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Many natural fibrous networks with fiber diameters much smaller than the average poresize can
be described as three-dimensional (3D) random line networks. We consider here a ‘Mikado’ model
for such systems, consisting of straight line segments of equal length, distributed homogeneously and
isotropically in space. First, we derive analytically the probability density distribution p(rno) for
the ‘nearest obstacle distance’ rno between a randomly chosen test point within the network pores
and its closest neighboring point on a line segment. Second, we show that in the limit where the
line segments are much longer than the typical pore size, p(rno) becomes a Rayleigh distribution.
The single parameter σ of this Rayleigh distribution represents the most probable nearest obstacle
distance and can be expressed in terms of the total line length per unit volume. Finally, we show by
numerical simulations that σ differs only by a constant factor from the intuitive notion of average
‘pore size’, defined by finding the maximum sphere that fits into each pore and then averaging over
the radii of these spheres.
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I. INTRODUCTION

Many biological systems can be structurally described
as random line networks. A typical example are gels
that self-organize by the polymerization and subsequent
crosslinking of filamentous proteins, such as collagen or
fibrin. In order to characterize the stochastic geome-
try of such systems, a frequently used parameter is the
average poresize rpore. It is determined by finding, for
a reprensentative fraction of network pores, the largest
spheres that can be fit into that pores and then comput-
ing the average of the radii of these maximum spheres.
While this can be done numerically in a straight forward
yet time consuming way, this definition of poresize is not
suited very well for exact analytical calculations. There-
fore, we suggest as an alternative measure the most prob-
able nearest obstacle distance σ for randomly chosen test
points and show that it is directly related to the poresize.

We start our investigations with a ‘Mikado’-like net-
work model that has two parameters, the length l of the
line segments and the volume density ρ of their centers.
It is possible to compute the distribution p(rno) of nearest
obstacle distances analytically in this model. In the limit
of zero line length, the Mikado model contains the case
of point networks. More interesting is the opposite limit,
where l is much larger than the average poresize. In this
case, the Mikado model converges towards a more gen-
eral model that represents any random line network with
a large persistence length. Indeed, the single system pa-
rameter in this limiting case is the overall line density λ,
i.e. the total line length per unit volume. This parameter
only sets the spatial scale of the network, and no other
details matter for the distributions p(rno) or W (rpore).
For example, a network composed of random circles with
identical overall line density would yield the same uni-
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FIG. 1. Collagen gel with a concentration of 1.2 mg/ml (Scale
bar is 10 µm). Shown is the maximum intensity projection
from a stack of 15 single confocal images recorded at a z-
distance of 340 nm (total height = 5.1 µm). The fibers are
straight on the scale of a typical pore size rpore and their
diameter is much smaller than rpore. Therefore, the structure
of the system can be well approximated by a Mikado line
network in the long fiber limit.

versal Rayleigh distribution p(rno) as the Mikado model,
provided the radius of the circles is much larger than the
average pore size. We compare these analytical results to
a numerical simulation that is directly based on the ex-
axt analytic geometry of points and lines, thus avoiding
any possible artifacts arising from voxelation.

After demonstrating perfect agreement of the simula-
tions with the analytic results, we use the simulations to
determine the poresize distribution for line networks of
various density parameters λ. As expected from scaling
arguments, the average poresize rpore = cσ is simply pro-
portional to σ, allowing us to determine the conversion
factor as c ≈1.86.
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II. MODEL AND THEORY

Distribution of nearest obstacles distances p(rno),
accessible volume fraction Q(r) and pore sizes

We consider random biphasic networks, in which ev-
ery point of 3-dimensional space either belongs to phase
0 (pore, liquid) or phase 1 (material, solid). In order to
map out the stochastic geometry of the network, one can

repeatedly choose a random point ~R0 = (x, y, z) within
the 0-phase of the network and then find its ‘nearest ob-

stacle distance’ rno(~R0), defined as the Euclidean dis-

tance from that point ~R0 to the closest point of the 1-
phase (compare Fig. 2(a)). The network is then charac-
terized by the distribution p(rno) of the nearest obstacle
distances.

Closely related to p(rno) is the ‘accessible volume frac-
tion’ Q(r), defined as the fraction of the 0-phase in which
a sphere of radius r (from now on called a r-sphere) could
be centered without overlapping the 1-phase (compare
Fig. 2(b)). In general, the dimensionless quantity Q(r)
has the value Q(r= 0) = 1 and decreases monotonically
for all radii r>0.

The complemental quantity 1 − Q(r) is the fraction
of 0-phase for which an r-sphere overlaps the 1-phase.
It corresponds to the probability that a random 0-phase

point ~R0 has a nearest obstacle distance rno smaller than
r, or

1−Q(r) = Prob(rno < r)

=

∫ r

0

p(rno)drno. (1)

The derivative of this equation with respect to r shows
that Q(r) is just the negative cumulative probability of
p(rno):

p(r = rno) = − d

dr
Q(r). (2)

While both quantities carry the same information about
the network, the cumulative Q(r) is more convenient for
analytical considerations, as will be demonstrated below.

Another way to characterize pores of a network is to
find the maximum sphere that fits to each pore and to
define the ‘pore size’ rpore as the radius of this maximum
sphere. The concept is also illustrated in Fig. 2(c). We
denote the distribution of pore sizes by W (rpore).

Random Line Networks: The Mikado model

In the following we consider random networks in which
the 1-phase consists of straight line segments of fixed
length, with isotropic orientations and a homogeneous
distribution throughout the 3D volume. We refer to this
model as the Mikado model.

Each individual line segment (LS) can be described by
its center point and a unit direction vector. In order to
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FIG. 2. 2D illustration of various statistical measures
used for networks of line segments. (a) Nearest obsta-
cle distances rno (thin lines) for a few selected points (cir-
cles). (b) Accessible volume (shaded areas) for spheres of a
given radius. (c) Maximum spheres fitting into network pores,
thereby defining the pore sizes rpore. (d) A homogeneous,
isotropic random distribution of straight line segments. The
segments have a prescribed length l and their center points
a spatial density of ρ. (e) Classification of line segments in
the 2D Mikado model. 1-group (squares): Centers within r-
sphere. 2-group (full circles): Centers outside r-sphere, yet
with chance of overlap. 3-group (empty circles): Remote seg-
ments without chance of overlap. (f) 2D sketch of an r-sphere
(green), a concentric spherical shell of radius R (gray) and a
specific point (red) within this shell. From all line segments
centered at the red point, only those can intersect the r-sphere
with orientations falling into a cone of apex angle ω.

avoid ambiguities, we require that all unit vectors have a
positive z-component and thus ‘point upwards’ (compare
Fig. 2(d)). The two parameters of the Mikado model are
the length l of the LSs and the volume density ρ = N

V
of their center points, where N is the number of line
segments within a volume V .

Consider first the extreme case l → 0, where all LSs
degenerate into their center points, and place a r-sphere
randomly into the system. Note that the configuration
of LS-centers throughout the volume is a spatial Poisson
process with ‘event rate’ that is identical to the volume
density ρ. On average, the r-sphere will contain a number
of

nav,l→0(r) = ρ
4

3
πr3 (3)

LS-centers. The probability Q(r) that not a single LS-
center lies within the r-sphere is given by the Poisson
probability for k=0 events, which is

Q(r) = Poisson {k = 0, nav = nav,l→0(r)} = e−nav,l→0(r).
(4)

Therefore, in the case of the random point network the
accessible volume fraction is given by

Q(r)l→0 = e−
4π
3 ρr

3

. (5)
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We now turn back to the general case l > 0. As before,
we can write

Q(r) = e−nav(r). (6)

In order to compute nav(r), we note that with respect
to a given r-sphere, the LSs can be classified into 3 groups
(compare Fig. 2 (e)):

• 1-group with LS-centers inside the r-sphere.

• 2-group with LS-centers outside the r-sphere, but
yet with a possibility of intersecting the r-sphere.

• 3-group with LS-centers too far away to touch the
r-sphere.

Only the groups 1 and 2 contribute to nav(r). The con-
tribution of the 1-group is identical to the case of point
networks above:

nav,1(r) = ρ
4

3
πr3. (7)

The 2-group consists of LSs with centers in a sphere
of radius r+ (l/2) around the center of the r-sphere. We
now consider in more detail the ones in an infinitesimal
spherical shell of radius R around the center of the r-
sphere, with 0 < R < r+(l/2). This R-shell contains a
number of

dN ′ = ρdV = ρ4πR2dR (8)

candidates for intersection. Among them, only those LSs
will actually overlap the r-sphere that have orientations
within a certain cone (compare Fig. 2(f)). This cone has
an apex angle of ω = 2 arcsin(r/R) and the corresponding
solid angle is

Ω(R) = 4π sin2(ω/4)

= 4π

[
sin

(
1

2
arcsin(r/R)

)]2
= 2π

(
1−

√
1− (r/R)2

)
. (9)

Since the total solid angle available for LS orienta-
tions is Ωtot = 2π (according to our convention that
all unit direction vectors are pointing upward), the in-
tersecting LSs amount to a fraction of Ω(R)/Ωtot =(

1−
√

1− (r/R)2
)

. We conclude that the average num-

ber of actual intersections from LSs within the R-shell
is

dN(R) = dN ′
(

1−
√

1− (r/R)2
)

= 4πρ
(

1−
√

1− (r/R)2
)
R2dR. (10)

The total contribution from all LSs of the 2-group is ob-
tained by integration over the relevant R-shells:

nav,2(r) =

∫ R=r+(l/2)

R=r

dN(R). (11)

This integral can be performed analytically. Using the
abbreviation

f(s) :=
1

3

[
s3 − (s2 − 1)3/2

]
, (12)

one obtains

nav,2(r) = 4πρr3
[
f(1 +

l

2r
)− f(1)

]
. (13)

By adding the contributions of both relevant groups,
nav(r) = nav,1(r) + nav,2(r), and using Q(r) = e−nav(r),
we arrive at an analytic expression for the accessible vol-
ume fraction in the Mikado model. Defining another use-
ful abbreviation

g(x) := 3

[
f(1 +

x

2
)− 1

3

]
, (14)

the result can be cast into the form

Q(r) = e−
4π
3 ρr

3[1+g(l/r)]. (15)

It correctly contains the limit of point networks, since
g(l/r) → 0 for l → 0. All the differences between point
and LS networks are included in the ‘perturbation func-
tion’ g(l/r).

From the accessible volume fraction Q(r), we immedi-
ately obtain the distribution of nearest obstacle distances
p(rno = r) = − d

drQ(r) in the Mikado model. With in-
creasing rno, this distribution starts with p(rno = 0) = 0,
develops a single peak and then decays exponentially for
distances much larger than the average pore size Rpore
of the network.

Mikado model in the long fiber limit

We next consider the case l � r, where the LSs are
much longer than the typical distances of interest. Since
p(rno) is exponentially small for distances beyond the
average pore size, this limit can also be interpreted as
l � Rpore. Note that this is a typical situation for net-
works of semi-flexible fibers, such as collagen.

It is straight-forward to show that in this limit the per-
turbation function diverges as g(l/r) → 3

4
l
r . One there-

fore obtains

Ql�r(r) = e−(πρl)r
2

= e−
1
2 (r/σ)

2

(16)

which is the ‘right half’ of a Gaussian bell curve with
standard deviation

σ = 1/
√

2πρl. (17)

The corresponding distribution of nearest obstacle dis-
tances is a Rayleigh distribution

pl�r(r) =
r

σ2
e−

1
2 (r/σ)

2

. (18)
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FIG. 3. (a) Distribution of nearest obstacle distances in 3D
networks of straight line segments, for three different density
parameters λ. Analytical predictions of the Mikado model in
the long fiber limit (dashed lines) are compared to numerical
simulations (solid lines). The unit of length was set equal
to the linear size L of the simulation box, which in turn was
equal to the length l of the line segments. (b) Distribution
of nearest obstacle distances p(r) (line) and pore size distri-
bution W (r) (line with symbols) in a 3D network of straight
line segments, for a density parameter of λ=100/L2. (c) Most
probable obstacle distance σ (squares) and average pore size
ravpore (circles) as a function of the density parameter λ. In the
long fiber limit, the ratio is constant with rpore/σ ≈ 1.86.

The most probable nearest obstacle distance, i.e. the
value of r at which p(r) is maximum, is given by σ. We
note that the accessible volume fraction in Eq.(16) de-
pends only on the ratio r/σ. Therefore, all nearest ob-
stacle distance distributions pl�r(r) should collapse onto
a universal distribution when the distance r is measured
in units of σ. In the long fiber limit, a dense and a di-
lute Mikado network cannot be distinguished from each
other, if the spatial scale is unknown.

Relating σ to line density

It is remarkable that in the long fiber limit of the
Mikado model, the properties of the network are com-
pletely determined by the parameter combination ρl,
which appears in the quantity σ = 1/

√
2πρl.

Remembering the definition of ρ as the volume density
of LS centers, we can write

ρl =
N

V
l =

Ltot
V

=: λ, (19)

where Ltot is the total length of all LSs. The new density
parameter λ corresponds to the total ‘fiber’ length per
unit volume. It follows that

σ = 1/
√

2πλ. (20)

Numerical test of the Mikado model

In order to test the predictions of the Mikado model,
we have simulated random line networks and compared
the resulting numerical p(rno) with the analytical results
above.

In the simulation, each line segment (of constant length
l) was numerically represented by its center coordinates
and a unit direction vector, as depicted schematically in
Fig. 2(d). Initially, a list of N such line objects was
generated, with the center points distributed randomly
throughout a cubic simulation box of linear dimension
L (with homogeneous density ρ = N

V = N
L3 ) and with

random, isotropic direction vectors [? ].
The distribution p(rno) was determined by randomly

choosing K = 105 test points ~Rk=1...K within the simu-

lation box, finding the nearest obstacle distance rno(~Rk)
for each test point and then computing a histogram of

these distances. The distance rno(~Rk) is found by first

computing the distances rkn between test point ~Rk and
all the lines n of the network and then finding the small-
est of those values. Note that the distance rkn between a
point and a line segment can be obtained exactly (with-
out any ‘voxelization’ required).

For the numerical test of the Mikado model in the long
fiber limit, we prescribed the density parameter λ, set
L = l = 1 and computed the required number of fibers

as N = λL3

l . We found an excellent agreement between
the analytical prediction and the simulation (compare
Fig. 3(a)).

Relation between the most probable nearest
obstacle distance σ and the average pore size rpore

For any concrete network, it is possible to compute the

nearest obstacle distance rno(~R0) for each spatial point
~R0, resulting in a so-called ‘Euclidean distance map’
(EDM). The pore centers of the network can then be
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defined as the positions ~R0 = ~R
(i)
max of the local maxima

of the EDM and the pore size distribution W (rpore) is

the distribution of the distance values r
(i)
pore = rno(~R

(i)
max)

taken at these local maxima.

Based on our numerically exact simulation of random
line networks, as described in Sect.II, we have computed
the pore size statistics W (rpore) and compared it to the
corresponding distribution p(rno) of nearest obstacle dis-
tances. As expected, W (rpore) is peaked at a larger value
than p(rno) (compare Fig. 3(c)). In the long fiber limit,
the ratio rpore/σ between the average pore size and the
most probable obstacle distance is a constant, i.e. inde-
pendent from the density parameter λ of the network.
This follows from the fact that the distribution p(rno) is
universal in length units of σ. To demonstrate the con-
stant ratio, we have plotted rpore(λ) and σ(λ) double-
logarithmically (compare Fig. 3(d)).

III. SUMMARY

In this paper we have theoretically investigated ran-
dom line networks, modelled as isotropic and macroscop-

ically homogeneous distributions of straight line segments
in 3D space. In the limiting case when the line segments
are much longer than the average poresize rpore, the dis-
tances rno of random test points to the nearest line seg-
ment are distributed according to a Rayleigh distribution

p(rno) =
rno
σ2

e−
1
2 (rno/σ)

2

. (21)

The most probable distance σ (peak position of the dis-
tribution) is determined by the overall line density λ, i.e.
the total line length per unit volume, by

σ =
1√
2πλ

. (22)

The average poresize rpore, defined via the radii of max-
imum spheres fitting into the pores, is proportional to σ,
with rpore ≈ 1.86 σ.
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