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Abstract

This work is a continuation of studies presented in the papers
arXiv: 0911.5597, 1003.4523. In the work it is demonstrated that
with the use of one and the same parameter deformation may be de-
scribed for several cases of the General Relativity within the scope of
both the Generalized Uncertainty Principle (UV-cutoff) and the Ex-
tended Uncertainty Principle (IR-cutoff). All these cases have a com-
mon thermodynamic interpretation of the corresponding gravitational
equations. Consideration is given to the possibility for extension of the
obtained results to more general cases. Possible generalization of the
uncertainty relation for the pair (cosmological constant, ”space-time
volume”), where the cosmological constant is regarded as a dynamic
quantity at high and low energies is analyzed.

1 Introduction

In the last decade numerous works devoted to a Quantum Field Theory
(QFT) at Plancks scale [1]–[3] have been published(of course, the author has
no pretensions of being exhaustive in his references). This interest stems
from the facts that (i) at these scales it is expected to reveal the effects of a
Quantum Gravity (QG), and this still unresolved theory is intriguing all the
researchers engaged in the field of theoretical physics; (ii) modern accelera-
tors, in particular LHC, have the capacity of achieving the energies at which
some QG effects may be exhibited.

1E-mail: a.shalyt@mail.ru; alexm@hep.by
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Now it is clear that a Quantum Field Theory (QFT) at Plancks scales, and
possibly at very large scales as well, undergoes changes associated with the
appearance of additional parameters related to (i) a minimal length (on the
order of the Plancks length)and (ii)a minimum momentum. As this takes
place, the corresponding parameters are naturally considered as deformation
parameters, i.e. the related quantum theories are considered as a high-energy
deformation (at Plancks scales) and a low-energy deformation (IR-cutoff),
respectively, of the well-known quantum field theory, the latter being intro-
duced in the corresponding high- and low-energy limits and exact to a high
level. The deformation is understood as an extension of a particular theory
by inclusion of one or several additional parameters in such a way that the
initial theory appears in the limiting transition [4].
Most natural approach to the introduction of the above-mentioned parame-
ters is to treat a quantum field theory with the Generalized Uncertainty Prin-
ciple (GUP) [5]–[15] and with the Extended Uncertainty Principle (EUP),
respectively [12]–[15]. In the case of GUP we easily obtain a minimal length
on the order of the Plancks lmin ∼ lp and the corresponding high-energy
deformation of well-known QFT–QFT with GUP. It should be noted that
QFT with GUP at Plancks scales (Early Universe) is attested in many works
(for example [5]–[11])/ Even if we disregard the works devoted to a string
theory, still remaining a tentative one, GUP is quite naturally derived from
the gedanken experiment [6]–[9].
On the other hand, GUP has no way in the spaces with large length scales
(for example (A)dS). For such spaces, e.g., in [12],[14] the Extended Uncer-
tainty Principle has been introduced (find its exact definition below) giving
an absolute minimum in the uncertainty of the momentum.
The problem is to find whether there are cases when the deformations gen-
erated by GUP and EUP are defined by the same parameter. By authors
opinion this is the case for Gravity modified (deformed) within GUP and
EUP, when the corresponding initial theory has a ”thermodynamic interpre-
tation” [16]–[21]. Specifically, the deformation parameter α = l2min/x

2,lmin ∼
lp,0 < α ≤ 1/4 where x is the measuring scale, introduced by the author in
a series of works [22]–[32] meets the above requirements.
Note that this parameter has been introduced to study the deformation of
QFT at Plancks scale, although the deformation per se, associated with a
high-energy modification of the density matrix, was ”minimal” in that it
presented no noncommutativity operators related to different spatial coordi-
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nates
[Xi, Xj] 6= 0, i 6= j (1)

and hence ”limited” as in the end it failed to lead to GUP. Nevertheless, the
corresponding deformation parameter in some way is universal.
This paper continues the studies, described in [33] –[35] (the latter in par-
ticular), of the fundamental quantities in ”thermodynamic interpretation” of
gravity [16]–[21] for GUP and EUP deformations of the latter. Compared to
the works [35], the results from which are used in this paper, the important
results associated with EUP are put forward together with the demonstra-
tion that GUP and EUP have the same deformation parameter, at least in
this context.
The structure of this work is as follows. In Section 2 it is shown that the
deformation of the fundamental thermodynamic quantities for black holes
within GUP and EUP may be interpreted with the use of the same parame-
ter. In Section 3, within the scope of a dynamic model for the cosmological
constant Λ (vacuum energy density), GUP is studied for the pair (Λ, V )
[33],[34], where V – is the ”space-time volume”. In this Section considera-
tion is given to the possible existence of EUP for this pair, i.e. to a possible
extension of the Uncertainty Principle to the pair in the IR region, and hence
to the possible substantiation of the proper (coincident with the experimen-
tal) value for Λ. In Section 4 the results of Section 2 are applied to Einstein’s
Equations for space with horizon and to Friedmanns Equations. It is demon-
strated that in both cases their deformation (in the first case within GUP
and in the second case within EUP) may be interpreted with the use of the
same small dimensionless parameter having a known variability domain.
And, finally, in Section 5 the problems of further investigations are discussed,
some final comments are given.

2 Universal Deformation Parameter in Grav-

itational Thermodynamics with GUP and

EUP

In this Section the Gravitational Thermodynamics (GT) is understood as
thermodynamics of spaces with horizon [18],[20].
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2.1 Gravitational Thermodynamics with GUP

We use the notation and principal results from [14]. So, GUP is of the form

∆xi∆pj ≥ h̄δij [1 + α′2l2p
(∆pi)

2

h̄2 ] (2)

and, since ∆xi∆pj > h̄δij, we have

∆xi∆pi ≥ h̄δij [1 + α′2 l2p
∆x2

i

(∆pi)
2∆x2

i

h̄2 ] > h̄δij [1 +
1

4
α∆xi

], (3)

where α∆xi
– parameter α corresponding to ∆xi, lmin = 2α′lp. Besides, as

distinct from [14], for the dimensionless factor in GUP, instead of α, we use
α′ to avoid confusion with the deformation parameter.
In this terms the uncertainty in moment is given by the nonstrict inequality

2h̄(α∆xi
∆xi)

−1[1−
√
1− α∆xi

] ≤ ∆pi ≤ 2h̄(α∆xi
∆xi)

−1[1+
√
1− α∆xi

]. (4)

But for the quantities determining GT in terms of α one can derive exact
expressions. Indeed, in terms of α the GUP-modification (or rather GUP-
deformation)is easily obtained for the Hawking temperature [36]–[39],[14],[15]
that has been computed in the asymptotically flat d - dimensional space for
a Schwarzshild black hole with a metric given by

ds2 = −N2dt2 +N−2dr3 + r2dΩ2
d−2, (5)

where

N2 = 1− 16πGM

(d− 2)Ωd−2rd−3
, (6)

Ωd−2 is the area of the unit sphere Sn−2, and r+ is the uncertainty in the
emitted particle position by the Hawking effect, expressed as

∆xi ≈ r+ (7)

and being nothing else but a radius of the event horizon. In this case the de-
formation parameter α arises naturally. Actually, modification of the Hawk-
ing temperature is of the form, see formula (10) in [14]

TGUP = (
d− 3

4π
)
h̄r+
2α′2l2p

[1− (1−
4α′2l2p
r2+

)1/2] (8)
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and may be written in a natural way as

TGUP = 2(
d− 3

4π
)
h̄

r+
α−1
r+
[1− (1− αr+)

1/2], (9)

where αr+- parameter α associated with r+. It is clear that TGUP is actually
the deformation THawk – black hole temperature for a semiclassical case [40].
In such a manner compared to THawk TGUP is additionally dependent only
on the dimensionless small deformation parameter αr+ .
The dependence of the black hole entropy on αr+ may be derived in a similar
way. For a semiclassical approximation of the Bekenstein-Hawking formula
[41],[40]

S =
1

4

A

l2p
, (10)

where A – surface area of the event horizon, provided the horizon event is of
radius r+, A ∼ r2+ and (10) is clearly of the form

S = σα−1
r+
, (11)

where σ is some dimensionless denumerable factor. The general formula for
quantum corrections [38] given as

SGUP =
A

4l2p
− πα′2

4
ln

(
A

4l2p

)
+

∞∑

n=1

cn

(
A

4l2p

)
−n

+ const , (12)

where the expansion coefficients cn ∝ α′2(n+1) can always be computed to
any desired order of accuracy [38], may be also written in the general case
as a Laurent series in terms of αr+

SGUP = σα−1
r+

− πα′2

4
ln(σα−1

r+
) +

∞∑

n=1

(cnσ
−n)αn

r+
+ const. (13)

In what follows the representation in terms of the deformation parameter α
is referred to as α-representation.

2.2 Gravitational Thermodynamics with EUP

Let us consider QFT with EUP [14]. In this case we obtain QFT with pmin.
Obviously, there is no minimal length lmin in QFT with EUP whatsoever but
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we assume that QFT with GUP is valid. At the present time for such an
assumption we can find solid argumentation [6]–[9]. As will be shown later,
in this case the fundamental quantities may be also expressed in terms of α.
Hereinafter we use a small dimensionless parameter

α
l̃
=

l2or
l̃2
, (14)

where lor ≡ loriginal = 2α′lp, α
′–dimensionless constant on the order of unity

from GUP (2), and it is suggested that

2lor ≤ l̃ , i.e 0 < α
l̃
≤ 1/4. (15)

Similar to the previous Section, it is convenient to use the principal results
of [14] (sections 3,4). Then EUP in (A)dS space takes the form

∆xi∆pj ≥ h̄δij [1 + β2 (∆xi)
2

l2
], (16)

where l is the characteristic, large length scale l ≫ lp and β is a dimensionless
real constant on the order of unity [14]. From EUP there is an absolute
minimum in the momentum uncertainty???

∆pi ≥
2h̄β

l
, (17)

EUP (16) may be rewritten as

∆xi∆pj ≥ h̄δij [1 + β2 (∆xi)
2

l2or

l2or
l2
] = h̄δij [1 + β2αlα

−1
∆xi

]. (18)

Considering that in a theory with fixed l ≫ lp

αl = const ≪ 1, (19)

(16),(18) may be written as

∆xi∆pj ≥ h̄δij[1 + β2αlα
−1
∆xi

] = h̄δij [1 + β̃2α−1
∆xi

], (20)

where β is redetermined as

β 7→ β̃ =
√
αlβ. (21)
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However, in this case β may be left as it is, whereas α may be redetermined
because α−1

∆xi
in (18),(20) is not a small parameter. In consequence we can

redetermine α as
α̃∆xi

= αlα
−1
∆xi

, (22)

where α̃∆xi
is now a small parameter.

Owing to such a duality, EUP (16),(18) may be rewritten in terms of a new
small parameter α̃ similar to α as follows:

∆xi∆pj ≥ h̄δij [1 + β2α̃∆xi
]. (23)

Then in analogy with [14] (Section 3), for Hawking temperature of the d-
dimensional Schwarzshild-AdS black hole with the metric function we have

N2 = 1 +
r2

l2AdS

− 16πGM

(d− 2)Ωd−2rd−3
(24)

in the metric of(5) and the cosmological constant Λ = −(d−1)(d−2)/2l2AdS .
Therewith the α-representation of the Hawking temperature TEUP [14] (for-
mula (15)) takes the form

TEUP (AdS) = (
d− 3

4π
)
h̄

r2+
[1 +

(d− 1)

(d− 3)
α−1
r+αlAdS

] = (
d− 3

4π
)
h̄

r2+
[1 +

(d− 1)

(d− 3)
α̃r+ ].

(25)
In the same way we can easily obtain the α-representation of the Hawk-
ing temperature for a Schwarzshild-AdS black hole and for a combined case
((formula (28) from the [14])) of GUP and EUP – (GEUP)

TGEUP (AdS) = 2(
d− 3

4π
)
h̄

r+
α−1
r+
[1−

√√√√1− αr+[1 +
αlAdS

(d− 1)

(d− 3)
α−1
r+
]]

= 2(
d− 3

4π
)
h̄

r+
α−1
r+
[1−

√√√√d− 3− αlAdS
(d− 1)

(d− 3)
− αr+ ], (26)

i.e. in the general case we get a Laurent series from α.
Similarly, we can obtain the α-representation for the corresponding value
of TGEUP (dS) ((formula (32) from [14]) in the de Sitter (dS) space by the
substitution l2AdS → −l2dS.
Note that, as it has been indicated in [33], [34], α−1

r+
has one more interesting

feature
α−1
r+

∼ r+
2/l2p ∼ SBH . (27)
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Here SBH is the Bekenstein-Hawking semiclassical black hole entropy with
the characteristic linear size r+. For example, in the spherically symmetric
case r+ = R - radius of the corresponding sphere with the surface area A,
and

A = 4πr2+, SBH = A/4l2p =
π

4α′2
α−1
r+
. (28)

In [15] GUP and EUP are combined by the principle called the Symmetric
Generalized Uncertainty Principle (SGUP):

∆x∆p ≥ h̄

(
1 +

(∆x)2

L2
+ l2

(∆p)2

h̄2

)
, (29)

where l ≪ L and l defines the limit of the UV-cutoff (not being such up to a
constant factor as in the case of GUP).Then a minimal length is determined
as

∆xmin = 2l/
√
1− 4l2/L2,

whereas L defines the limit for IR-cutoff i. e. we have a minimum momentum

∆pmin = 2h̄/(L
√
1− 4l2/L2).

And using the Euclidian action formalism by Gibbons and Hawking [42],
in [15] the corresponding correction of the Hawking temperature for an or-
dinary(not A(dS)) Schwarzshild-black hole is computed. This correction is
given as TSGUP . In the notation of this work

∆xmin = 2l/
√
1− 4α−1

l αL = 2l/
√
1− 4α̃l,

where α̃l–small parameter introduced in conformity with (22). We can eas-
ily obtain the α-representation for TSGUP that is completely similar to the
α-representation of TGEUP (AdS).
It should be noted that in the realistic theories l ∼ lp, and it is obvious that

(
√
1− 4l2/L2) ≈ 1. Thus, ∆xmin ≈ 2l ∼ 2lp and hence in this case we get a

minimal length that is much the same (to within α′) as in the case of GUP.
It is seen that, with due regard for the requirement l ≪ L, ∆pmin is derived
close (to within β) to ∆pmin (17) in a theory with EUP.

The question arises as to what for all these manipulations with writ-

ing and rewriting of the already derived expressions in the α-
representation are necessary.
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2.1 Owing to this procedure, we can draw the conclusion that all the quan-
tities within the scope of the stated problem are dependent on one and the
same deformation parameter α that is small, dimensionless (discrete in the
case of GUP), and varying over the given interval. And, provided the infrared
cutoff l is defined, we have

αl = αmin = l2or/l
2 ≤ α ≤ 1/4 and lor ≡ loriginal ∼ lp.

If we primordially consider a theory with GUP only, then lor ≡ lmin. But
in the arbitrary case it is required that lor = 2α′lp, where α′ is a certain
dimensionless constant on the order of unity.
The property of discreteness is retained for α in the cases when only GUP
(without generalizations)is valid because in this case the length seems to be
quantized, the lengths being considered from 2lmin rather than from lor = lmin

as a singularity arises otherwise [23]–[30].

2.2 Actually, all the quantities may be represented as a Laurent series in
terms of α, and a solution of the problem at hand may be understood as
finding of the members in this series.

2.3 When the problem has separate solutions for the cases including the
UV- and IR-cutoffs, we can consider expansion in each of the cases in terms
of their own small parameters: α in the case of UV-cutoff and α̃ in the case
of IR-cutoff, where α̃ is a duality of α

α̃
l̃
= αlα

−1

l̃
,

l determines, to within a factor on the order of unity, the characteristic
systems size, and l ≫ lp.

3 The Cosmological Constant Problem and

QFT with GUP and SGUP

In this section it is assumed that Λ may be varying in time. Generally speak-
ing, Λ is referred to as a constant just because it is such in the equations,
where it occurs: Einstein equations [43]. But in the last few years the dom-
inating point of view has been that Λ is actually a dynamic quantity, now
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weakly dependent on time [44]–[46]. It is assumed therewith that, despite
the present-day smallness of Λ or even its equality to zero, nothing points to
the fact that this situation was characteristics for the early Universe as well.
Some recent results [47]–[50] are rather important pointing to a potentially
dynamic character of Λ. Specifically, of great interest is the Uncertainty
Principle derived in these works for the pair of conjugate variables (Λ, V ):

∆Λ∆V ∼ h̄, (30)

where Λ is the vacuum energy density (cosmological constant). It is a dy-
namic value fluctuating around zero; V is the space-time volume. Here the
volume of space-time V results from the Einstein-Hilbert action SEH [48]:

Λ
∫
d4x

√
−g = ΛV (31)

where (31) is the term in the SEH . In this case the notion of conjugation is
well-defined, but approximate, as implied by the expansion about the static
Fubini–Study metric (Section 6.1 of [47]). Unfortunately, in the proof per
se (30), relying on the procedure with a non-linear and non-local Wheeler–
de-Witt-like equation of the background-independent Matrix theory, some
unconvincing arguments are used, making it insufficiently rigorous (Appendix
3 of [47]). But, without doubt, this proof has a significant result, though
failing to clear up the situation.
In[33],[34], [51] the Heisenberg Uncertainty Relation for the pair (Λ, V ) (30)
has been generalized to GUP

∆V ≥ h̄

∆Λ
+ α′

Λt
2
pV

2
p

∆Λ

h̄
(32)

or that is the same

∆V∆Λ ≥ h̄(1 + α′

Λt
2
pV

2
p

(∆Λ)2

h̄2 ). (33)

where α′

Λ is a new constant and V p = l3p.
In the case of UV - limit: t → tmin,∆Λ becomes significant

lim
t→tmin

V = V min ∼ V p = l3p; lim
t→tmin

V = Vmin ∼ Vp = l3ptp, (34)

where V – spatial part of V.
The existence of Vmin ∼ Vp directly follows from GUP for the pair (p, x)
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(2)and GUP for the pair (E, t) [24],[30] as well as from solutions of the
quadratic inequalities(32),(33).
So, (32) is nothing else but

∆V ≥ h̄

∆Λ
+ α′

ΛV
2
p

∆Λ

h̄
. (35)

And in the case of UV cutoff we have

lim
t→tmin

Λ ≡ ΛUV ∼ Λp ≡ h̄/Vp = Ep/V p. (36)

It is easily seen that in this case ΛUV ∼ m4
p, in agreement with the value ob-

tained using a standard (i.e. without super-symmetry and the like) quantum
field theory [52],[53]. Despite the fact that Λ at Planck’s scales (referred to
as ΛUV ) is also a dynamic quantity, it is not directly related to the familiar
Λ because the latter, as opposed to the first one, is derived from Einstein’s
equations

Rµν −
1

2
gµνR = 8πGN (−Λgµν + Tµν) . (37)

However, Einstein’s equations (37) are not valid at the Planck scales and
hence ΛUV may be considered as some high-energy generalization (deforma-
tion) of the conventional cosmological constant in the low-energy limit.
The problem is whether a correct generalization of GUP for the pair (Λ, V )
(33) to the Symmetric Generalized Uncertainty Principle (SGUP) of the form
given by (29) is possible. If the answer is positive, a theory also includes Λmin

that may be referred to as ΛIR in similarity with ΛUV . Then, similar to (29),
an additional term defining the IR-cutoff must be of the form

ΩIR =
(∆V )2

Ṽ 2
, (38)

where Ṽ - certain space-time volume effectively specifying the IR-limit of the

observable part of the Universe with the spatial part Ṽ ∼ L3; L – radius of
the observable part of the Universe. Now it is known that L ≈ 1028. Clearly,
the introduction of an additional term of the form (38) into the right-hand
side of (33) leads to ΛIR ≪ ΛUV and might lead to the value of Λ close to
the experimental value Λexp [54].
Note that the Holographic Principle [55]–[61] used to the Universe as a whole
[61] gives Λexp [60]. In [62],[63],[33],[34] it has been demonstrated that the
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α–representation (α–deformation) of QFT with GUP plays a significant role.
In particular, consider

Λexp ≈ αLΛUV , (39)

where L ≈ 1028.(39) is like (22). But the Holographic Principle imposes strict
restrictions on the number of degrees of freedom in the Universe, and hence
for us it is important to study the inferences of introducing the additional
term of the form (38) in (33).

4 GUP, EUP, and General Relativity Defor-

mation

In this Section we use the previously obtained results for some cases of high-
energy and low-energy deformation of GR. Specifically, we demonstrate that
in the cases when the Thermodynamics Approach [16]–[21] is applicable
to the General Relativity the deformation of GR with GUP and EUP may
be a natural result of the α-representation.

4.1 α–Representation of Einstein’s Equations for space

with horizon

Let us consider α-representation and high energy α-deformation of the Ein-
stein’s field equations for the specific cases of horizon spaces (the point (c) of
Section 4). In so doing the results of the survey work ([20] p.p.41,42)are used.
Then, specifically, for a static, spherically symmetric horizon in space-time
described by the metric

ds2 = −f(r)c2dt2 + f−1(r)dr2 + r2dΩ2 (40)

the horizon location will be given by simple zero of the function f(r), at
r = a.
It is known that for horizon spaces one can introduce the temperature that
can be identified with an analytic continuation to imaginary time. In the
case under consideration ([20], eq.(116))

kBT =
h̄cf ′(a)

4π
. (41)
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Therewith, the condition f(a) = 0 and f ′(a) 6= 0 must be fulfilled.
Then at the horizon r = a Einstein’s field equations

c4

G

[
1

2
f ′(a)a− 1

2

]
= 4πPa2 (42)

may be written as the thermodynamic identity ([20] formula (119))

h̄cf ′(a)

4π︸ ︷︷ ︸
kBT

c3

Gh̄
d
(
1

4
4πa2

)

︸ ︷︷ ︸
dS

− 1

2

c4da

G︸ ︷︷ ︸
−dE

= Pd
(
4π

3
a3
)

︸ ︷︷ ︸
P dV

(43)

where P = T r
r is the trace of the momentum-energy tensor and radial pres-

sure. In the last equation da arises in the infinitesimal consideration of
Einstein’s equations when studying two horizons distinguished by this in-
finitesimal quantity a and a + da ([20] formula (118)).
Now we consider (43) in a new notation, expressing a in terms of the corre-
sponding deformation parameter α. Hereinafter in this Section we write α
instead of αa as we consider the same a. Then we have

a = lminα
−1/2. (44)

Therefore,
f ′(a) = −2l−1

minα
3/2f ′(α). (45)

Substituting this into (42) or into (43), we obtain in the considered case of
Einstein’s equations in the ”α–representation” the following:

c4

G
(−αf ′(α)− 1

2
) = 4πPα−1l2min. (46)

Multiplying the left- and right-hand sides of the last equation by α, we get

c4

G
(−α2f ′(α)− 1

2
α) = 4πP l2min. (47)

But since usually lmin ∼ lp (that is just the case if the Generalized Uncer-
tainty Principle (GUP) is satisfied), we have l2min ∼ l2p = Gh̄/c3. When
selecting a system of units, where h̄ = c = 1, we arrive at lmin ∼ lp =

√
G,

and then (46) is of the form

− α2f ′(α)− 1

2
α = 4πPϑ2G2, (48)

where ϑ = lmin/lp. L.h.s. of (48) is dependent on α. Because of this, r.h.s.
of (48) must be dependent on α as well, i. e. P = P (α).
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Analysis of α-Representation of Einstein’s Equations

Now let us get back to (43). In [20] the low-energy case has been considered,
for which ([20] p.42 formula (120))

S =
1

4l2p
(4πa2) =

1

4

AH

l2p
; E =

c4

2G
a =

c4

G

(
AH

16π

)1/2

, (49)

where AH is the horizon area. In our notation (49) may be rewritten as

S =
1

4
πα−1; E =

c4

2G
a =

c4

G

(
AH

16π

)1/2

=
ϑ

2
√
G
α1/2. (50)

We proceed to two entirely different cases: low energy (LE) case and high
energy (HE) case. In our notation these are respectively given by

A)α → 0 (LE), B)α → 1/4 (HE),
C)α complies with the familiar scales and energies.

The case of C) is of no particular importance as it may be considered within
the scope of the conventional General Relativity.
Indeed, in point A)α → 0 is not actually an exact limit as a real scale of the
Universe (Infrared (IR)-cutoff lmax ≈ 1028cm), and then

αmin ∼ l2p/l
2
max ≈ 10−122.

In this way A) is replaced by A1)α → αmin. In any case at low energies the
second term in the left-hand side (48) may be neglected in the infrared limit.
Consequently, at low energies (48) is written as

− α2f ′(α) = 4πP (α)ϑ2G2. (51)

Solution of the corresponding Einstein equation finding of the function
f(α) = f [P (α)] satisfying(51). In this case formulae (49) are valid as at
low energies a semiclassical approximation is true. But from (51)it follows
that

f(α) = −4πϑ2G2
∫ P (α)

α2
dα. (52)

On the contrary, knowing f(α), we can obtain P (α) = T r
r .
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Possible High Energy α-Deformation of General Relativity

Let us consider the high-energy case B). Here two variants are possible.

I. First variant.

In this case it is assumed that in the high-energy (Ultraviolet (UV))limit the
thermodynamic identity (43) is retained but now all the quantities involved
in this identity become α-deformed. This means that they appear in the
α-representation with quantum corrections and are considered at high values
of the parameter α, i.e. at α close to 1/4. In particular, the temperature
T from equation (43) is changed by TGUP (9), the entropy S from the same
equation given by semiclassical formula (49) is changed by SGUP (13), and
so forth:

E 7→ EGUP , V 7→ VGUP .

Then the high-energy α-deformation of equation (43) takes the form

kBTGUP (α)dSGUP (α)− dEGUP (α) = P (α)dVGUP (α). (53)

Substituting into (53) the corresponding quantities
TGUP (α), SGUP (α), EGUP (α), VGUP (α), P (α) and expanding them into a Lau-
rent series in terms of α, close to high values of α, specifically close to α = 1/4,
we can derive a solution for the high energy α-deformation of general relativ-
ity (53) as a function of P (α). As this takes place, provided at high energies
the generalization of (43) to (53) is possible, we can have the high-energy
α-deformation of the metric. Actually, as from (43) it follows that

f ′(a) =
4πkB
h̄c

T = 4πkBT (54)

(considering that we have assumed h̄ = c = 1), we get

f ′

GUP (a) = 4πkBTGUP (α). (55)

L.h.s. of (55) is directly obtained in the α-representation. This means that,
when f ′ ∼ T , we have f ′

GUP ∼ TGUP with the same factor of proportionality.
In this case the function fGUP determining the high-energy α-deformation
of the spherically symmetric metric may be in fact derived by the expansion
of TGUP , that is known from (9), into a Laurent series in terms of α close
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to high values of α (specifically close to α = 1/4), and by the subsequent
integration.
It might be well to remark on the following.

4.1.1 As on going to high energies we use (GUP), ϑ from equation (48)is
expressed in terms of α′–dimensionless constant from GUP (2):ϑ = 2α′.

4.1.2 Of course, in all the formulae including lp this quantity must be changed
by G1/2 and hence lmin by ϑG1/2 = 2α′G1/2.

4.1.3 As noted in the end of subsection 6.1, and in this case also knowing all
the high-energy deformed quantities TGUP (α), SGUP (α), EGUP (α), VGUP (α),
we can find P (α) at α close to 1/4.

4.1.4 Here it is implicitly understood that the Ultraviolet limit of Einstein’s
equations is independent of the starting horizon space. This assumption is
quite reasonable. Because of this, we use the well-known formulae for the
modification of thermodynamics and statistical mechanics of black holes in
the presence of GUP [36]–[39],[14],[15].

4.1.5 The use of the thermodynamic identity (53) for the description of
the high energy deformation in General Relativity implies that on going to
the UV-limit of Einsteins equations for horizon spaces in the thermodynamic
representation (consideration) we are trying to remain within the scope of
equilibrium statistical mechanics [64] (equilibrium thermodynam-

ics) [65]. However, such an assumption seems to be too strong. But some
grounds to think so may be found as well. Among other things, of interest is
the result from [36] that GUP may prevent black holes from their total evap-
oration. In this case the Plancks remnants of black holes will be stable, and
when they are considered, in some approximation the equilibrium ther-

modynamics should be valid. At the same time, by authors opinion these
arguments are rather weak to think that the quantum gravitational effects
in this context have been described only within the scope of equilibrium
thermodynamics [65].

II. Second variant.
According to the remark of 4.1.5, it is assumed that the interpretation of
Einstein’s equations as a thermodynamic identity (43) is not retained on
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going to high energies (UV–limit), i.e. at α → 1/4, and the situation is
adequately described exclusively by non-equilibrium thermodynamics

[65],[66]. Naturally, the question arises: which of the additional terms intro-
duced in (43) at high energies may be leading to such a description?
In the [51],[33] it has been shown that in case the cosmological term Λ is a
dynamic quantity, it is small at low energies and may be sufficiently large
at high energies. In the right-hand side of (48) in the α–representation the
additional term GF (Λ(α)) is introduced:

− α2f ′(α)− 1

2
α = 4πPϑ2G2 −GF (Λ(α)), (56)

where in terms of F (Λ(α)) we denote the term including Λ(α) as a factor.
Then its inclusion in the low-energy case (42)(or in the α -representation
(48)) has actually no effect on the thermodynamic identity (43)validity, and
consideration within the scope of equilibrium thermodynamics still holds
true. It is well known that this is not the case at high energies as the Λ-term
may contribute significantly to make the ”process” non-equilibrium in the
end [65],[66].
Is this the only cause for violation of the thermodynamic identity (43) as
an interpretation of the high-energy generalization of Einstein’s equations?
Further investigations are required to answer this question.

4.2 α–Representation for Friedmann Equations with

GUP and EUP

Thermodynamic interpretation of Section 4 has been also developed for Fried-
mann Equations (FEs) of the Friedmann-Robertson-Walker (FRW) Universe
in [21]. In the process it is taken into consideration that in the FRW space-
time, where the metric is given by the formula

ds2 = −dt2 + a2(
dr2

1− kr2
+ r2dΩ2

n−1), (57)

and dΩ2
n−1 denotes a line element of the (n − 1)-dimensional unit sphere, a

is the scale factor, k is the spatial curvature constant, there is a dynamic
apparent horizon, the radius of which is as follows:

r̃A =
1√

H2 + k/a2
, (58)
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where H ≡ ȧ/a is the Hubble parameter.
FEs in [21] have been derived proceeding from the assumption that apparent
horizon is endowed with the associated entropy and temperature such the
event horizon in the black hole case

S =
A

4G
, T =

1

2πr̃A
(59)

and from the validity of the first low of thermodynamics

dE = TdS. (60)

In [67] with the use of this thermodynamic interpretation of FEs the modifi-
cations of GUP and EUP (or more precisely the GUP and EUP deformations)
of FEs have been obtained. It is clear that these (GUP and EUP)–deformed
FEs may be written in the form of the α–representation. For simplicity, let
us consider the case n = 3.
Then for GUP the formula (26) from [67] takes the form

(Ḣ − k

a
)[1 + πα′2l2p

1

A
+ 2(πα′2l2p)

2 1

A2

+
∑

d=3

cd(4πα
′2l2p)

2d 1

Ad
] = −4πG(ρ+ p), , (61)

whereas in the α–representation its form is more elegant

(Ḣ − k

a
)[1 +

1

16
αr̃A +

1

32
α2
r̃A

+
∑

d=3

cd
4d

αd
r̃A
] = −4πG(ρ+ p), . (62)

Also, more elegant is α–representation of the second Friedmann Equation
(formula (27) from [67])

8πG2

3
ρ =

αr̃A

4πα′2
[π +

1

32
αr̃A +

1

96
α2
r̃A

+
∑

d=3

cd
4d(d+ 1)

αd
r̃A
], , (63)

with the assumption that h̄ = c = 1.
It is obvious that therewith familiar FEs appear at low energies, i.e. at
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αr̃A ≪ 1/4.
In the nontrivial high-energy case one can obtain the solution for FE and, in
particular ρ,H, p as a series in terms of α close to 1/4.
In the case of EUP the α–representation of the deformed FE [67] seems to
be even simpler. Specifically, using (18) – (23), one can derive deformed first
Friedmann equation of the form

(Ḣ − k

a2
)(1 +

β2

πl2
A) = (Ḣ − k

a2
)(1 +

β2

πl2
4πr̃2A
l2or

l2or)

= (Ḣ − k

a2
)(1 + 4β2α−1

r̃A
αlor) = (Ḣ − k

a2
)(1 + 4β2α̃r̃A) = −4πG(ρ+ p), (64)

where, as expected, the deformation parameter α̃r̃A is small.
In a similar way we can obtain the α–representation of the EUP-deformation
for the second Friedmann equation.

5 Some Comments and Problems of Interest

In this Section some comments are given and some problems are stated.

1. The Laurent series expansion in terms of α is asymmetric for UV and IR
cutoffs. Indeed, as in the general case the variability domain 0 < α ≤ 1/4, in
the UV-cutoff when α ≈ 1/4 the contribution is made by α-terms both with
positive and with negative powers, while in the IR-cutoff (α ≪ 1/4) only the
α-terms with negative powers will be significant.

C2. The external constant α′ in the cases, where lor 6= lmin (EUP or SGUP
is the case), is not found in the final expressions, being reduced due to the
substitution of(22).

Several questions remain to be answered and necessitate further investiga-
tions.

Q1) How far the α-representation may be extended for the General Relativ-
ity? As shown in this work, such a representation exists for the General Rel-
ativity at High and Low Energies when the Thermodynamic Approach

[16]–[21] is applicable or, that is the same, the Thermodynamic Interpretation
is the case. It is interesting whether the extension of the α-representation
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to the general case both at High and Low Energies is possible. The problem
is whether, in some or other way, the general case may be reduced to the
well-known ones.

Q2) Considering Q1), for High Energy the problem is whether there is an
effective description of the space-time foam [68]–[70] in terms of α. The re-
sults of [71] suggest that such a description should be existent.

Q3) Proceeding from the results of E.Verlinde [72], the problem is whether
the High-Energy deformation of the Entropic Force is obtainable. Provided
the answer of Q1) positive, the problem concerns the form of this deforma-
tion in terms of α: we must find its alpha-representation.
Note that the notion of Entropic Force, however, without the introduction
of the term per se has been proposed by T.Padmanabhan in Conclusion of
his paper [73] earlier than by E.Verlinde.

6 Conclusion

In the case the problems stated in the previous Section will be solved posi-
tively, the small dimensionless discrete parameter α must be at once intro-
duced in igh-Energy Thermodynamics and Gravity, without its appearance
in the low-energy limit at the scales under study. At the same time, at large
scales GR has not been subjected to verification too [74]. The availability of
Dark Matter and Dark Energy is a strong motivation for the IR-modification
of GR [75]– [77]. The deformation of the General Relativity due to EUP
seems to be one of the IR-modifications of Gravity possible. In this case
an analysis of such a deformation in terms of the parameter α, of the cor-
responding variability domain, and the like may be important for studies of
the IR-modified (IR-deformed) General Relativity.
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