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Abstract. Previous work has demonstrated that categories are useful and
expressive models for databases. In the present paper we build on that model,
showing that certain queries and constraints correspond to lifting problems, as
found in modern approaches to algebraic topology. In our formulation, each
so-called SPARQL graph pattern query corresponds to a category-theoretic
lifting problem, whereby the set of solutions to the query is precisely the set of
lifts. We interpret constraints within the same formalism and then investigate
some basic properties of queries and constraints. In particular, to any database
π we can associate a certain derived database Qry(π) of queries on π. As an
application, we explain how giving users access to certain parts of Qry(π),
rather than direct access to π, improves ones ability to manage the impact of
schema evolution.
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1. Introduction

In [DK], [JoM], [JRW], and many others, a tight connection between database
schemas and the category-theoretic notion of sketches was presented and investi-
gated. This connection was carried further in [Sp1] where the existence of three
data migration functors was shown to follow as a simple consequences of using cat-
egories rather than sketches to model schemas. In this paper we shall show that a
modern approach to the study of algebraic topology, the so-called lifting problem
approach (see [Qui]), provides an excellent model for typical queries and constraints
(see [PS]).

A database consists of a schema (a layout of tables in which columns connect
one table to another) and an instance (the rows of actual data conforming to the
chosen layout). One can picture the analogy between databases and topological
spaces as follows. Imagine a database instance I and a database schema S, each as
an abstract space, and suppose we have a projection from I to S. That is, we have
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some kind of continuous map π : I → S from a “data bundle” I to a “base space”
S. Points in S represent tables, and paths in S represent foreign key columns (or
iterates thereof), which point from one table to another. Over every point s ∈ S
in the base space, we can look at the corresponding fiber π−1(s) ⊆ I of the data
bundle; this will correspond to the set of rows in table s.

A query on a database instance π : I → S is like a system of equations: it
includes an organized collection of knowns and unknowns. In our model a query
takes the form of a functor m : W → R, such that W (standing for WHERE-
clause) corresponds to the set of knowns, each of which maps to a specific value
in the instance I, and such that the relationship between knowns and unknowns
is captured in a schema R. More precisely, a query on the database instance
π : I → S is presented as a commutative diagram to the left, which would be
roughly translated into the pseudo-SQL to the right,1 in (1):

W
p //

m

��

I

π

��
R

n
// S.

SELECT ∗
FROM R

n−→ S

WHERE R
m←−W p−→ I

(1)

A result to the query is any mapping ` : R → I making both triangles commute
(` ◦m = p, π ◦ ` = n) in the diagram

W
p //

m

��

I

π

��
R

`

>>}}}}}}}}
n
// S.

(2)

The map ` is called a lift, hence the term lifting problem. The idea is that a lift is
a way to fill the result schema R with conforming data from the instance I.

We will now give a simple example from algebraic topology to strengthen the
image, and then an example database query to ground it.

Consider an empty sphere, defined by the equation x2 + y2 + z2 = 1; call it I.
We project it down onto the (x, y)-coordinate plane; call that plane S = R2. The
sphere I serves as the database instance and the plane S serves as the schema. A
query consists of some result schema mapping to the plane S, say a solid disk R
(given by z = 0, x2 + y2 ≤ 1), together with some constraints, say on the boundary
circle W (given by z = 0, x2 + y2 = 1) of the disk. Graphically we have Figure 3
below.

The results of the lifting query from Figure 3 are the mappings R→ I making the
diagram commute. Under the guidance of (1) the query would look something like
this:

SELECT ∗
FROM filled disk inclusion
WHERE empty circle as boundary = empty circle as equator

1A more general SQL query, with a specific SELECT statement will be discussed in Example
4.2.2.
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Figure 3. A topological lifting problem
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Topologically one checks that there are exactly two lifts—the top hemisphere and
the bottom hemisphere—so our pseudo-SQL query above would return exactly two
results.

1.1. Main example of a lifting query. We now provide an example of a situation
in which one may wish to query a database, and we show that this query naturally
takes the structure of a lifting problem. We break a single example into three parts
for clarity.

Example 1.1.1 (Main Example 1: Situation, SPARQL, and schema). Suppose you
have just come home from a party. There, you met and really hit it off with a
married couple; the husband’s name is Bob and the wife’s name is Sue; they live
in Cambridge. From your conversation, you know that Bob works at MIT and
Sue works in the financial sector. You’d like to see them again, but you somehow
forgot to ask for their contact information; in particular you’d like to know their
last names.

This is a typical database query problem. It can be phrased as the following
SPARQL graph pattern query (which we arrange in two columns for space and
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readability reasons):

(?marriage includesAsHusband ?b) (?marriage includesAsWife ?s)
(?b hasFirstName Bob) (?s hasFirstName Sue)
(?b livesIn Cambridge) (?s livesIn Cambridge)
(?employedb is ?b) (?employeds is ?s)
(?employedb hasEmployer MIT) (?employeds hasEmployer ?sueEmp)

(?sueEmp isIn financial)
(?b hasLastName ?bobLast) (?s hasLastName ?sueLast)

(3)

The query in (3) might be asked on the following database schema:2

S :=

G

a marriage

had
wedding

on //

includes as husband

xxqqqqqqqqqqq
includes as wife

&&LLLLLLLLLL

D

a date

M

a man

is

%%LLLLLLLLLLLL

W

a woman

is

yysssssssssss

E

an employed
person

is //

has employer
��

P

a person

lives in

��

has
first name//

has last name

%%JJJJJJJJJJJ

F

a first name

Y

an employer

is in
��

C

a city
L

a last name

T

a sector

(4)

Given that S is instantiated with data π : I → S, one can hope to find Bob and
Sue, and then determine their last name. In the following two examples (Examples
1.1.2 and 1.1.3) we will show that this query corresponds to a lifting problem for π.

Example 1.1.2 (Main Example 2: WHERE-clause and Result schema). Recall the
SPARQL query presented as (3) in Example 1.1.1, in which we wanted to find
information about our new friends Bob and Sue. We will use a lifting problem to
state this query; to do so we need to come up with a result schema R, a constraint
schema (a set of knowns) W , and a mapping m : W → R embedding the known
objects into the result schema. In this example we will present m,W, and R. In
Example 1.1.3 we will explain the lifting diagram for the query and show the results.

2The schema S in (4) deliberately includes a box D and an arrow G→ D that are not part of our
query (3).
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In order to find our friends Bob and Sue, we will use the following mapping:

W:=

Y 1

MIT

T

financial
sector

F1

Bob
C1

Cambridge
C2

Cambridge
F2

Sue

m

��

R:=

Y 1
an em-
ployer

G

a mar-
riage

includes as husband

vvnnnnnnnnnnnnnn
includes as wife

((QQQQQQQQQQQQQQQ

T

a sector

Y 2
an em-
ployer

is inoo

E1
an em-
ployed
person

is //

has

OO

P1
a per-
son

has
��

lives in

!!BBBBBB
has

}}||||||

P2
a per-
son

has
��

has

""DDDDDD
lives in

||zzzzzz

E2
an em-
ployed
person

isoo

has

OO

F1

a first
name

L1

a last
name

C1

a city
C2

a city

L2

a last
name

F2

a first
name

The functor m : W → R is indicated by sending each object in W to the object
with the same label in R; e.g. pMITq in Ob(W ) is sent to pan employerq in Ob(R)
because they are both labeled Y 1.

To orient oneself, we suggest the following. Count the number of constants
in the SPARQL query (3)—there are 6 (such as Bob, Cambridge, etc.); this is
precisely the number of objects in W . Count the combined number of constants
and variables in the SPARQL query—there are 14 (there are 8 variables, such as
?marriage, ?empoyedb, etc.); this is precisely the number of objects in R. Finally,
count the number of triples in the SPARQL query – there are 13; this is precisely
the number of arrows in R. These facts are not coincidences.

Example 1.1.3 (Main Example 3: Lifting diagram and result set). In Example 1.1.2
we showed a functor m : W → R corresponding to the SPARQL query stated in
(3). In this example we will explain how this query can be formulated as a lifting
problem of the form

W
p //

m

��

I

π

��
R

`

>>}
}

}
}
n
// S

(5)
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which serves to pose our query to the database π. At this point we can ask for the
set of solutions `. So far, W,m,R, and S have been presented, I and π have been
assumed, and the set of `’s is coming later, so it suffices to present p and n.

One should refer to our presentation of S in Example 1.1.1 (4). The functor
n : R → S should be obvious from our labeling system (for example, the object
E1=pan employed personq in category R is mapped to the object E=pan employed
personq in category S). Note that n is neither injective nor surjective in this case:
n−1(P ) = {P1, P2} and n−1(D) = ∅.

Suppose π : I → S is our data bundle, and assume that it contains enough data
that the constants in the query have unique referents. There is an obvious functor
p : W → I that sends each object in category W to its referent in I. For example,
we assume that there is an object in I labelled pMITq, which is mapped to by the
object Y1=pMITq in W .

Thus our query from (3) is finally in the form of a lifting problem as in (5). We
will show in Example 4.2.4, after we have built up the requisite theory, that the set
of lifts can be collected into a single table, which would look something like this:

Marriage

ID Husband Wife
ID First Last City ID First Last City

G3801 M881-36 Bob Graf Cambridge W913-55 Sue Graf Cambridge

(6)

This concludes the tour of our main example: we have shown a typical query
formulated as a lifting problem. The mathematical basis for the above ideas will
be presented in Section 4.

1.2. Purpose of the paper. The purpose of this paper is to:
• provide an efficient mathematical formulation of common database queries

(modeling both SQL and SPARQL styles),
• attach a geometric image to database queries that can be useful in concep-

tualization, and
• explore theory and applications of the derived database Qry(π) of queries

on a database π.

1.3. Plan of the paper. We begin in Section 2 with a review of the categorical
approach to databases (see [Sp1] for more details). Roughly this correspondence
goes by the following slogan: “schemas are categories, instances are set-valued
functors”. In Section 2.3 we also discuss the Grothendieck construction, which will
be crucial for our approach: a database instance can be converted into a so-called
relational fibration, which we will later use extensively to make the parallel with
algebraic topology and lifting problems in particular.

In Section 3 we define constraints on a database in terms of lifting conditions
and discuss some constraint implications. We give several examples to show how
various common existence and uniqueness constraints (such as the constraint that
a given foreign key column is surjective) can be framed in the language of lifting
conditions. In Section 4 we discuss queries as lifting problems, and review the
paper’s main example. In Section 5, we show that the queries on a given database
can be collected into a new, derived database. This derived database of queries
and their results can be queried, giving rise to nested queries. We explain how this
formulation can be useful for managing the impact of schema evolution. Finally
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in Section 6 we briefly discuss some possible directions for future work, including
tying in to Homotopy Type Theory (in the sense of [Awo] and [Voe]) and other
projects.

1.4. Notation. We use the notation {?} to denote a set with one element. Given
any category C, we denote the category of all functors C → Set by C–Set. The
terminal object in C–Set sends each object in C to {?}; we denote it by ?C : C → Set.
We use [0] to denote a discrete category with one object. For any category C, there
is a one-to-one correspondence between the objects in C and the functors [0] → C.
Thus we may denote an object c ∈ Ob(C) by a functor [0] c−→ C. In particular, we
elide the difference between a set and a functor [0]→ Set.

We draw schemas in one of two ways. When trying to save space, we draw our
objects as concisely-labeled nodes and our morphisms as concisely-labeled arrows;
when trying to be more expressive, we draw our objects as text boxes and put as
much text in them (and on each arrow) as is necessary to be clear (see [SK]). For
example, we might draw the indexing category for directed graphs in either of the
following two ways:

E•

s

&&

t

88
V• an edge

has as source
++

has as target
33

a vertex

When in the typographical context of inline text we are discussing an object that
has been elsewhere displayed as a textbox (such as an edge ), we may represent it
with corner symbols (e.g. as pan edgeq) to avoid various spacing issues that can
arise.

Given two categories, there are generally many functors from one to the other;
however, if the objects and arrows are labeled coherently, there are many fewer
functors that roughly respect the labelings. We will usually be explicit when defin-
ing functors, but we will also take care that our functors respect labeling to the
extent possible.

1.5. Acknowledgments. I would like to thank Henrik Forssell, Peter Gates, Rich
Haney, Eric Prud’hommeaux, and Emily Riehl for many useful discussions.

2. Elementary theory of categorical databases

2.1. Review of the categorical description of databases. The basic mantra
is that a database schema is a small category S and an instance is a functor δ : S →
Set, where Set is the category of sets.3 To recall these ideas, we take liberally
from [Sp1], though more details and clarification are given there. Readers who are
familiar with the basic setup and data migration functors can skip to Section 2.3.

In [Sp1] a category Sch of categorical schemas and translations is defined and
an equivalence of categories

Sch ' Cat(7)
is proved, where Cat is the category of small categories. The difference between
Sch and Cat is that an object of the former is a chosen presentation of a category,

3If one prefers, Set can be replaced by the category of finite sets or by the category Types for
some λ-calculus.
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by generators and relations. Given the equivalence (7), we can and do elide the
difference between schemas and small categories.

Roughly, a schema S consists of a graph G together with an equivalence relation
on the set of paths of G. Each object s ∈ Ob(S) represents a table (or more precisely
the ID column of a table), and each arrow s → t emanating from s represents a
column of table s, taking values in the ID column of table t. An example should
clarify the ideas.

Example 2.1.1. As a typical database example, consider the bookkeeping necessary
to run a department store. We keep track of a set of employees and a set of
departments. For each employee e, we keep track of

E.1 the first name of e, which is a FirstNameString,
E.2 the last name of e, which is a LastNameString,
E.3 the manager of e, which is an Employee, and
E.4 the department that e works in, which is a Department.

For each department d, we keep track of

D.1 the name of d, which is a DepartmentNameString, and
D.2 the secretary of d, which is an Employee.

Suppose further that we make the following two rules.

Rule 1 For every employee e, the manager of e works in the same depart-
ment that e works in.

Rule 2 For every department d, the secretary of d works in department d.

This is all captured neatly, with nothing left out and nothing else added, by the
category presented below:

S :=

Employee manager worksIn ' Employee worksIn
Department secretary worksIn ' Department

Employee
•

worksIn //

manager
��

first

~~~~~~~~~~~~~

last

��???????????
Department
•

secretary
oo

name

��
FirstNameString

•
LastNameString

•
DepartmentNameString

•

(8)

The underlined statements at the top indicate pairs of commutative (i.e. equivalent)
paths; each path is indicated by its source object followed by the sequence of arrows
that composes it. The objects, arrows, and equivalences in S correspond to the
tables, columns, and rules laid out at the beginning of this example.

The collection of data on a schema is typically presented in table form. Display
(9) shows how a database with schema S might look at a particular moment in
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time.

Employee
ID first last manager worksIn
101 David Hilbert 103 q10
102 Bertrand Russell 102 x02
103 Alan Turing 103 q10

Department
ID name secretary
q10 Sales 101
x02 Production 102

(9)

FirstNameString
ID
Alan
Alice
Bertrand
Carl
David

...

LastNameString
ID
Arden
Hilbert
Jones
Russell
Turing

...

DepartmentNameString
ID
Marketing
Production
Sales

..

.

Every table has an ID column, and in every table each cell references a cell in
the ID column of some table. For example, cells in the secretary column of the
Department table refer to cells in the ID column of the Employee table. Finally,
one checks that Rule 1 and Rule 2 hold. For example, let e be Employee 101. He
works in Department q10 and his manager is Employee 103. Employee 103 works
in Department q10 as well, as required. The point is that the data in (9) conform
precisely to the schema S from Diagram (8).

A set of tables that conforms to a schema is called an instance of that schema.
Let us denote the set of tables from (9) by δ; we noted above that δ conforms with,
thus is an instance of, schema S. Mathematically, δ can be modeled as a functor

δ : S → Set.
To each object s ∈ S the instance δ assigns a set of row-IDs, and to each arrow
f : s→ t in S it assigns a function, as specified by the cells in the f -column of s.
2.2. Review of data migration functors. Once we realize that a database
schema can be captured simply as a category S and each instance on S as a set-
valued functor δ : S → Set, classical category theory gives ready-made tools for
migrating data between different schemas. The first definition we need is that of
schema mapping.
Definition 2.2.1. Let S and T be schemas (i.e. small categories). A schema
mapping is a functor F : S → T .

Thus a schema mapping assigns to each table in S a table in T , to each column
in S a column in the corresponding table of T , and all this in such a way that the
path equivalence relation is preserved.
Definition 2.2.2. Let F : S → T be a schema mapping. Three functors on instance
categories are induced by F , which we call the data migration functors associated
to F and which we denote by ΣF ,∆F , and ΠF , displayed here:

S–Set

ΣF
**

ΠF

55T–Set.∆F
oo
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The functor ∆F : T–Set → S–Set sends an instance δ : T → Set to the instance
δ ◦ F : S → Set. The functor ΣF is the left adjoint to ∆F , and the functor ΠF

is the right adjoint to ∆F . We call ∆F the pullback along F , we call ΣF the left
pushforward along F , and we call ΠF the right pushforward along F .

2.3. RDF via the Grothendieck construction. There is a well-known construc-
tion that associates to a functor δ : S → Set, a pair (

∫
(δ), πδ) where

∫
(δ) ∈ Cat is

a new category, called the category of elements of δ, and πδ :
∫

(δ)→ S is a functor.
It is often called the Grothendieck construction. The objects and morphisms of

∫
(δ)

are given as follows

Ob(
∫

(δ)) :=
{

(s, x) | s ∈ Ob(S), x ∈ δ(s)
}

Hom∫
(δ)((s, x), (s′, x′)) :=

{
f : s→ s′ | δ(f)(x) = x′

}

The functor πδ :
∫

(δ) → S is straightforward: it sends the object (s, x) to s and
sends the morphism f : (s, x)→ (s′, x′) to f : s→ s′.

We call the pair (
∫

(δ), πδ) the relational fibration associated to δ. We will see in
the next section (Definition 3.2.1) that πδ is indeed a kind of fibration of categories.
This construction, and in particular the category

∫
(δ), is also nicely connected

with the resource descriptive framework (see [PS]), in which data is captured in so-
called RDF triples. Indeed, the arrows s• p−→b• of

∫
(δ) correspond one-for-one with

these RDF triples (subject, predicate, object). Thus we have shown a readymade
conversion from relational databases to RDF triple stores via the Grothendieck
construction. An example should clarify this discussion.

Example 2.3.1. Recall the database instance δ : S → Set given by the tables
in Diagram (9), whose schema S was presented as Diagram (8). Applying the
Grothendieck construction to δ : S → Set, we get a category I :=

∫
(δ) and a

functor π := πδ as follows:
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I =

101•

first

��

last

,,

manager

AA

worksIn

((102• 103•
q10
• x02•

secretary

hh

name

}}

Alan• Hilbert• Production•
Bertrand• Russell• Sales•

David•
Turing
•

Marketing
•

Alice• Arden•
Carl• Smith•

π

��

(10)

S =

Employee
•

worksIn //

manager
��

first

������������

last

��8888888888
Department
•

secretary
oo

name

��
FNString
•

LNString
•

DNString
•

The functor π : I → S sends objects 101,102,103 in I to the object Employee, in S;
it similarly sends the arrow labeled worksIn in

∫
(δ) to the arrow labeled worksIn

in S, etc.
In the tables in (9), which represents our instance δ, there are 16 non-ID cells,

whereas in Display (10), which represents
∫

(δ), there are only six arrows drawn.
The other ten arrows have been left out of the picture of I (e.g. the arrow
102• Last−−−−−→Russell• is not drawn) for readability reasons. The point is that the
RDF triple store associated to instance δ is nicely represented using the stan-
dard Grothendieck construction. For example, the arrow 101• first−−−−−→David• in (10)
represents the RDF triple (101 :first David).

In the Introduction (Section 1), we discussed database instances in terms of
mappings π, each from a data bundle I to a base space S. We were referring to
exactly the above relational fibration picture.

We have been calling the map πδ :
∫

(δ) → S a “relational fibration”, but there
is a more common category-theoretic term which, to the author, seemed overly
technical for the context of this paper. Namely, a functor πδ :

∫
(δ) → C obtained

by applying the Grothendieck construction to a set-valued functor δ : C → Set is
usually called a discrete opfibration (see [BW]). We use the term relational fibration
as a more database friendly synonym for the term discrete opfibration.
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In Section 3.2 we will give a definition of relational fibrations in terms of lifting
constraints (Definition 3.2.1). First, however, we attempt to understand a relational
fibration π : I → S by considering its various fibers and their relationships. More
precisely, given an object s ∈ Ob(S), we consider the fiber π−1(s), and given a
morphism f : s→ s′ in S we consider how the fibers π−1(s) and π−1(s′) relate.

If π : I → S were not assumed to be a relational fibration but instead just
a general functor, then all we would know about these various fibers would be
that they are categories. But the first distinctive feature of a relational fibration
(or discrete opfibration) is that the fiber π−1(s) is a discrete category, i.e. a set,
for each object s ∈ S; that is, there are no morphisms between different objects
in a chosen fiber (see Proposition 3.2.2). The pre-image π−1(f) of f : s → s′ is
a set of morphisms from objects in π−1(s) to objects in π−1(s′). When π is a
relational fibration, there exists a unique morphism in π−1(f) emanating from each
object in π−1(s), so the subcategory π−1(f) ⊆ I can be cast as a single function
π−1(f) : π−1(s)→ π−1(s′).

To recap, the relational fibration πδ :
∫

(δ) → S of a set-valued functor δ : S →
Set contains the same information as δ does, but a different perspective. We have

π−1
δ (s) � δ(s) and π−1

δ (f) � δ(f),
for any s, s′ ∈ Ob(S) and f : s→ s′.

2.3.2. Basic behavior of the Grothendieck construction. Below are some simple re-
sults about the Grothendieck construction.
Proposition 2.3.3. Let δ : S → Set be a functor. Then the Grothendieck con-
struction

∫
(δ) πδ−→ S of δ can be described as a pullback in the diagram of categories∫

(δ) //

πδ

��

y
Set∗

π

��
S

δ
// Set,

where Set∗ is the category of pointed sets and π is the functor that sends a pointed
set (X,x ∈ X) to its underlying set X.
Proof. This follows directly from definitions.

�

Lemma 2.3.4. Let S be a category. The functor
∫

: S–Set → Cat/S is fully
faithful. That is, given two instances, δ, ε : S → Set, there is a natural bijection,

HomS–Set(δ, ε) �−→ HomCat/S (
∫

(δ),
∫

(ε)).
Proof. This follows directly from definitions.

�

Proposition 2.3.5. Let F : S → T be a functor. Let δ : S → Set and ε : T → Set
be instances, and suppose we have a commutative diagram∫

(δ) //

πδ

��

∫
(ε)

πε

��
S

F
// T.

(11)
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Then diagram (11) is a pullback, i.e.
∫

(δ) � S ×T
∫

(ε), if and only if δ � ∆F ε.

Proof. This is checked easily by comparing the set of objects and the set of mor-
phisms in

∫
(δ) with the respective sets in S ×T

∫
(ε).

�

2.3.6. Examples from algebraic topology. In algebraic topology (see [May]), one
associates to every topological space X a fundamental groupoid Gpd(X). It is
a category whose objects are the points of X and whose set of morphisms between
two objects is the set of continuous paths in X from one point to the other. Two
paths in X are considered equivalent if one can be deformed to the other (without
any part of it leaving X). Composition of morphisms is given by concatenation of
paths.

One can reduce some of the study of a space X to the study of this algebraic
object G = Gpd(X), and the latter is well-suited for translation to the language of
this paper.

Example 2.3.7. Suppose that G is a groupoid. Then a covering of groupoids in the
sense of [May, Section 4.3] is precisely the same as a surjective relational fibration
with schema G.

Let G = Gpd(S1) denote the fundamental groupoid of the circle with circumfer-
ence 1. Explicitly we have Ob(G) = {θ ∈ R}/∼, where θ ∼ θ′ if θ − θ′ ∈ Z; and we
have

HomG(θ, θ′) = {x ∈ R | x+ θ ∼ θ′}.

Think of G as the category whose objects are positions of a clock hand and whose
morphisms are arbitrary durations of time (rotating the hands from one clock po-
sition around and around to another). Consider the functor T : G→ Set such that
T (θ) = {t ∈ R | t−θ ∈ Z} and such that for x ∈ HomG(θ, θ′) we put T (x)(t) = x+t.
So, for a clock position θ, the functor T returns all points in time at which the clock
is in position θ.

Applying the Grothendieck construction to T , we get a covering π :
∫

(T )→ G,
which corresponds to the universal cover of the circle S1. One can think of it as a
helix (modeling the time line) mapping down to the circle (modeling the clock).

A much more sophisticated example relating databases to classical questions in
algebraic topology may be found in [Mor].

3. Constraints via lifting conditions

In this section we introduce the lifting problem approach to database constraints.
Roughly the same model will apply in the next section to database queries, the idea
being that a lifting constraint is a lifting query that is guaranteed to have a result.

3.1. Basic definitions.

Definition 3.1.1. Let S ∈ Cat be a database schema. A (lifting) constraint on S
is a pair (m,n) of functors

W
m−→ R

n−→ S.
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A functor π : I → S is said to satisfy the constraint (m,n) if, for all solid arrow
commutative diagrams of the form

W //

m

��

I

π

��
R

n
//

>>}
}

}
}

S,

(12)

there exists a dotted arrow lift making the diagram commute.
A (lifting) constraint set is a set ξ := {Wα

mα−−→ Rα
nα−−→ S | α ∈ A}, for some

set A. A functor π : I → S is said to satisfy the constraint set ξ if it satisfies each
constraint (mα, nα) in ξ.

Given a constraint set ξ on S, we say that a constraint W m−→ R
n−→ S is implied

by ξ if, whenever a functor π : I → S satisfies ξ it also satisfies (m,n).

Remark 3.1.2. While not all constraints on databases are lifting constraints (for
example, declaring a table to be the union of two others is not expressible by a
lifting constraint), lifting constraints are the only type of constraint we will be
considering in this paper. For that reason, we often leave off the word “lifting,” as
suggested by the parentheses in Definition 3.1.1.

Example 3.1.3. Consider the schema

G = E•

s

&&

t

88
V•

The category G–Set is precisely the category of (directed) graphs. Given a graph
X : G → Set, we have a function X(s) : X(E)→ X(V ) assigning to every edge its
source vertex. Suppose we want to declare this function to be surjective, meaning
that every vertex in X is the source of some edge. We can do that with the following
lifting constraint

V• m−−−→ E• s // V•
n−−−→ E•

s

&&

t

88
V•

where m and n respect labeling. A graph δ : G → Set has the desired property,
that every vertex is a source, iff

∫
(δ) satisfies the lifting constraint (m,n).

Definition 3.1.4. Let S ∈ Cat be a schema. Given a functor m : W → R, define
a set [m] of lifting constraints as follows:

[m] =
{
W

m−→ R
n−→ S | n ∈ HomCat(R,S)

}
.

Given a set of functors M = {mj : Wj → Rj | j ∈ J}, the union

[M ] :=
⋃
j∈J

[mj ]

is a constraint set, which we call the universal constraint set generated by M . A
functor π : I → S satisfying the constraint set [M ] is called an M -fibration. We say
that elements of M are generating constraints for M -fibrations.
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Remark 3.1.5. Universal constraints seem to be more important in traditional math-
ematical contexts than in “informational” or database contexts. For example, in
the world of simplicial sets, the Kan fibrations are M -fibrations for some universal
constraint set [M ], called the set of generating acyclic cofibrations (see [Hir]).

3.2. Relational fibrations via lifting constraints. Our goal now is to express
the notion of relational fibrations in terms of lifting constraints. In other words,
we will exhibit a finite set of functors {mα : Wα → Rα}α∈A that serve to “check”
whether an arbitrary functor π : I → S is a relational fibration. In fact, Definition
3.2.1 will define π to be a relational fibration if and only if it is a {ρ1, ρ2} fibration,
where ρ1 : W1 → R1 and ρ2 : W2 → R2 are functors displayed in Figure 4.

Figure 4. The generating constraints, ρ1 and ρ2, for relational fibrations

W1 =
a• W2 =

b1•

a•

f1
66nnnnnnnnnnn

f2 ((PPPPPPPPPPP

b2•

ρ1 : W1 → R1
ρ1(a) = a

��

ρ2 : W2 → R2

ρ2(a) = a,
ρ2(b1) = ρ2(b2) = b,
ρ2(f1) = ρ2(f2) = f

��

R1 = a•
f // b• R2 = a•

f // b•

Definition 3.2.1. Let I and S be categories and let π : I → S be a functor. Then
I is a relational fibration if, for each solid-arrow commutative diagram of the form

Wα
//

ρα

��

I

π

��
Rα //

>>}
}

}
}

S

α ∈ {1, 2},

where ρα is one of the generating constraints for relational fibrations (see Figure 4),
there exists a dotted arrow functor, as shown, such that the full diagram commutes.

Again, a relational fibration is also known as a discrete opfibration, and one can
find it in the literature (e.g. [BW]), but we spell it out using lifting conditions. Let
π : I → S be a {ρ1, ρ2}-fibration. Then for any functor R1 = R2 → S, i.e. for any
arrow f : s → s′ in S, we have two lifting conditions. The conditions are that for
any object x ∈ π−1(s) in the fiber over s,
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(1) there exists at least one arrow in I, emanating from x, whose image under
π is f , and

(2) there exists at most one arrow in I, emanating from x, whose image under
π is f .

In the remainder of this section we give some consequences of Definition 3.2.1.
The proofs may be challenging for beginners and may be skipped on a first reading.

Proposition 3.2.2. Let π : I → S be a relational fibration. Then for each object
s ∈ Ob(S) the fiber π−1(s) is a discrete category.

Proof. Let s ∈ Ob(S) be an object, and let g : x → y be a morphism in the fiber
π−1(s) ⊆ I; we will show that x = y and that g = idx is the identity morphism.
Consider the map ρ2 : W2 → R2 from Figure 4. Let n : R2 → S be the functor
sending f to ids. Let p : W2 → I send f1 to idx and send f2 to g. We have a lifting
diagram as in Definition 3.2.1, so a lift is guaranteed. This lift equates idx and g.

�

The following proposition is useful in the theory of computation.

Proposition 3.2.3. Let Λ{0,1,2}0 and ∆{0,1,2} denote the categories pictured as the
source and target of the arrow m below

1•

0•

;;wwwwwww

##GGGGGGG

2•

m−−−−−−−−−→

1•

��

0•

;;wwwwwww

##GGGGGGG

2•

(∆{0,1,2} is just a commutative triangle) and let m be the unique functor that pre-
serves our labeling of objects, 0,1,2. If π : I → S is a relational fibration then it is
an {m}-fibration.

Proof. We will use notation from [DS, Section 1.8]. Suppose that π : I → S is a
relational fibration. We extend our lifting problem to the solid arrow diagram

∆{1} //

ρ1

��

Λ{0,1,2}0
//

m

��

I

π

��
∆{1,2′} //

88

g i k
m

o
q

∆{0,1,2} // S

where the right-hand square is the diagram for which we want a lift. By Definition
3.2.1 (applicable since the left-hand map ρ1 is a generating constraint for relational
fibrations), there exists a dotted arrow lift making the diagrams commute. If we
let X = colim(∆{1,2′} ρ1←− ∆{1} → Λ{0,1,2}0 ) then it suffices to find a lift for the
induced diagram

X //

��

I

π

��
∆{0,1,2} // S.
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We again extend to get the solid arrow diagram

Λ{0,2,2
′}

0
g //

ρ2

��

X //

��

I

π

��
∆{0,2} //

55kkkkkkkkkk
∆{0,1,2} // S

where g sends the two generating arrows to the paths 0 → 2 and 0 → 2′, respec-
tively, in X. Again by Definition 3.2.1 (applicable since the left-hand map ρ2 is a
generating constraint functor for relational fibrations), we have a dotted arrow lift
making the diagrams commute. Setting Y = colim(∆{0,2} ρ2←− Λ{0,2,2

′}
0

g−→ X), it
suffices to find a lift for the diagram

Y //

��

I

π

��
∆{0,1,2} // S.

But now one can check that the left-hand map Y → ∆{0,1,2} is an isomorphism of
categories, so we are done.

�

Proposition 3.2.4. Let π : I → S be a relational fibration. Then π is faithful. In
other words, for any two objects i, j ∈ Ob(I) the function

π : HomI(i, j)→ HomS(π(i), π(j))

is injective.

Proof. To prove that π is faithful, we need only find a solution to each lifting
diagram of the form:

W := i• ((
66
j
• // I

m

��
π

��

R := i• // j• // S

We can extend this diagram on the left with either surjective map from the relational
constraint functor ρ2 (see Figure 4) to m, as indicated in the diagram:

W2 //

ρ2

��

W //

m

��

I

π

��
R2

<<

g i l n q
t

w

R // S

The result follows by noticing that the left-hand square is a pushout.
�
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Let S be a category. We define a functor ∂ : Cat/S → S–Set as follows. For any
F : X → S, let ?X : X → Set denote the terminal object of X–Set (see Notation
1.4), and note that

∫
(?X) � X in Cat/X . Define ∂ (F ) : S → Set as

∂ (F ) := ΣF (?X).
We have the following proposition.

Proposition 3.2.5. (i) The functor ∂ is left adjoint to
∫

:

Cat/S
∂ //S–Set.∫oo

(ii) For any γ : S → Set the counit map is an isomorphism

∂ ◦
∫

(γ) �−→ γ.

(iii) An object X F−→ S in Cat/S is a relational fibration if and only if F �
∫
∂ (F )

in Cat/S.

Proof. Let F : X → S be an object of Cat/S and let γ : S → Set be an object of
S–Set. By Proposition 2.3.5 we have a pullback diagram:∫

(∆F γ) //

��

y

∫
(γ)

��
X

F
// S

which implies the first isomorphism in the following chain:
HomCat/S (F,

∫
(γ)) � HomCat/X (idX ,

∫
(∆F γ))

� HomX–Set(?X ,∆F γ)
� HomS–Set(ΣF (?X), γ) = HomS–Set(∂ F, γ).

The second isomorphism follows from Lemma 2.3.4 and the third is adjointness;
this proves Statement (i). Statement (ii) follows from the same lemma.

By construction, π :
∫

(δ)→ S is a relational fibration for any δ : S → Set, so if
X

F−→ S is not a relational fibration then X 6�
∫
∂ (F ). Thus, it remains to show

that if F is a relational fibration then X �
∫
∂ (F ). To see this, notice that for each

s ∈ Ob(S) the set F−1(s) is final in (F ↓ s), so
∂ (F )(s) = ΣF (?X)(s) = colim

(F↓s)
?X � F−1(s).

This shows that the object structure in F is the same as that in
∫
∂ (F ). Similar

analyses can be carried out for arrows and path equivalences.
�

3.3. Examples. In this section we will show how to use lifting constraints (see
Definition 3.1.1) to declare a number of different properties for tables in a database.
Our examples include

• declaring a table to be non-empty,
• declaring a table to have exactly one row,
• declaring a foreign key to be injective,
• declaring a foreign key to be surjective,



DATABASE QUERIES AND CONSTRAINTS VIA LIFTING PROBLEMS 19

• declaring a binary relation to be reflexive, symmetric, and/or transitive,
• declaring a table to be a product or a general limit of other tables, and
• declaring that there are no nontrivial cycles in a discrete dynamical system.

We will discuss these in order.

Example 3.3.1 (Nonempty). Let S be a schema, and let T ∈ Ob(S) be a table,
which we want to declare non-empty. We use the constraint drawn as follows

m1−−−−−−−−−−→ A•
n−−−−−−−−−→ S

where n(A) = T . In other words, we set W1 = ∅ to be the empty category, and we
set R = {A} to be the discrete category with one object, A. To say that the lifting
problem

W1 //

m1

��

I

π

��
R

>>}
}

}
}

n
// S

has a solution is to say that there exists an object in the instance category I whose
image under π is T . In other words, there exists a row in table T . Here, the
commutativity of the upper-left triangle does nothing, and the commutativity of
the lower-right triangle does all the work.

Example 3.3.2 (Cardinality=1). Let S be a schema, and T ∈ Ob(S) a table, which
we want to declare to have exactly one row. We know a constraint guaranteeing
the existence of a row in T from Example 3.3.1; in Section 3.4 we will give a general
method for transforming existence constraints into uniqueness constraints, but here
we will just give the result of that method.

To declare T to have at most one row, we use the constraint drawn as follows:

a1•

a2•

m2−−−−−−−−−−→ A•
n−−−−−−−−−→ S

where m2(a1) = m2(a2) = A and where n(A) = T . In other words, we set W2 =
{a1, a2} to be a discrete category with two objects, and we set R = {A} to be a
discrete category with one object. The lifting problem

W2 //

m2

��

I

π

��
R

>>}
}

}
}

n
// S

has a solution iff both triangles commute. We know already that the image of a
and b in I consists of two rows in table T , because the square commutes. The
commutativity of the upper-left triangle implies that a and b are the same, as
desired. The commutativity of the lower-right triangle is implied by the surjectivity
of m2 and the commutativity of the square.

The set {(m1, n), (m2, n)} is a constraint set on S that is satisfied by a relational
fibration I if and only if the set I(T ) of rows in T has exactly one element.
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We will be more brief from here on out. The following constraint is exactly what
was used in Example 3.1.3.

Example 3.3.3 (Surjective foreign key). The declaration that a foreign key f : T →
T ′ be surjective is achieved by the constraint:

b•
m−−−−−−−−−→ A• F // B•

n−−−−−−−−−→ S

where m(b) = B,n(A) = T, n(B) = T ′, and n(F ) = f .

Example 3.3.4 (Injective foreign key). The declaration that a foreign key f : T → T ′

be injective is achieved by the constraint:

a1•

$$HHHHHHH

b•

a2•

::vvvvvvv

m−−−−−−−−−→ A• F // B•
n−−−−−−−−−→ S

where m(a1) = m(a2) = A and m(b) = B, and where n(F ) = f .

There exist constraints that ensure a relation binary relation R ⊆ A × A is
transitive, which we give in Example 3.3.5. There is another constraint to ensure
it is symmetric, and another to ensure it is reflexive; we leave these as exercises.

Example 3.3.5 (Transitive binary relation). The declaration that a relation

R
f //
g
// A

in S be transitive is achieved by the constraint

r1•
f1

��





 g1

��1
11111

r2•
f2

��





 g2

��1
11111

a1• a2• a3•

m−−−−−−−−−→

R1•
F1

��������
G1

��2
22222

R2•
F2

��������
G2

��2
22222

A1• A2• A3•

R3•
F3

bbDDDDDDDDD G3

<<zzzzzzzzz

n−−−−−−−−→ S

where the functors m and n should be clear by our labeling.

A limit (in the sense of category theory) can be declared using lifting constraints.
For conciseness, we only include the example of binary products. The case for other
limits is just as easy, but since people with an interest in databases see product
tables more often than other limit (e.g. fiber product) tables, it seemed preferable
to explore that case. An interested reader might try formulating the fiber product
constraint for him- or her-self.
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Example 3.3.6 (Product). Suppose we have a table T and two of its columns are
f : T → U and g : T → V . The declaration that (the set of rows in) table T is the
product of (the sets of rows in) tables U and V is achieved by two constraints, an
existence constraint and a uniqueness constraint. The existence constraint is

b• c•

m1−−−−−−−−−−→

A•

G

��/
/////

F

��������

B• C•

n−−−−−−−−−→ S

where m1(b) = B,m1(c) = C, and n(F ) = f, n(G) = g. The uniqueness constraint
is

a1•

G1

��-
---------

F1

�����������

a2•

G2 ��
:::::

F2���
����

b• c•

m2−−−−−−−−−−→

A•

G

��/
//////

F

���������

B• C•

n−−−−−−−−−→ S

where m2(F1) = m2(F2) = F,m2(G1) = m2(G2) = G, and n(F ) = f, n(G) = g.
Thus the constraint set for (T, f, g) to be a product is {(m1, n), (m2, n)}.

Example 3.3.7 (Forests). Let S be the free category generated by the graph with
one object and one arrow, pictured here:

S :=
ν•

p

OO(13)

An instance δ : S → Set is called a discrete dynamical system or DDS. The set δ(ν)
will be called the set of nodes of δ and given a node x ∈ δ(ν), the node δ(p)(x) is
called the parent of x. Here is a picture of a such an instance δ and its Grothendieck
construction I =

∫
(δ).

δ :=

ν

ID p
a f
b c
c d
d g
e f
f i
g c
h f
i i
j i

I :=

a•

""EEEEEE
b• // c• // d•

��
e• // f•

""EEEEEE
g
•

bbEEEEEE

h•

<<yyyyyy i•
��

j
•

<<yyyyyy

(14)

Notice that a DDS looks like a forest (collection of trees) except that it may
have cycles. These cycles can only occur at the root of a tree, and indeed each tree
in the forest has a root cycle. In (14) we see that the tree containing a has a root
cycle of length 1, and the tree containing b has a root cycle of length 3. Forests are
a useful notion in computer science; we consider a DDS a forest if and only if each
root cycle has length 1. This can be achieved by the following lifting constraint.
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Let R = S be the schema in (14), and let n = id: R → S. Let W be the free
category on the graph below, and let m : W → R denote the functor sending p1
and p2 to p.

W:=

ν1•

p1
## ν2•

p2

aa
m−−−−−−−−−−−→

R:=
ν•

p

OO
n−−−−−−−−−−−→

S:=
ν•

p

OO

3.4. Encoding uniqueness constraints. Suppose given a constraint W m−→ R
n−→

S. According to Definition 3.1.1 a functor π : I → S satisfies (m,n) if for every
solid arrow diagram

W //

m

��

I

π

��
R

n
//

>>}
}

}
}

S,

(12)

there exists a dotted arrow lift making it commute. Thus it appears that all con-
straints are existence declarations. However, we can always turn such an existence
declaration into a uniqueness declaration using a related lifting diagram. In fact
this was done a couple times (see Examples 3.3.2, 3.3.6) above. The uniqueness
constraint corresponding to (m,n) is

R qW R
(idR q idR) // R

n // S.(15)

In other words, π satisfies (idR q idR, n) if and only if there exists at most dotted
arrow lift making diagram (12) commute.

3.5. Constraint implications. Propositions 3.5.2 and 3.5.3 below are constraint
implication results. That is, they show that instances satisfying one lifting con-
straint automatically satisfy another. These two constraint implications are not
exhaustive, they merely give the idea.

Definition 3.5.1. Suppose that one has a diagram of the form

W
s1 //

m

��

W ′
p1 //

m′

��

W

m

��
R

s2
// R′

p2
// R

such that the top and bottom compositions are identity,

p1 ◦ s1 = idW and p2 ◦ s2 = idR.

In this case we say that m is a retract of m′.
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Proposition 3.5.2. Suppose that (m,n) is a constraint for a schema S and that
m is a retract of some m′, part of which is shown to the left in the diagram

W ′
p1 //

m′

��

W

m

��
R′

p2
// R

n
// S.

Then any relational fibration π : I → S satisfying (m′, n ◦ p2) also satisfies (m,n).

Proof. The proof is straightforward but we include it for pedagogical reasons. Sup-
pose given a lifting problem

W
p //

m

��

I

π

��
R

`

>>}
}

}
}

n
// S.

(16)

We assume by hypothesis that the dotted arrow lift f exists making the solid arrow
diagram

W
s1 //

m
��

W ′
p1 //

m′
��

W

m
��

p // I

π

��
R

s2
// R′

f

66nnnnnnnn
p2
// R

n
// S

commute. But then one checks that ` = f ◦ s2 : R→ I is a lift as in (16).
�

Proposition 3.5.3. Suppose that the square to the left in the diagram

W ′ //

m′

��

W

m

��
R′

q
// R
p

n
// S

is a pushout (as indicated by the corner symbol p). If π : I → S satisfies the
constraint (m′, n ◦ q) then it satisfies (m,n).

Proof. Obvious.
�

4. Queries as lifting problems

In this section we will show a correspondence between queries and lifting prob-
lems, under which the set of results for a query corresponds to the set of solutions
(i.e. lifts) for the associated lifting problem. The main example of this was dis-
cussed in Example 1.1.1. There we were interested in learning more about a married
couple, given certain known information about them. After building up the nec-
essary theory in Sections 4.1 and 4.2 we will apply it to the case of the married
couple in Example 4.2.4.

In the Introduction, more specifically in (1), we alluded to a dictionary between
certain SQL statements and lifting problems. In this section we will extend this
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a bit to include more specificity in the SELECT clause. Namely, we have this
correspondence

W
p //

m

��

I

π

��
X

q
// R

`

>>}
}

}
}
n
// S

SELECT X
q−→ R

FROM R
n−→ S

WHERE R
m←−W p−→ I

(17)

The map q can be composed with any lift ` : R → I to restrict our attention to a
certain segment of the result. We explain these ideas in Example 4.2.2. However,
before getting to this general kind of query, we will discuss queries that do not
include the WHERE-clause, i.e. the collection W → I of knowns.

4.1. WHERE-less queries. In this section we study queries as in Diagram (17) in
which the where-clause W is empty, W = ∅. In this case the two maps R m←−W p−→ I
contain no information, so Diagram (17) reduces to the following:

I

π

��
X

q
// R

`

??�
�

�
�
n
// S

SELECT X
q−→ R

FROM R
n−→ S

We call these WHERE-less queries.

Definition 4.1.1. Let S be a schema. A probe on S is a functor n : R → S; the
category R is called the result schema for the probe. Given a relational fibration
π : I → S the probe n is said to set up the lifting problem

I

π

��
R

n
//

>>~
~

~
~

S.

In the presence of a relational fibration π, we may refer to the probe n as a where-
less query. We define the set of solutions to the query, denoted Γ(n, π) as

Γ(n, π) := {` : R→ I | π ◦ ` = n}.
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Example 4.1.2. Consider the relational fibration π : I → S given here:

I =

Ann•

Bob•

x137•

77pppppppppppppppppp

""FFFFFFFFFFFFFFFFFFFF
Deb•

x139•

77pppppppppppppppppp

''NNNNNNNNNNNNNNNNN

x144•

77pppppppppppppppppp

''NNNNNNNNNNNNNNNNN

Smith•

Jones•

π

��

S =

FNames•

Person•

First
44hhhhhhhhhhhhh

Last **VVVVVVVVVVVVV

LNames•

To find two people with the same last name, we find lifts of the where-less query

R :=

P1•
L1

$$JJJJJJJ

LN•

P2•
L2

::ttttttt

n−−−−−−−−−→

FNames•

Person•

First
44hhhhhhhhhhhhh

Last **VVVVVVVVVVVVV

LNames•

= S

where both n(L1) = n(L2) = (Person• Last−−−→LNames• ). There are two people (Ann Smith,
Bob Smith) with the same last name, so we may hope to get as our result set
{(x137,Smith, x139)}.

Here is how to compute the result set for our query. We are looking for functors
` : R→ I that make the diagram

I

π

��
R

n
//

`

??��������
S

(18)

commute. Since L1 and L2 in R are sent to Last in S, we need to choose two
“downward sloping” arrows in I with the same target. Doing so, we indeed find
all pairs of persons in I that have the same last name. Unfortunately, this query
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would return five results, which we can abbreviate as

(x137,Smith, x139), (x139,Smith, x137),(19)
(x137,Smith, x137), (x139,Smith, x139), (x144, Jones, x144).

The first two are what we are looking for, but they are redundant; the last three
are degenerate (e.g. Deb Jones has the same last name as Deb Jones). We will deal
with these issues in Example 4.1.5, after we discuss morphisms of queries.

Definition 4.1.3. Let S be a schema. Given two probes n1 : R1 → S and n2 : R2 →
S, we define a strict morphism from n1 to n2, denoted f : n1 → n2, to be a functor
f : R1 → R2 such that n2 ◦ f = n1. Let P̃rb(S) denote the category whose
objects are probes and whose morphisms are strict morphisms. In the presence of a
relational fibration π : I → S, we may refer to f as a strict morphism of where-less
queries (as in Definition 4.1.1).

Given a strict morphism f : n1 → n2, one obtains a function Γ(f, π) : Γ(n2, π)→
Γ(n1, π), because any lift `2 in the diagram

I

π

��
R1

f //

n1

77R2
n2 //

`2

>>}}}}}}}}
S,

(20)

i.e. with n2 = π ◦ `2, induces a lift `1 := `2 ◦ f : R1 → I with n1 = π ◦ `1. We thus
have produced a functor Γ(−, π) : P̃rb(S)op → Set.

Remark 4.1.4. We use the term strict morphism of probes in Definition 4.1.3 be-
cause a more lax version of morphism will be defined later, in Definition 5.1.2.
Whereas above we consider commutative triangles of categories (e.g. n2 ◦ f = n1
in (20)) and call the resulting category P̃rb(S), the lax version will allow for nat-
ural transformations (e.g. n2 ◦ f ⇒ n1) and will be denoted Prb(S). The functor
Γ(−, π) : P̃rb(S) → Set defined in Definition 4.1.3 can be extended to a functor
(which we give the same name), Γ(−, π) : Prb(S)→ Set. This will all be discussed
in Section 5.1.

Example 4.1.5. We again consider the situation from Example 4.1.2, where we were
using the query n : R→ S to look for pairs of people who had the same last name.
The solution set in (19) had two problems:

• we were getting degenerate answers because every person has the same last
name as him- or her-self, and
• we were getting order-redundancy because, given two people with the same

last name, we can reverse the order and get another such pair.
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In order to deal with the first issue, consider the strict morphism f of queries

R =
P1•

L1

$$JJJJJJJ

LN•

P2•
L2

::ttttttt

f //

R2 :=
P• L // LN•

n2 //

S =
FNames•

Person•
First 44iiiiiiiiii

Last **UUUUUUUUUU

LNames•

where f(L1) = f(L2) = L, and note that indeed n = n2 ◦ f . By Definition 4.1.3
this induces a function between the solution sets; i.e. we get a function

Γ(f, π) : Γ(n2, π)→ Γ(n, π).

In our example (19), the image of this function is precisely the set of duplicates. In
other words, if we delete the elements in the image of Γ(f, π) we get

Γ(n, π)− Γ(n2, π) = {(x137,Smith, x139), (x139,Smith, x137)}.

In order to deal with the remaining redundancy issue, consider the swap map
s : R→ R given by s(L1) = L2 and s(L2) = L1. Note that n◦ s = n. Thus we have
a strict morphism of probes s : n→ n, which induces a function Γ(s, π) : Γ(n, π)→
Γ(n, π). By taking the orbits of this function, we effectively quotient out by order-
swapping. In fact our swap map acts not just on (R,n) but on (R2, n2) as well, and
so we can combine this method with the one above to obtain the desired answer,
the one element set consisting of (x137,Smith, x139), in unspecified order.

Proposition 4.1.6. Let δ : S → Set be an instance and πδ : I → S the induced
relational fibration. Given any probe n : R→ S, there is an isomorphism

Γ(n, πδ)
�−→ lim

R
(δ ◦ n).

Proof. Consider the diagram

I //

πδ

��

y
Set∗

π

��
R

n
// S

δ
// Set

where the right-hand square is a pullback, as shown in Proposition 2.3.3. We have
a bijection

HomCat/S (n, πδ) � HomCat/Set(δ ◦ n, π).
The left-hand side is Γ(n, πδ) and the right-hand side is a standard formula for the
limit of a set-valued functor, in this case for limR(δ ◦ n).

�

4.2. General lifting queries. In this section we tackle the more general lifting
query. These closely resemble graph pattern queries, as used in SPARQL (see
[PS]). We will show how to perform queries like (and including) the one suggested
in Example 1.1.1, where we hoped to find the last names of our new acquaintances,
Bob and Sue. We begin with the definition.
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Definition 4.2.1. Let S be a schema and π : I → S a relational fibration. A query
on π is a solid-arrow commutative diagram of the form

W
p //

m

��

I

π

��
R

`

>>}
}

}
}
n
// S

(21)

The categories W and R are called the where-category and the result schema, re-
spectively. We define the set of solutions to the query, denoted Γm,p(n, π), to be
the set of lifts ` making the diagram commute. Precisely,

Γm,p(n, π) := {` : R→ I | π ◦ ` = n and ` ◦m = p}.

Example 4.2.2. By this point, we have developed the theory necessary to make
sense of the following dictionary.

W
p //

m

��

I

π

��
X

q
// R

`

>>}
}

}
}
n
// S

SELECT X
q−→ R

FROM R
n−→ S

WHERE R
m←−W p−→ I

Each lift ` in the commutative square is a solution to the SELECT ∗ statement,
and composing ` with q projects to schema X.

The following proposition says that for any query on a dataset δ, there is a
canonical embedding of the query result back into δ.

Proposition 4.2.3. Let δ : S → Set be a instance on a schema and π : I → S the
associated relational fibration. Suppose given a query (lifting problem)

W
p //

m

��

I

π

��
R

n
//

>>}
}

}
}

S

with solution set Γm,p(n, π) ∈ Set. Considering this set as a constant functor
Γ: R → Set (given by Γ(r) = Γm,p(n, π) for all r ∈ Ob(R)), there is an induced
map of R-sets,

Res: Γ→ ∆nδ.

Proof. Let Γ(n, π) = {` : R → I | π ◦ ` = n} denote the set of solutions to the
where-less query n : R → S. Clearly, we have an inclusion Γm,p(n, π) ↪→ Γ(n, π).
By Proposition 4.1.6, there is an isomorphism Γ(n, π) � limR(δ ◦ n).

Let t : R → [0] denote the terminal functor. It follows from definitions that for
any functor G : R → Set, there is an isomorphism of [0]-Sets, limR(G) � Πt(G),
so in particular we have an inclusion Γm,p(n, π) → Πt(δ ◦ n). By the (∆t,Πt)-
adjunction, there is an induced map

∆t(Γm,p(n, π))→ (δ ◦ n)
of R-sets. The result follows, since ∆t(Γm,p(n, π)) = Γ and δ ◦ n = ∆nδ.

�
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Example 4.2.4 (Bob and Sue, revisited). The motivating example for this paper
was presented in Section 1.1. In particular, we provided a SPARQL query to
find all instances of married couples with the requisite characteristics (e.g. the
husband’s and wife’s first names being Bob and Sue respectively). We showed that
this SPARQL query could be straightforwardly transformed into a lifting problem
of the form

W
p //

m

��

I

π

��
R

n
//

`

>>}
}

}
}

S

as in (5), and we specified the two functors W m−→ R
n−→ S. We did not specify the

relational fibration I
π−→ S or the inclusion of the known data p : W → I, because

writing out a convincing possibility for I would necessitate too much space to be
worthwhile in this document.

The lifting diagram (5) was presumed to have only one solution, because it
was presumed that we knew enough about Bob and Sue that no one else fit the
description. In the language of Definition 4.2.1, the set Γm,p(n, q) has one element.
By Proposition 4.2.3, this element can be written as a database state on R. We
output the result as a two-level table with one row in (6), repeated here,

Marriage

ID Husband Wife
ID First Last City ID First Last City

G3801 M881-36 Bob Graf Cambridge W913-55 Sue Graf Cambridge

which in fact was a state on a schema R′ → R, where R′ is the schema
R’:=

G

Marriage

uullllllllllll

((QQQQQQQQQQQQQ

P1

Husband

�� ""FFFFFF

||xxxxxx

P2

Wife

��~~|||||
  BBBBB

F1

First
L1

Last
C1

City
C2

City
L2

Last
F2

First

(22)

While we have not discussed two-level tables before, we hope the idea is straight-
forward.

4.3. SPARQL queries involving predicate variables. In Example 1.1.1 our
SPARQL query (3) only has variables in subject and object positions (the nodes of
the schema). It seems that most SPARQL queries used in practice also only have
variables in the subject and object positions (see, e.g. [DZS]); still, general SPARQL
queries can involve variables in any position including in predicate positions, which
correspond to the arrows of the schema. For example, we may use (John ?x Mary)
to find all known relationships between John and Mary. To deal with this type of
query, one may proceed as follows.

If S is a graph (thought of as a schema with trivial path equivalences, which is
in keeping with RDF schemas), then S itself is in fact a database instance on the
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schema G from Example 3.1.3. A relational fibration π : I → S can be considered
simply as a map of graphs, i.e. a map of instances on G. Taking its Grothendieck
construction yields a map

∫
(I)→

∫
(S), whereby each arrow from S (representing

a foreign key column) and each arrow from I (representing a cell in a foreign key
column) have become a node. We can perform the original SPARQL query to this
derived form of the database because our original predicate can now be accessed as
a subject or object. For example our statement (John ?x Mary) would become the
pair of statements (?x subject John) (?x object Mary).

5. The category of queries on a database

In this section we will discuss some formal properties of the machinery developed
in earlier sections. For example we will show that the queries on a given database
can be arranged into a database of their own and subsequently queried. This process
is commonly known as nesting queries. To this end, we define a category of queries
and prove that the process of finding solutions is functorial. We do this in Sections
5.1 and 5.2. In Section 5.3 we extend some results from Section 3.5, giving more
detail on the interaction between data migration functors, on the one hand, and
query containment and constraint implication on the other.

This section is technical, but it may have fruitful applications. Given any data-
base π, the category Qry(π) organizes the queries (or views) on π into a schema
of their own. There is a canonical instance on Qry(π) populating each table (cor-
responding to a query) with its set of results. In typical applications, users of a
database π are often better served by interacting with Qry(π) rather than with
π. It is important to understand how schema evolution affects different parts of
Qry(π); this is briefly discussed in Section 5.3.

5.1. New relational fibrations from old.

Theorem 5.1.1. Let π : I → S be a relational fibration and let B be a cate-
gory. Then the induced functor πB : IB → SB is a relational fibration. If δB =
∂ (πB) : SB → Set is the associated instance, then for any F : B → S in Ob(SB),
there is a bijection

δB(F ) � Γ(F, π).

Proof. We begin our proof of the first claim by drawing a figure for reference:

I

π

��
B

`1

??����������������
F1

&&

F2

88⇓α S

(23)

To see that πB is a relational fibration, suppose that F1, F2 : B → S are functors
and α : F1 → F2 is a natural transformation. Given a functor `1 : B → I with
π ◦`1 = F1, we must show that there exists a unique functor `2 : B → I and natural
transformation β : `1 → `2 such that π ◦ `2 = F2 and π ◦ β = α. For any object
b ∈ Ob(B), the map αb : F1(b) → F2(b) in S together with the object `1(b) ∈ I,
such that π(`1(b)) = F1(b), induces a unique arrow βb : `1(b) → ib in I for some
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ib ∈ Ob(I), because π is a relational fibration. Define `2(b) = ib. This defines
`2 : B → I on objects.

Now suppose that f : b → b′ is any morphism in B. Applying what we have so
far, we get a functor X → Y , where X is the solid-arrow portion of the category to
the left and Y is the commutative square category to the right,

X :=

`1(b) βb //

`1(f)
��

`2(b)

?
��

`1(b′)
βb′
// `2(b′)

−−−−→

F1(b) αb //

F1(f)
��

F2(b)

F2(f)
��

F1(b′)
αb′
// F2(b′)

=: Y(24)

and we get a commutative diagram

X //

��

I

π

��
Y // S

In order to complete our definition of `2, our goal is to fill in the missing side (the
dotted arrow labeled “?”) in square X.

The map F2(f) : F2(b)→ F2(b′) in S together with the object `2(b) ∈ Ob(I) with
π(`2(b)) = F2(b) induces a unique arrow hb′ : `2(b)→ jb′ for some jb′ ∈ Ob(I) with
π(jb) = b′. But now we have two maps in I over the composite F1(b)→ F2(b′) both
with source `1(b) ∈ Ob(I), namely βb′ ◦ `1(f) : `1(b)→ `2(b′) and hb′ ◦ βb : `1(b)→
jb′ . Since π is a relational fibration, their codomains must be equal, so we have a
map `2(f) := hb′ : `2(b) → `2(b′) = jb′ , and we have completed the commutative
square X in Diagram (24). We have now defined our functor `2 : B → I and natural
transformation β : `1 → `2 over α, and they are unique: we made no choices in their
constructions. We have shown that πB : IB → SB is a relational fibration.

Let δB := ∂ (πB) : SB → Set be the instance associated to πB and let F ∈
Ob(SB) be an object. We can consider F as a map [0] F−→ SB , and δB(F ) is
isomorphic to the set of lifts in the left-hand diagram

IB

πB

��
[0]

>>}
}

}
}

F
// SB

I

π

��
B

??�
�

�
�

F
// S

which by adjointness is in bijection with the set of lifts Γ(F, π) in the right-hand
diagram. Therefore we have δB(F ) � Γ(F, π), completing the proof.

�

The following definition of Prb(S) extends the notion of P̃rb(S) from Definition
4.1.3: P̃rb(S) ⊆ Prb(S) is a subcategory with the same set of objects.

Definition 5.1.2. Let S be a category. We define the category of probes on S,
denoted Prb(S), as follows.

Ob(Prb(S)) = {(A,F ) | A ∈ Ob(Cat), F : A→ S a functor}
HomPrb(S)((A,F ), (A′, F ′)) = {G,α) | G : A′ → A, α : F ◦G→ F ′}
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A′
G //

F ′

<<A
F //

⇓α
S

Remark 5.1.3. In the presence of a relational fibration π : I → S, a probe F : A→ S
sets up a where-less query on π for which the results are the lifts ` ∈ Γ(F, π) for
the diagram

∅ //

��

I

π

��
A

F
//

`

??~
~

~
~

S.

We call these where-less queries to emphasize that the where-category (upper left
of the diagram) is empty.

For any category B, there is an obvious functor SB → Prb(S). The following
corollary extends Theorem 5.1.1 in the obvious sense. One way to understand its
content is that we can query over where-less queries. In other words, this is a
formalization of nested queries. For example, we can create a join graph of where-
less queries and look for a set of coherent results. Corollary 5.1.4 implies that given a
morphism between two where-less queries on S and given a result for the first query,
there is an induced result for the second query. We will deal with the general case
of nested queries (those having non-trivial where-categories) in Proposition 5.2.2.

Corollary 5.1.4. Let π : I → S be a relational fibration. Then the induced functor

π = Prb(π)) : Prb(I)→ Prb(S)

is a relational fibration. The instance associated to π is

Γ(−, π) = ∂ (π) : Prb(S)→ Set.

Proof. Proving this corollary is really just a matter of writing down the appro-
priate diagram. In order to show that π is a relational fibration, we choose an
object ` : A → I in Prb(I) with π(`) = F : A → S, we choose a morphism
(G,α) : (A,F )→ (A′, F ′) in Prb(S), and we show that there exists a unique mor-
phism (G, β) : (A, `)→ (A′, `′) in Prb(I), for some `′ : A′ → I, such that π ◦β = α.
In diagrams, we begin with the solid-arrow diagram

I

π

��
A′

G //

F ′

<<

`′ //

�
|

u
o i e a

A

⇑β

⇓α

`

??��������
F // S

(25)

and hope to find such an `′ : A′ → I and β : ` ◦G→ `′.
We have π ◦ (` ◦G) = F ◦G. Applying Theorem 5.1.1, there is a unique induced

functor `′ : A′ → I and natural transformation β : ` → `′ such that π ◦ β = α,
having the required properties. This completes the proof.

�
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Remark 5.1.5. There is a way to express the set of solutions to a lifting problem
using limits. Let π : I → S be a relational fibration, and consider the query

W
p //

m

��

I

π

��
R

n
// S.

We can consider m as a strict morphism of probes on S, so it induces a function
Γ(m,π) : Γ(n, π) → Γ(nm, π), and we can consider p ∈ Γ(nm, π) as an element in
the codomain. There is a bijection

Γm,p(n, π) � Γ(n, π)×Γ(nm,π) {p},(26)

expressing the set Γm,p(n, π) of solutions to the lifting problem as the fiber of
Γ(m,π) over p. This idea may be useful when one has disjunctions in the WHERE-
clause of a query, as one could replace {p} with the set of disjuncts.

Next we present examples of two types of morphisms of where-less queries,
namely projection and indirection. These types generate all morphisms of where-
less queries.

Example 5.1.6 (Projection). Let δ : S → Set be an instance and let π : I → S be
the associated relational fibration. Let n ∈ N be a natural number. The n-column
table schema, here denoted Cn, is the category with an initial object K, precisely
n other objects, and precisely n non-identity arrows; it follows that Cn looks like
an asterisk (or “star schema”), e.g. C4 is drawn:

c1

c4 K

OO

oo //

��

// c2

c3

A functor p : Cn → S is called an n-column table schema in S. For each object
x ∈ Cn, we call p(x) ∈ Ob(S) a column of p and we call p(K) the primary key
column of p. In fact, p is a probe or where-less query. The result set Γ(p, π) can be
thought of as the set of records for instance δ in table p; indeed Γ(p, π) is isomorphic
to δ(p) as sets.

For any injection h : {1, 2, . . . , n′} ↪→ {1, 2, . . . , n}, there is an induced functor
C(h) : Cn′ → Cn, which we can compose with p to get a new morphism p′ :=
p ◦ C(h) : Cn′ → S and a strict morphism of probes p→ p′. A record in table p is
given by a lift ` as shown to the left:

I

π

��
Cn′

p′

77
C(h) // Cn

`

>>}}}}}}}} p // S,

`• //

��

Prb(I)

Prb(π)

��
p
• C(h)−−−−−→

p′

• // Prb(S)

(27)
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and composing ` with C(h) gives its projection as a record in table p′. Thus h
induces a function Γ(p, π) → Γ(p′, π), and its image is the associated projection.
The righthand diagram in (27) is another way of viewing the lefthand diagram.

Remark 5.1.7. In Example 5.1.6, we did not really need to assume that the function
h was injective. If h were not injective, then the morphism of queries C(h) would
result in some duplication of columns rather than a pure projection.

In Example 5.1.6 we changed the shape of the result schema and used a strict
morphism of probes (the natural transformation p◦C(h)→ p′ was the identity). In
Example 5.1.8 we will keep the result schema fixed but allow a non-strict morphism.

Example 5.1.8 (Indirection). Let R = [1] = •0 f−−→ •1 and let S be the schema

S :=
A

a person lives at //
B

an address is in //
C

a city

There are three non-constant functors R → S, which we denote FAB , FAC , and
FBC ; there is a natural transformation α : FAB → FAC and a natural transforma-
tion β : FAC → FBC . Thus we get two morphisms in Prb(S), namely

(idR, α) : (R,FAB)→ (R,FAC) and (idR, β) : (R,FAC)→ (R,FBC).

Suppose π : I → S is an instance. We can draw the setup as

I

π

��
R

FBC

AAR

⇓β
FAC

AAR

⇓α
FAB

// S

We can take global sections Γ(−, π) for each of these three probes and obtain maps
between the result sets by Theorem 5.1.1:

Γ(FAB , π) α−−→ Γ(FAC , π) β−−→ Γ(FBC , π).

In other words, the morphism of queries induces a morphism of result sets. Simply,
given some person and her address we can return a person and the city she lives
in; given some person and his city we can return an address and the city it is in.

5.2. The category of queries. We are now ready to generalize the category
Prb(S) of where-less queries on S to a category of all (lifting) queries on S.

Definition 5.2.1. Let π : I → S denote a relational fibration. We define the
category of (lifting) queries on π, denoted Qry(π) as follows. The objects of Qry(π)
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are commutative diagrams as to the left

W
p //

m

��

I

π

��
R

n
// S

W ′
G
//

p′

##

m′

��

W
⇑γ

m

��

p
// I

π

��
R′

F //

n′

::R
⇓α

n // S

and the morphisms (F,G, α, γ) : (R,W, n, p) → (R′,W ′, n′, p′) are diagrams as to
the right, where

π ◦ γ = α ◦m′, so, in particular,
π ◦ p ◦G = n ◦ F ◦m′ and π ◦ p′ = n′ ◦m′.

Proposition 5.2.2. Let π : I → S be a relational fibration, and suppose given the
diagram to the left:

W ′
G
//

m′

��

W

m

��

p
// I

π

��
R′

F //

n′

::R
⇓α

n // S

W ′
G
//

p′

##

m′

��

W
⇑γ

m

��

p
// I

π

��
R′

F //

n′

::R
⇓α

n // S

Then there exists a unique morphism of queries

(F,G, α, γ) : (R,W, n, , p)→ (R′,W ′, n′, p′)

as to the right.

Proof. This is a direct application of Theorem 5.1.1. Indeed, in place of Diagram
(23), we draw

I

π

��
W ′

pG

>>~~~~~~~~~~~~~~~~
nFm′

&&

n′m′

88⇓αm′ S

The unique functor and transformation labeled `2 and β given by the theorem serve
as p′ and γ here.

�
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Theorem 5.2.3. Let π : I → S be a relational fibration. Then Γ−,−(−, π) : Qry(π)→
Set is functorial. That is, given a morphism of queries

W ′
G
//

p′

$$

m′

��

W
⇑γ

m

��

p
// I

π

��
R′

F //

n′

::R
⇓α

n // S,

there is an induced function, natural in Qry(π),

Γm,p(n, π) −→ Γm
′,p′

(n′, π).

Sketch of proof. Suppose given a lift ` : R→ I in Γm,p(n, π). By Corollary 5.1.4 we
have a map `′ : R′ → I, with π◦`′ = n′, and a natural transformation β : `◦F → `′,
with π ◦ β = α. We need to show that `′ ◦m′ = p′ and β ◦m′ = γ. But using the
proof technique from Proposition 5.2.2, this follows from Theorem 5.1.1 and the
definition of relational fibration.

�

Remark 5.2.4. Given a relational fibration π : I → S, we sometimes denote the
functor Γ−,−(−, π) simply by

Γ(π) : Qry(π)→ Set.

5.3. Data migration functors. Recall (from Definition 2.2.2) that, given a func-
tor F : S → T , three data migration functors are induced between the categories
S–Set and T–Set. The most straightforward is denoted ∆F : T–Set→ S–Set. It
has both a left adjoint, denoted ΣF : S–Set→ T–Set, and a right adjoint, denoted
ΠF : S–Set→ T–Set.

In standard database contexts, schemas evolve over time. We model these schema
evolutions as zigzags of functors from one schema to another, along which one can
migrate data using a data migration functor. It is useful to know how this will
affect queries. Typically, users of a database π : I → S are given access to a subset
of Qry(π)—they do not see the whole database, but instead some collection of
queries. As the schema evolves it is important to understand how Qry(π) evolves.
In this section we describe some results; for example under a pullback query results
are unchanged.

Let us begin by giving a description of ΠF in terms of where-less queries (see
Section 4.1). Recall that for any object d ∈ Ob(T ) the “comma” category (d ↓ F )
is defined as follows:

Ob(d ↓ F ) = {(c, f) | c ∈ Ob(S), f : d→ F (c)}
Hom(d↓F )((c, f), (c′, f ′)) = {g : c→ c′ | f ′ ◦ F (g) = f}.

There is a natural functor nd : (d ↓ F )→ S, and given a morphism h : d→ d′ in T
we have a morphism (d′ ↓ F )→ (d ↓ F ), or more precisely nd′ → nd, in Cat/S .
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Proposition 5.3.1. Let F : S → T be a functor and γ : S → Set an instance of S
with associated relational fibration π : I → S. Given any object d ∈ Ob(T ), there is
an associated where-less query

I

π

��
(d ↓ F )

nd
//

<<x
x

x
x

x
S

and we have ΠF (γ)(d) � Γ(nd, π). Moreover, a morphism d → d′ in T induces
a strict morphism of where-less queries nd′ → nd ; thus we have a functor T →
P̃rb(π)op. Then ΠF (γ) : T → Set is the composition

T
d7→nd−−−−→ P̃rb(π)op Γ(−,π)−−−−→ Set.

Proof. Let F, γ, π, d, and nd : (d ↓ F ) → S be as in the proposition statement. By
Proposition 4.1.6, we have Γ(nd, π) � limR(γ ◦ nd). This is exactly the formula
for ΠF (γ)(d) by [Mac, Theorem X.3.1], since ΠF is a right Kan extension. The
statement for morphisms follows similarly.

�

While Proposition 5.3.1 provides an interesting relationship between right push-
forwards and queries, it does not allow us to relate queries on a database with
queries on its right pushforward. In the following paragraphs, we will show briefly
that graph pattern queries do transform nicely with respect to data migration func-
tors ΣF and ∆F .

We begin by discussing the left pushforward functor. Given a functor F : S → T ,
we have a migration functor ΣF : S–Set → T–Set. If δ ∈ S–Set and ε ∈ T–Set
are instances, then there is a bijection between the set of natural transformations
ΣF δ → ε and the set of commutative diagrams∫

(δ) //

πδ

��

∫
(ε)

πε

��
S

F
// T.

Given a query on πδ, we clearly obtain an induced query on πε, and a solution to
the former yields a solution to the latter:

W
p //

m

��

∫
(δ) //

πδ

��

∫
(ε)

πε

��
R

=={
{

{
{

n
// S

F
// T.

We state this precisely in the following proposition.

Proposition 5.3.2. Let F : S → T be a functor, δ ∈ S–Set and ε ∈ T–Set
instances, and ΣF δ → ε a map of T -sets. There exists an induced functor of query
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categories and a natural transformation diagram:

Qry(πδ) //

Γ(πδ) $$IIIIIIIII
=⇒

Qry(πε)

Γ(πε)zzuuuuuuuuu

Set

Proof. The proof follows from the discussion above.
�

We now consider the case that δ � ∆F ε.

Proposition 5.3.3. Let F : S → T be a functor, let ε : T → Set be a functor, let
δ = ∆F ε : S → Set be its pullback, and let πδ and πε be as in Diagram (28) below.
Then the results of any query on πδ are the same as the results of the induced query
on πε. That is, we have a natural isomorphism diagram

Qry(πδ) //

Γ(πδ) $$IIIIIIIII
�=⇒

Qry(πε)

Γ(πε)zzuuuuuuuuu

Set

Proof. Consider the diagram ∫
(δ) //

πδ

��

y

∫
(ε)

πε

��
S

F
// T,

(28)

which is a pullback by Proposition 2.3.5. Given a query on πδ, we obtain a query on
πε as in Proposition 5.3.2, but now the function from solutions for πδ to solutions
for πε is a bijection by the universal property of pullbacks:

W
p //

m

��

∫
(δ)
y

//

πδ

��

∫
(ε)

πε

��
R

99

f h j l o
q

n
// S

F
// T.

�

6. Future work

This paper has set up an analogy between database queries and constraints
on the one hand, and a now classical approach to algebraic topology—the lifting
problem—on the other. Data on a schema is analogous to a covering space or
fibration: the local quality of this fibration is determined by constraints, and the
locating of sections that satisfy a set of properties is the posing of a query.

There are a few interesting directions for future research. The first is to make
a connection to the relatively new field of homotopy type theory (HoTT) (see
[Awo],[Voe]). The idea is that instead of two paths through a database schema
being equal, one could declare them merely equivalent; if paths are declared equiv-
alent in more than one way, these equivalences may also be declared as equivalent
(or not). In this context, two observations on data may not be definitionally equal,
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but provably equal, and we consider the proofs and the differences between proofs
as part of the data. To make this connection, the schema of a database should
be a quasi-category ([Jo2],[Lur]) X rather than an ordinary category. Each higher
simplex encodes a proof that different paths (or paths of paths, etc.) through the
schema are equivalent. We might replace the instance data by a functor (map
of quasi-categories) X → Type, where Type is the quasi-category of homotopy
types. In this context, classical homotopical questions, e.g. from the theory of
model categories ([Hir]) may be even more applicable.

Another direction for future research is to use topological tools to investigate
or “mine” data. For example, given a functor δ : S → Set, we can compose with
the functor i : Set → Top which sends each set to the corresponding discrete
topological space. The homotopy colimit of i ◦ δ is a topological space, of possibly
any dimension and homotopy type, that encodes the connection pattern of the data.
This space is homotopy equivalent to the nerve of the data bundle,

hocolim(i ◦ δ) ' N(
∫
δ)

(see [Dug]). Thus we could report homotopy invariants of the data δ, such as
connected components, loops, etc. The question is whether these invariants would
be meaningful and useful. For schemas of classical mathematical interest, such as
the simplicial indexing category S = ∆op, the homotopy colimit of i ◦ δ is exactly
what we want; it is the geometric realization of δ. It remains to be seen whether
such homotopy invariants may be useful in other contexts; e.g. there may be some
connection to the analysis given by persistent homology (see [Ghr],[Car]).

A third and fairly straightforward project would be to adapt Garner’s small
object argument (see [Gar]) to our notion of constraints. Garner’s argument works,
and provides nice universal properties, in the case of what we have called “universal
constraint sets” (see Section 3.2). The question is, if we apply his techniques to local
constraints, such as those in Example 3.3.6 used to declare that one table is the
product of two others, does his procedure still result in a relational fibration with
all the nice universal properties enjoyed in the universal case? We conjecture that
it will. One should also check whether the results obtained from that procedure
agree with those from the so-called universal chase procedure (see [DNR]). Indeed,
they should provide equivalent results, since both claim to be universal in the same
way.
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