
An Algorithm to List All the Fixed-Point Free

Involutions on a Finite Set

Cyril Prissette

Laboratoire de Sondages Electromagntiques

de l’Environnement Terrestre - UMR 6017

Institut des Siences de l’Ingenieur de Toulon et du Var

Avenue Pompidou. B.P. 56

83162 La Valette Cedex - France

Email : prissette@univ-tln.fr

June 22, 2010

Abstract

A fixed-point free involution on a finite set S is defined as a bijection I : S → S
such as ∀e ∈ S, I(I(e)) = e and ∀e ∈ S, I(e) 6= e.

In this article, the fixed-point free involutions are represented as partitions
of the set S, and some properties linked to this representation are exhibited.

Then an optimal algorithm to list all the fixed-point free involutions is pre-
sented. Its soundess relies on the representation of the fixed-point free involu-
tions as partitions.

Finally, an implementation of the algorithm is proposed, with an effective
data representation.

Keywords

Algorithm, Fixed-point free involutions, Partitions, Recursion

1 Introduction

A fixed-point free involution involution on a finite set is a function which can
be defined as follows :

∀e ∈ S, I(I(e)) = e

1

∀e ∈ S, I(e) 6= e

Some recent cryptanalysis methods are based on fixed-point free involutions
on finite sets. Indeed, such functions can be seen as mixing functions with a
structural weakness, which make them trivially invertible.

Such functions can be used instead of a cryptographically robust functions, in
ordrer to study the behaviour of a cryptographyc algorithm [Poinsot (2006)]. An
other possible cryptographic attack is to find weak keys, such as the algorithm
is equivalent to a fixed-point free involution [Prissette (2004)].

Obviously, an algorithm can be use to list all the permutations π of the finite
set S [Dijkstra (1997)]. For each permutation, I as ∀e ∈ S, I(e) = πe, it is easy
to check the constraint of involution (∀e ∈ S, I(I(e)) = e) and the absence of
fixed-point.

However, cryptography use large finite sets and using an algorithm to list all
the permutation is a waste of time, because the number of fixed-point free invo-
lutions on a set roughly equals the square root of the number of permutations
on the set.

In the first part of this article, some properties of the fixed-point free invo-
lutions are presented and a quick proof is given for each of them. Then, in a
second part, an algorithm to list all fixed-point free involutions on a finite set is
described. Finally, an effective data representation is proposed in an example
of implementation of the algorithm.

2 Properties of the Fixed-Point Free Involutions

2.1 Fixed-Point Free Involutions and Partitions

Let I be a fixed-point free involution on S and define PI as follows :

PI = {{e, I(e)}, ∀e ∈ S}

Obviously, as I is a fixed-point free involution , e and I(e) = e′ generate the
same subset {e, I(e)} = {I(I(e)), e′)} = {I(e′), e′} = {e′, I(e′)}. Every element
of S is a element of a single element of PI . Thus, the fixed-point free involution
I defines the set PI as a partition of S, such as the cardinality of every subset
of PI is 2.

Conversely, given a partition PI of S, such as the cardinality of every element
of PI is 2, the involution I can be defined as follows :

∀{e, e′} ∈ PI ,

{

I(e) = e′

I(e′) = e

As every element of S is an element of a single element of PI , then I(I(e)) =
I(e′) = e. Moreover, as the cardinality of every element of PI is 2, thus
∀e∈S , I(e) 6= e. So I is the fixed-point free involution defined by PI .

The fixed-point free involution I can be represented in a single way as the
partition PI . This property will be use to represent fixed-point free involution
in a convenient way.

2

2.2 Fixed-Point Free Involutions and Union

Let I be a fixed-point free involution on S. Let i and j be such as i /∈ S and j /∈ S
and i 6= j. Considering the partition PI of S, associated to I, PI′ = PI ∪{{i, j}}
is a partition of S∪{i, j} and the cardinality of every subsets is 2. So PI′ can be
used to represent a fixed-point free involution I ′ on S ∪{i, j}, defined as follows
:

∀e ∈ S, I ′(e) = I(e)
I ′(i) = j
I ′(j) = i

The main idea of the algorithm is to build a fixed-point free involution, with
a fixed-point free involution on a smaller set.

2.3 Fixed-Point Free Involutions and Bijections

Let I be a fixed-point free involution on S,
Let B be a bijection from S to S′

Let’s define I ′ from S′ to S′ as follows :

I ′(e′) = B ◦ I ◦B−1(e′)

Let’s prove that I ′ is a fixed-point free involution. First, Let’s prove that I ′ is
an involution.

I ′(I ′(e′)) = I ′ ◦B ◦ I ◦B−1(e′)

⇔ I ′(I ′(e′)) = B ◦ I ◦B−1 ◦B ◦ I ◦B−1(e′)

⇔ I ′(I ′(e′)) = B ◦ I ◦ I ◦B−1(e′)

⇔ I ′(I ′(e′)) = B ◦B−1(e′)

⇔ I ′(I ′(e′)) = e′

So I ′ is an involution.
Now, let’s prove that I ′ is fixed-point free. If I ′(e′) = e′, then

B−1 ◦B ◦ I ◦B−1(e′) = B−1(e′)

⇔ I ◦B−1(e′) = B−1(e′)

⇔ I(e) = e with e = B−1(e′)

However, I is fixed-point free. So the previous equality is false, and I ′ is a
fixed-point free involution.

This property is useful to build fixed-point free involution on any set with
an even cardinality : one can build a fixed-point free involution on a simple
set with the same cardinality, then use a bijection to map this fixed-point free
involution onto the wanted set.

Without loss of generality, S is defined as {1, 2, 3, ..2n} until the end of this
article.

3

3 Algorithm

3.1 Bijections Family

For the purpose of the algorithm, a family of bijections from S = {1, 2, .., 2k}
to {2, .., 2k + 2} \ i is needed, with i in {2, 2, .., 2k+ 2}.

Although many families of bijections may be used, the following one is chosen
:

Bi(x) =

{

x+ 2 if x+ 1 ≥ i
x+ 1 if x+ 1 < i

Every element of the family is an easy-to-compute, easy-to-invert, increasing
function. None of these properties is mandatory; however, they are useful for
saving time and space.

Obviously, the inverse function of Bi is :

B−1

i (x) =

{

x− 1 if x+ 1 ≤ i
x− 2 if x+ 1 > i

3.2 Presentation of the Algorithm

The goal of the algorithm is to construct the set of the fixed-point free involu-
tions on the finite set S = {1, 2, .., n}, with even cardinality. The main idea is
to start with the simple fixed-point free involution represented by the partition
{{}} then, the size of the set is increased using the ”Union Property” and the
”Bijection Property”.

This is a recursive process : given a fixed-point free involution on {1, .., k}, a
bijection is used to get an fixed-point free involution on {2, .., 2k+2}\i, then the
union property is used to add the set {1, i} and get a fixed-point free involution
on ({2, .., 2k + 2} \ i) ∪ {1, i} = {1, .., k}.

Here is a description of the algorithm, as a recursive function.

function fpfi(n,S)

// n : cardinal of the final set

// S : current set (initial value = ∅)

if (|S| = n) then

output S

else

for i=2 to n

S′ = {{1, i}}

forall {e, e′} ∈ S

S′ = S′ ∪ {{Bi(e), Bi(e
′)}}

end forall

4

fpfi(n,S’)

end for

end if

end

3.3 Example

Here is a quick description of the building of one of the involutions on the set
{1, .., 6}, knowing an involution on the set {1, .., 4}, for example the involution
I such as :

PI = {{1, 3}, {2, 4}}

There are 5 involutions built on I, each of them includes {1, i}with a different
value of i in {2, .., 6}. For each of these involutions, the associated partition is
built using I and Bi.

For example, for i = 5, the elements of the partition are :

• the element {1, 5}.

• the elements built with B5 and PI :

– from {1, 3}, compute {B5(1), B5(3)} = {2, 4}

– from {2, 4}, compute {B5(2), B5(4)} = {3, 6}

The resulting involution is associated with the set of these three sets :

{{1, 5}, {2, 4}, {3, 6}}

The following tree shows how some of the fixed-point free involution on
{1, .., 6} are built.

∅ {{1, 2}}

B2

{{1, 2}, {3, 4}}

B2

{{1, 3}, {2, 4}}

B3

{{1, 2}, {3, 5}, {4, 6}}

B2

{{1, 3}, {2, 5}, {4, 6}}

B3

{{1, 4}, {2, 5}, {3, 6}}

B4

{{1, 5}, {2, 4}, {3, 6}}

B5

{{1, 6}, {2, 4}, {3, 5}}

B6

{{1, 4}, {2, 3}}

B4

5

4 Implementation

4.1 Data Representation

As previously shown, a fixed-point free involution I on the set S can be repre-
sented as a partition PI of S such as the cardinality of every element of PI is
2.

Let’s µ(PI) be the set of elements of S defined as follows :

µ(PI) = {min(i, j), ∀{i,j}∈PI
}

The algorithm represents the partition PI as an 2n-element array T .

∀0≤k<n, T [2k] ∈ µ(PI)
∀0≤k<n−1, T [2k] > T [2k + 2]
∀0≤k<n−1, T [2k + 1] = I(T [2k])

Simply speaking, the odd-indexed elements of T are, decreasingly sorted,
the set of the lowest elements of each set of the partition PI . The even-indexed
elements of T are the values associated by I to the odd-indexed elements.

4.1.1 Example

Let I be the fixed-point free involution on {1..6} such as I(x) = 7 − x. This
fixed-point free involution is represented by the partition PI :

PI = {{2, 5}, {3, 4}, {6, 1}}

With this partition, µ(PI) is defined as :

µ(PI) = {2, 3, 1}

This partition PI (and so the fixed-point free involution I) is represented as the
array T :

T = [3, 4, 2, 5, 1, 6]

4.2 Union operator

The purpose of the proposed data representation is to speed up the calculation
of the Union operator. Actually, with this representation, the bijection do not
destroy the order of the element, and the new couple (1, I(1)) is simply merged
at the end of the array.

In many practical implementations, it can be effectively done by allocating
an array as large as the size of the set, and recursively filling the array from left
to right.

An example of such an implementation is given in Appendix A.

6

5 Conclusion

The algorithm presented in this article was designed to fit cryptographic needs
of an effective algorithm to list all the fixed-point free involutions on a finite set.
However, the use of such functions is not restricted to cryptographic researches,
and the algorithm is generic.

References

[Levitin (2002)] Levitin, A.V. (2002). Introduction to the Design & Analysis of
Algorithms. Addison Wesley. ISBN 0201743957.

[Conner and Floyd (1960)] Conner, P.E. and Floyd, E. E. (1960) Fixed point
free involutions and equivariant maps. In Journal: Bull. Amer. Math. Soc.
Volume 66 Pages 416-441

[Poinsot (2006)] Poinsot, L. (2006). Boolean Bent Functions in Impossible
Cases: Odd and Plane Dimensions. In IJCSNS International Journal of
Computer Science and Network Security. Volume 6, No.8A

[Prissette (2004)] Prissette, C. Weak keys of graph cryptography. In Informa-
tion and Communication Technologies: From Theory to Applications, 2004.
Proceedings. 2004 International Conference. Pages 419-420

[Dijkstra (1997)] E. W. Dijkstra A Discipline of Programming. Prentice-Hall,
1997.

7

	1 Introduction
	2 Properties of the Fixed-Point Free Involutions
	2.1 Fixed-Point Free Involutions and Partitions
	2.2 Fixed-Point Free Involutions and Union
	2.3 Fixed-Point Free Involutions and Bijections

	3 Algorithm
	3.1 Bijections Family
	3.2 Presentation of the Algorithm
	3.3 Example

	4 Implementation
	4.1 Data Representation
	4.1.1 Example

	4.2 Union operator

	5 Conclusion

