In this work we have attempted to provide a graph theoretic representation of
arbitrary quantum states. We work with both the usual combinatorial as well
as the relatively new signless Laplacian. While the combinatorial Laplacian can
be used to represent both pure as well as mixed states, the signless Laplacian
only represents mixed states for edge weighted digraphs with loops. We also
found some interesting analogies between a number of physical processes and
graph representations. In contrast to some of the earlier works on related is-
sues, here the entire graph represents a quantum state. The establishment of
an isomorphy between quantum states and graphs led to the use of complex
vertex weighted digraphs, in contrast to the earlier usage of unweighted undi-
rected graphs. This construction is able to represent all possible single qubit

25



pure states. The representation of mixed states, in general, envisaged the in-
troduction of a novel graph theoretic construction, viz., complex edge weighted
digraphs with loops on the vertex having real weight. This thus incorporates an
essentially complex network approach into quantum information, and by doing
so also leads to developments in graph theory.

With a view of understanding multiqubit entanglement, we developed a
graph theoretic method for generation of entangled two-qubit states, pure as
well as mixed, such as Bell and Werner states. The key to this was the identifi-
cation of graph operations that lead to the development of entangled state. As
a byproduct, we also developed graph operations that generate separable states.
The classification and study of generalized graph operations, an ongoing project
[25], would hopefully yield to an improvement in the understanding of the sep-
arability and entanglement issues, both pure as well as mixed, in multipartite
systems. In other words, a correspondence between quantum and graph opera-
tions is envisaged. This should open up many applications involving bipartite
and multipartite entangled states in quantum information processing.
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