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Abstract

Bandstructure properties in wurtzite quantum wells can change appreciably with changing carrier

density because of screening of quantum-confined Stark effect. An approach for incorporating

these changes in an InGaN light-emitting-diode model is described. Bandstructure is computed for

different carrier densities by solving Poisson and k·p equations in the envelop approximation. The

information is used as input in a dynamical model for populations in momentum-resolved electron

and hole states. Application of the approach is illustrated by modeling device internal quantum

efficiency as a function of excitation.
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INTRODUCTION

Considerable progress is being made in advancing InGaN light-emitting diodes (LEDs).

However, there are still concerns involving performance limitations. An example is efficiency

loss at high current density (efficiency droop) [1], which can limit use of LEDs in applications

requiring intense illumination. Understanding and mitigating the efficiency droop mecha-

nism is important. Several explanations have been proposed, including carrier leakage [2],

Auger recombination [3], junction heating [4], carrier and defect delocalizations [5, 6]. The

assertions are much debated. For example, in the case of Auger scattering, discrepancy ex-

ists in the Auger coefficient estimation between experimental-curve fitting and microscopic

calculations [3, 7–9].

Discussions involving InGaN LED efficiency are commonly based on a rate equation for

the total carrier density. The approach allows one to describe radiative and nonradiative

carrier loss rates, where the latter typically includes ad-hoc terms for producing an efficiency

droop. A particularly successful model, in terms of reproducing experimental efficiency

versus injection current data, is the ABC model. [3, 7] The model’s name derives from

the three phenomenological constants (A, B and C) introduced to account for Shockley-

Read-Hall (SRH), radiative-recombination and Auger-scattering carrier losses, respectively.

Bandstructure effects enter indirectly via these coefficients.

It is known that the bandstructure in wurtzite quantum-well (QW) structures can change

noticeably with carrier density because of screening of the quantum-confined Stark effect

(QCSE) [10, 11]. Incorporating these changes into the ABC model is challenging, without

compromising the attractiveness of having only three fitting parameters, each with direct

correspondence to a physical mechanism. This paper considers an alternative that allows

direct input of bandstructure properties, in particular, the band energy dispersions, con-

finement energies and optical transition matrix elements, as well as their carrier-density

dependences arising from screening of piezoelectric and spontaneous polarization fields. The

model has the further advantage of providing a consistent treatment of spontaneous emis-

sion, carrier capture and leakage, and nonequilibrium effects. Thus, the fitting parameter,

B is eliminated and effects, such as plasma heating, are taken in account within an effective

relaxation rate approximation for carrier-carrier and carrier-phonon scattering. All this is

accomplished by extending a previously reported non-equilibrium LED model that is based
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on dynamical equations for electron and hole occupations in each momentum (k) state [12].

The additions include an algorithm for simplifying and extracting bandstructure information

relevant to the dynamical equations. Detailed bandstructure properties are obtained from

solving k · p and Poisson equations [13]. Furthermore, since distinction between QW and

barrier states is sometimes difficult in the presence of strong internal electric fields, extension

is made to treat optical emission from these states on equal footing.

Section 2 describes the model, derivation of the working equations and calculation of

input bandstructure properties. Section 3 demonstrates the application of the k−resolved

model by calculating internal quantum efficiency (IQE) as a function of injection current

for a multi-QW InGaN LED. Results are presented to illustrate IQE behavior that may

be overlooked when not accounting for the excitation dependences of bandstructure. Most

interesting is a possible contribution to efficiency droop from a change in relative emission

contributions from QWs and barriers. Simulation results are presented to demonstrate the

robustness of this mechanism to input parameter variations. Also in this section, a back-

of-the-envelop derivation is used to associate the predicted droop to bandstructure changes

from screening of QCSE. Section 4 further explains the bandstructure-induced droop mech-

anism by discussing the changes in QW confinement energies and envelop function overlap

with increasing excitation. The section also presents a possible resolution to the discrep-

ancy on the Auger coefficient estimation between ABC model and microscopic calculation.

With the present model, the Auger coefficient necessary to maintain an efficiency droop at

high injection current, as presently observed in experiments, is in the range of 5× 10−32 to

10−31cm6s−1, which is in closer agreement with microscopic calculations. Section 5 summa-

rizes the paper.

THEORY

The following Hamiltonian, adapted from quantum optics [14], is used in the derivation

of spontaneous emission from QW and barrier transitions:

H =
∑

i

εeia
†
iai +

∑

j

εhj b
†
jbj +

∑

q

~Ωqc
†
qcq −

∑

i,j,q

℘ij

√

~Ωq

V ǫb
(aibjc

†
q + cqb

†
ja

†
i ) (1)

The summations are over QW and barrier states with subscript i(j) representing e, αe, k⊥

(h, αh, k⊥) for QW states and e, k (h, k) for barrier states. In this notation, each QW state
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is denoted by its charge σ, subband ασ and in-plane momentum k⊥. A bulk state is specified

by its charge σ and 3-dimensional carrier momentum k. In Eq. (1), ai,a
†
i (bj ,b

†
j) are electron

(hole) annihilation and creation operators, cq, c
†
q are corresponding operators for the photons,

εσi is the carrier energy, Ωq is the photon frequency, ℘ij is the dipole matrix element, V is

the active region volume and ǫb is the host permittivity. Using the Hiesenberg operator

equations of motion and the above Hamiltonian, the carrier populations and polarizations

evolve according to

d
〈

a†iai

〉

dt
= cos i

∑

j,q

℘ij

√

Ωq

~V ǫb

[〈

cqb
†
ja

†
i

〉

−
〈

aibjc
†
q

〉

]

(2)

d
〈

b†jbj

〉

dt
= i

∑

i,q

℘ij

√

Ωq

~V ǫb

[〈

cqb
†
ja

†
i

〉

−
〈

aibjc
†
q

〉

]

(3)

d
〈

aibjc
†
q

〉

dt
= −i (Ωq − Ωij)

〈

aibjc
†
q

〉

+i℘ij

√

Ωq

~V ǫb

〈(

a†iai + b†jbj − 1
)

c†qcq + a†iaib
†
jbj

〉

+ ... (4)

where Ωij =
(

εei + εhj
)

/~ is the transition frequency. Factorizing the operator products and

truncating at the first level (Hartree-Fock approximation) give for Eq. (4)

d
〈

aibjc
†
q

〉

dt
= i (Ωq − Ωij)

〈

aibjc
†
q

〉

− i℘ij

√

Ωq

~V ǫb

[(〈

a†iai

〉

+
〈

b†jbj

〉

− 1
)

〈

c†qcq
〉

+
〈

a†iai

〉〈

b†jbj

〉]

(5)

For an LED, it is customary to assumed that cavity influence is sufficiently weak so that
〈

c†qcq
〉

<< 1 and only the spontaneous emission contribution is kept. Additionally, polar-

ization dephasing is introduced, where the dephasing (with coefficient γ) is assumed to be

considerably faster than the population changes. This allows integration of Eq. (5). The

result is used to eliminate the polarization in Eqs. (2) and (3), giving

d
〈

a†iai

〉

dt
= −

〈

a†iai

〉

∑

j,q

2Ωq

~ǫbV γ
|℘ij |

2
〈

b†jbj

〉

[

1 +

(

Ωij − Ωq

γ

)2
]−1

(6)

d
〈

b†jbj

〉

dt
= −

〈

b†jbj

〉

∑

i,q

2Ωq

~ǫbV γ
|℘ij |

2
〈

a†iai

〉

[

1 +

(

Ωij − Ωq

γ

)2
]−1

(7)
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Converting the photon momentum summation into an integral, i.e.

∑

q

→ 2
V

(2π)3

∞
∫

0

dq 4πq2 (8)

where Ωq = qc and c is the speed of light in the semiconductor, the right-hand sides of Eqs.

(6) and (7) may be integrated to give

d
〈

a†iai

〉

dt
= −

〈

a†iai

〉

∑

j

nb

~ǫ0πc3
|℘ij |

2Ω3
ij

〈

b†jbj

〉

(9)

d
〈

b†jbj

〉

dt
= −

〈

b†jbj

〉

∑

i

nb

~ǫ0πc3
|℘ij|

2Ω3
ij

〈

a†iai

〉

(10)

Writing explicitly for QW populations and adding phenomenologically SRH carrier loss

and relaxation contributions from carrier-carrier and carrier-phonon scattering, gives

dnσ,ασ ,k⊥

dt
= −nσ,nσ ,k⊥

∑

α
σ′

bασ ,ασ′ ,k⊥nσ′,α
σ′ ,k⊥ − Anσ,nσ ,k⊥

−γc−c [nσ,nσ ,k⊥ − f (εσ,k⊥, µσ, T )]

−γc−p

[

nσ,nσ ,k⊥ − f
(

εσ,k⊥, µ
L
σ , TL

)]

(11)

where σ, σ′ is e, h or h, e. In Eq. (11), γc−c and γc−p are the effective carrier-carrier and

carrier-phonon collision rates, respectively, and

bασ ,ασ′ ,k⊥ =
1

~ǫbπc3

∣

∣℘ασ ,ασ′ ,k⊥

∣

∣

2
Ω3

ασ ,ασ′ ,k⊥
(12)

where ℘ασ ,ασ′ ,k⊥ and Ωασ ,ασ′ ,k⊥ are the QW dipole matrix element and transition energy.

Similarly, for the barrier populations,

dnb
σ,k

dt
= −bkn

b
e,kn

b
h,k +

J

eNp
σ

f
(

εbσ,k, µ
p
σ, Tp

) (

1− nb
σ,k

)

− γbnσ,k

−γc−c

[

nb
σ,k − f

(

εbσ,k, µσ, T
)]

−γc−p

[

nb
σ,k − f

(

εbσ,k, µ
L
σ , TL

)]

(13)

where

bk =
1

~ǫbπc3
|℘k|

2Ω3
k, (14)
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℘k and Ωk are the barrier dipole matrix element and transition energy. In Eq. (13) is a pump

contribution, where J is the current density, e is the electron charge, Np
σ =

∑

k f
(

εbσ,k, µ
p
σ, Tp

)

and f
(

εbσ,k, µ
p
σ, Tp

)

, the injected carrier distribution, is a Fermi-Dirac function with chemical

potential µp
σ and temperature Tp. For the asymptotic Fermi-Dirac distributions approached

via carrier-carrier collisions, the chemical potential µσ and plasma temperature T are deter-

mined by conservation of carrier density and energy. In the case of carrier-phonon collisions,

the chemical potential µL
σ is determined by conservation of carrier density and the lattice

temperature TL is an input quantity. Total carrier density and energy are computed by

converting the sum over states to integrals, i.e.,

∑

k⊥

→
S

(2π)2
2

∞
∫

0

dk⊥ 2πk⊥ and
∑

k

→
hS

(2π)3
2

∞
∫

0

dk 4πk2 (15)

where S and h are the surface area and thickness of the active active region consisting of

all QW and barrier layers. Further details involving implementation and comparison with

results from quantum-kinetic calculations are reported elsewhere [15, 16]. Many-body effects

[17, 18] are neglected in Eqs (11) and (13). Their incorporation, at least at the level of the

screened Hartree-Fock approximation [15], will be considered in future investigations.

Bandstructure information enters directly into Eqs (11) and (13) via the dipole matrix

elements ℘ασ ,ασ′ ,k⊥, ℘k and carrier energies εσ,k⊥, ε
b
σ,k. From k · p theory, the QW electron

and hole eigenfunctions are [18]

〈r |φσ,ασ ,k⊥〉 = eik⊥·r⊥
∑

mσ

∑

βσ

Aβσ,ασ ,k⊥umσ ,βσ
(z)〈r |mσ〉 (16)

where |mσ〉 is a bulk electron or hole state, umσ,βσ
(z) is the βσ-th envelop function associated

with the mσ bulk state, Aβσ ,ασ,k⊥ is the amplitude of the βσ-th envelop function contributing

to the ασ-th subband at momentum k⊥, z is position in the growth direction and r⊥ is

position in the QW plane Using Eq. (16), the square of the dipole matrix element may

then be written as

|℘αe,αh,k⊥|
2 ≡ |〈φe,αe,k⊥| ex |φh,αh,k⊥〉|

2

= |℘bulk|
2 ξαe,αh,k⊥ (17)
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where

ξαe,αh,k⊥ =
1

4

∣

∣

∣

∣

∣

∑

βe

∑

βh

∑

me

∑

mh

Aβe,αe,k⊥Aβh,αh,k⊥

×

∫ ∞

−∞

dz ume,βe
(z)umh,βe

(z)

∣

∣

∣

∣

2

(18)

and the bulk dipole matrix element in the absence of an electric field is given by

|℘bulk|
2 =

~
2

2m0εg

(

m0

me

− 1

)(

1 +
∆1 +∆2

εg

)

, (19)

εg is the bulk material bandgap energy, m0 andme are the bare and effective electron masses,

∆1 and ∆2 are energy splittings associated with the bulk hole states. An iterative solution

of the k · p and Poisson equations [13] is used to obtain the energies εσ,ασ ,k⊥ and εbσ,k and

the overlap integral ξαe,αh,k⊥. For these calculations we use the the bulk wurtzite material

parameters listed in Refs. [19–22].

RESULTS

With the present model, it is necessary to solve the bandstructure and population prob-

lems self consistently. Simultaneous solution of both problems is very challenging and per-

haps unnecessary. The approach used in this paper is to first take care of the bandstructure

part by iteratively solving the k · p and Poisson equations for a range of carrier densities.

Bandstructure information needed for the population part are εσ,ασ ,k⊥, ε
b
σ,k and ξαe,αh,k⊥

versus total QW carrier density, nqw
σ = S−1

∑

ασ ,,k⊥
nσ,ασ ,k⊥, where the nqw

σ dependences are

from screening of the QW electric field.

To facilitate the solution of the dynamical population equations, the carrier states are

grouped into two categories: those belonging to the QWs and those belonging to the barriers.

The QW states are treated using Eq. (11) and the barrier states are treated collectively with

Eq. (13). With a high internal electric field, the distinction between QW and barrier states

may be ambiguous. In this paper, the choice is made by calculating
∫

QW
dz |umσ ,βσ

(z)|2,

where integral is performed over the QWs. The states where the integral is greater than

a half are grouped as QW states and the rest as barrier states. For the problem being

addressed, which is the excitation dependence of IQE, the distinction is only important

because only QW transitions are affected by QCSE. For the barrier transitions, the dipole

7



matrix element in the presence of an internal electric field is approximated by an average,

where each transition is weighted according to the occupations of the participating states.

When solving the population equations, grouping the barrier states appreciably reduces

numerical demand, which remains substantial because one is still keeping track of a large

number of k-states.

The second step involves numerically solving Eqs. (11) and (13) with the bandstructure

quantities updated at each time step according to the instantaneous value of nqw
σ . When

steady state is reached, IQE is obtained from dividing the rate of carrier (electron or hole)

loss via spontaneous emission by the rate of carrier injection:

IQE =
e

JS

(

∑

αe,αh,k⊥

bαe,αh,k⊥ne,αe,k⊥nh,αh,k⊥ +
∑

k

bkn
b
e,kn

b
h,k

)

(20)

Computed IQE versus current density curves for different SRH coefficients in the QWs are

plotted in Fig. 1. Each curve shows an initial sharp increase in IQE with injection current,

with emission occurring the instant there is an injected current. Quite interesting, especially

because Auger carrier loss is not included in the model, is the appearance of efficiency droop

in the curves for high A values. A higher SRH coefficient in QW than barrier is possible

in present experimental devices, based on the roughly three times higher defect density in

QWs than in barriers in LEDs measured at Sandia [23]. The calculations are performed

assuming an active region consisting five 4nm In0.2Ga0.8N QWs separated by 6nm GaN

barriers and bounded by 20nm GaN layers. Electric field in the QWs is determined from the

sum of piezoelectric and spontaneous polarization fields. The electric fields in the barriers

are from spontaneous polarization. Screening of these fields are determined semiclassically

according to Poisson equation, and electron and hole envelop functions. Input parameters

are Ab = 107s−1, TL = 300K, γc−c = 5 × 1013s−1 and γc−p = 1013s−1. Effects arising from

doping profile and presence of carrier blocking layers are ignored.

To uncover the mechanism giving rise to the droop behavior shown in Fig. 1, it may be

more effective to use a less comprehensive model to isolate bandstructure effects by ignoring

carrier leakage and nonequilibrium effects. Such a model is possible by extending the ABC

model to distinguish between QW and barrier carrier densities, Nσ and N b
σ, respectively.

The following phenomenological (and less rigorous than Eqs .(11) and (13)] rate equations
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Figure 1: Internal quantum efficiency versus current density for different QW SRH coefficients.

The curves are computed using the k−resolved model described by Eqs. (11) and (13) for a LED

with a In0.2Ga0.8N/GaN multi-QW active region (see Fig. 4).

may be written:

dNσ

dt
= −BNeNh −ANσ (21)

dN b
σ

dt
= −BbN

b
eN

b
h − AbN

b
σ +

J

ehb

(22)

where σ = e or h. 3-d (volume) densities are used to connect with the ABC model,

especially in terms of the SRH and spontaneous emission coefficients. Equations (21) and

(22) are coupled by assuming that intraband collisions are sufficiently rapid so that QW

and barrier populations are in equilibrium at temperature T . Defining a total 2-d carrier

density, N2d = NqwhNσ + hbN
b
σ allows combining these equations to give

dN2d

dt
= −βN2

2d − AbN2d +
J

e
(23)

where Nqw is the number of QWs in the structure, h is the width of individual QWs,

β =

h
hb

NqwB +Bb exp
(

∆e+∆h

kBT

)

[

1 + exp
(

∆e

kBT

)] [

1 + exp
(

∆h

kBT

)] (24)
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kB is Boltzmann constant and ∆σ is the averaged QW confinement energy. The steady state

solution to Eq. (23) gives the internal quantum efficiency,

IQE =
βN2

2d

J/e
= 1− 2

J0

J

[

√

J

J0

+ 1− 1

]

(25)

where J0 = eγ2
b (4β)

−1 and A/Ab = Nqwh/hb is assumed to simplify the above expressions.

Bandstructure input to Eq. (25) are the confinement energies ∆e, ∆h and the QW B

coefficient as functions of total carrier density, N2d. The information is extracted from the

same bandstructure calculations performed for the more comprehensive k−resolved model,

with the exception that only the zone center (k⊥ = k = 0) values are used. Confinement

energies are approximated by ∆σ = 〈εσ,ασ ,0〉QW
− εbσ,0, where 〈〉QW indicates an average over

QW states. Based on Eqs. (12), (14) and (17), the assumption B = 〈ξαe,αh,0〉QW
ηBb is made,

where 〈ξαe,αh,0〉QW
is the average envelop function overlap of the allowed QW transitions and

η is introduced to account for the difference in QW and barrier densities of states. This

difference is automatically taken care of in the k−resolved model based on Eqs. (11) and

(13). ∆e, ∆h and 〈ξαe,αh,0〉QW
versus carrier density N2d are plotted in Fig. 2. The sheet

(2-d) density N2d is for a heterostructure consisting 5 QWs and 6 barrier layers that totals

84nm in width.

Figure 3 shows IQE versus current density computed with Eq. (25) and for different η.

Input parameters are T = 300K, Nqwh/hb = 0.16 and A2
b/Bb = 1.1 × 1024cm−3s−1. All

the curves depict pronounced efficiency droop from the extended ABC model, where carrier

dependences of confinement energies and QW bimolecular radiative coefficient are taken

into account. They also indicate that the appearance of droop is insensitive to the fitting

parameter η, which affects only the IQE recovery arising from increase in QW emission.

While the above exercise reveals that bandstructure changes is the source of droop, dif-

ferences between Figs. 1 and 2 suggest that there is also influence from other contributions.

That experimental results are in closer agreement with Fig. 1 indicates the importance

of these contributions in present LEDs. They include energy dispersions, carrier leakage

and nonequilibrium carrier effects, such as an incomplete transfer of the carrier popula-

tion from barrier to QW states because of finite intraband collision rates. The presence of

nonequilibrium effects is verified from least-squares fits of computed carrier populations to

Fermi-Dirac distributions. For J = 150A/cm2, the fits indicate elevated plasma tempera-

tures of T > 360K for carrier-phonon scattering rate γc−p = 1013s−1 and T > 600K for
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Figure 2: Average QW confinement energies (left axis) and electron-hole wavefunction overlap

(right axis) versus carrier density. The curves are extracted from solving k ·p and Poisson equations.

A negative average hole confinement energy is possible because of the tilt in QW confinement

potential and the presence of states in the outer barrier regions cladding the QWs, as shown in

Fig. 4(a).

γc−p = 1012s−1.

Lastly, the dynamical solution gives the carrier densities in QW and barrier states. The

conversion to bulk (3-d) density is via division by the total QW layer width Nqwh in the case

of the QW and by the total barrier width hb in the case of the barrier. When performing the

bandstructure calculation, quasiequilibrium condition is assumed to determine the QW and

barrier bulk densities used in the solution of Poisson equation. This is an inconsistency that is

acceptable provided the dynamical solution does not produce carrier distributions deviating

too far from quasiequilibrium distributions. Even though the current density versus carrier

density relationship depends on the input to the dynamical problem, and therefore, different

for the different curves in Fig. 1, some insight into the connection between bandstructure

and IQE excitation dependence may be obtained by examining Figs. 1 and 2 together. The

onset of droop in the curves in Fig. 1 occurs around 45A/cm2, which corresponds to N2d

around 1013cm−2 or a 3-d QW carrier density of 1× to 1.2×1018cm−3. At these densities, the

QCSE is essentially unscreened. At the start of IQE recovery which occurs over the range of
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Figure 3: Internal quantum efficiency versus current density computed using Eq. (25) from an

extended ABC model. The model isolates the bandstructure-induced droop mechanism. The

curves are for different η, a free parameter accounting for difference between QW and barrier

bimolecular radiative recombination coefficients (B and Bb, respectively) because of differences in

densities of state.

60 to 120A/cm2, the corresponding carrier densities are 2.8× 1013 < N2d < 3.0× 1013cm−2

or 3-d QW carrier density of 8.5× to 9× 1018cm−2. According to Fig. 2, these are densities

where wavefunction overlap is no longer negligible. Between the IQE peak and recovery,

N2d changes from approximately 1013 to 3.0× 1013cm−2. Within that carrier density range,

Fig. 2 shows significant increase in QW-barrier electron and hole energy separations.

DISCUSSION OF RESULTS

Further insight into the bandstructure-induced droop mechanism is possible from closer

examination of the bandstructure changes with excitation. Figure 4 shows the absolute

square of electron and hole envelop functions at zone center (k⊥ = k = 0) for four different

carrier densities. For clarity, the curves are separated vertically according to their associated

energies. The black lines plot the electron and hole confinement potentials, while the red

and blue curves indicate the QW and barrier states, respectively.

Starting at a carrier density of N2d = 2.3 × 1013cm−2, Fig. 4(a) depicts confinement

potentials differing appreciably from the flat-band situation [see Fig. 4(d)]. A result is small
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Figure 4: Absolute square of envelop functions for electrons and holes for carrier densities, N2d =

(a) 2.25×, (b) 3.47× and (c) 6.89 × 1013cm−2. Figure 4(d) is the flat-band limit. Each curve

is displaced according to its bandedge energy for clarity. Envelop functions belonging to QW

and barrier states are indicated by red and blue curves, respectively. The black lines plot the

confinement potentials. The x-axis is along the growth direction.

energy separation between QW and barrier states, leading to comparable QW and barrier

populations, especially for the holes. Optical emission from barrier transitions occur via the

contribution
∑

k bkn
b
e,kn

b
h,k, as soon as the product of electron and hole populations, nb

e,kn
b
h,k

becomes nonzero. In contrast, the QW contribution
∑

αe,αh,k⊥
bαe,αh,k⊥ne,αe,k⊥nh,αh,k⊥ is
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negligible, even though the product ne,αe,k⊥nh,αh,k⊥ may be appreciable. This is because

QCSE spatially separates electrons and holes in the QWs, resulting in very small dipole

matrix elements for QW transitions.

At a higher carrier density of N2d = 3.4×1013cm−2, increased screening of QCSE leads to

higher energy separation between QW and barrier states as shown in Fig. 4(b). This causes

the barrier populations to decrease relative to those of the QW. However, the QCSE is still

sufficient to suppress the dipole matrix element. The net result is reduced IQE because

the smaller increase in
∑

k bkn
b
e,kn

b
h,k with increasing excitation that is not compensated by

a corresponding increase in
∑

αe,αh,k⊥
bαe,αh,k⊥ne,αe,k⊥nh,αh,k⊥. Important to the appearance

of droop is a lag between the increase in confinement energies and the increase in QW

dipole matrix element, as illustrated in Fig. 2 within the region 2.5 × 1013cm−2 < N2d <

5× 1013cm−2.

For the increase in QW emission, a high carrier density is necessary to sufficiently screen

the QW electric field. That is the case for Fig. 4(c), where N = 6.8 × 1013cm−2. An

appreciable QW emission leads to a reversal of the IQE droop as shown in Figs. 1 and 3.

Lastly, Fig. 4(d) shows the asymptotic flat-band case, both for reference and as a guide

for assigning QW and barrier states. Note that some ambiguity remains, especially with

the n = 2 subbands, which lie mostly in the triangular barrier regions of the confinement

potentials at finite carrier densities.

Questions remain concerning the bandstructure-induced droop mechanism. For example,

one might expect a significant red shift of emission energy when optical transitions changes

from barrier dominated to QW dominated. This need not be the case because of the energy

level shifts associated with the QCSE and Franz-Keldysh effects [24].

The curves in Fig. 5 show the carrier density dependences of the average QW and barrier

bandedges, 〈εe,αe,0〉QW
+ 〈εh,αh,0〉QW

and εbe,0 + εbh,0, respectively. To a good approximation,

emission energy is centered around the lower of the curves, which means that except for slight

deviations around the cross-over region, the emission energy is blue shifted with increasing

excitation. Furthermore, it is always below the zero-field barrier bandgap.

Another question concerns the curves depicting IQE recovery at current densities lower

than observed in present experiments. This discrepancy suggests the presence of other loss

mechanisms, such as Auger carrier loss.

To illustrate the effect of Auger scattering, Auger carrier loss is incorporated into Eqs.
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Figure 5: Average QW and barrier bandedge energies (solid and dashed curves, respectively) versus

carrier density. Optical emission should be centered approximately at the lower of the 2 curves.

The upper and lower dotted lines indicate the strained-InGaN and unstrained-GaN bulk bandgap

energies.

Figure 6: Internal quantum efficiency versus current density showing the influence of Auger carrier

loss for different QW SRH coefficients. The Auger coefficients are C = 0, 10−32, 5 × 10−32 and

10−31cm6s−1 (dotted, dashed, dot-dashed and solid curves, respectively).
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(11) and (13), as described in Ref. [12], and the results are shown in Fig. 6 for A/Ab = 0.5,

2 and 4, with Auger coefficient C = 0, 10−32, 5 × 10−32 and 10−31cm6s−1 (dotted, dashed,

dot-dashed and solid curves, respectively). For clarity, the A/Ab = 1 case in Fig. 1 is

omitted. The curves shows the prolonging of the efficiency droop by Auger carrier loss. More

importantly, the necessary Auger coefficient is shown to be C & 5 × 10−32cm6s−1 which is

appreciably smaller than that used in ABC models and are within the range predicted by

microscopic calculation [9].

SUMMARY

This paper describes an approach to modeling InGaN LEDs that involves the self-

consistent solution of bandstructure and carrier population problems. The motivation is

to provide direct input of bandstructure properties, in particular, their carrier-density de-

pendences arising from screening of piezoelectric and spontaneous polarization fields. Other

advantages include consistent treatment of spontaneous emission, carrier capture and leak-

age and nonequilibrium effects, as well as description of optical emission from quantum-well

and barrier transitions on equal footing.

The approach is applied to investigate the internal quantum efficiency as a function

of injection current for a multi-QW InGaN LED. Among the behaviors that result from

taking into account the excitation dependences of bandstructure, is a possible contribution

to efficiency droop. Simulations performed with different sets of input parameter values show

robustness of this mechanism. A simple, back-of-the-envelop derivation is used to trace the

droop mechanism to bandstructure changes from screening of the quantum-confined Stark

effect. Basically, the initial IQE peak has emission contribution from barrier states. The

droop is caused by carrier transfer from these barrier states to QW states, where emission

strength is weaker because the quantum-confined Stark effect remains largely unscreened.

Lastly, the results presented in this paper should not be generalized to imply that band-

structure effects are responsible for the entire droop phenomenon in all experiments. In

fact, simulation results are presented to demonstrate the importance of other contributions,

both intrinsic and extrinsic, for describing present IQE experiments. It is possible that the

differences in observed droop behavior (involving different LED emitting wavelengths, po-

lar versus non polar substrates, with or without electron blocking layers, etc.) arise from
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differences in the relative importance of various mechanisms. The k-resolved LED model

described in this paper can provide a more accurate estimation of their relative strengths.

Furthermore, as shown in Sec. 4 for Auger loss, the model can also put arguments drawn

from experimental-curve fitting on firmer ground by providing better connection to first-

principles theory.
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