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Abstract

We give a new proof of the formula expressing the area of the triangle
whose vertices are the projects of an arbitrary point in the plane onto the
sides of a given triangle, in terms of the geometry of the the given tri-
angle and the location of the projection point. Other related geometrical
constructions and formulas are also presented.

pedal triangles, area, conics
Primary: 51M25, 51M16. Secondary 51M04, 51M15, 51N20.

1 Introduction

Recall that, given a triangle ABC, a triangle A′B′C′ is called a pedal triangle
(with respect to ΔABC) if A′, B′, C′ are the projections of a point P onto the
sides of ΔABC. The point P will be called the pedal point of ΔA′B′C′.

The main goal of this note is to give a new proof to the formula for the area
of a pedal triangle of a point, relative to a fixed triangle. This formula takes
into consideration, besides the geometrical characteristics of this fixed triangle,
only the location of the pedal point. With the convention that |ΔXY Z| denotes
the area of the triangle XY Z, the following holds:

Theorem 1 Let ΔABC be a given triangle and denote by O and R the center
and the radius of the circumcircle, respectively. Let P be a an arbitrary point
and let A′ ∈ BC, B′ ∈ AC, C′ ∈ AB be the projections of P onto the sides
of ΔABC (i.e., ΔA′B′C′, is the pedal triangle of P with respect to ΔABC; cf.
Figure 1). Then the following formula holds:

|ΔA′B′C′|
|ΔABC| =

|R2 −OP 2|
4R2

. (1)

This is a classical result that has been around for many years. However,
the proofs existing in the literature (we are aware of [1] and [2]) are rather
complex and involved. Here we present an approach of algebraic nature, which
is considerably more economical and direct. In addition, as consequences of
Theorem 1 we note a couple of results, of independent interest.
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Corollary 1 The locus of all points for which the ratio of the area of the pedal
triangle to the area of an arbitrary triangle ABC (with respect to which the
pedal triangle is constructed) is constant is a circle concentric with the circle
circumscribed to triangle ABC.

Corollary 2 The locus of all points with the property that their projections onto
the sides of a given triangle ABC are three collinear points is the circumcircle
of ΔABC.

These are both obvious from (1). Corollary 2 is usually attributed to Simpson,
and our contribution in this regard is to provide a conceptually new proof of
this well-known fact.

As a natural counterpart to Theorem 1 we also derive a formula of a similar
nature for the area of an antipedal triangle. Recall that ΔMNP is called the
antipedal triangle of a point K with respect to ΔABC if the lines KA,KB,KC
are perpendicular to PN , MP and MN , respectively. We have:

Theorem 2 If ΔMNP is the antipedal triangle of the point K with respect to
ΔABC then the following relation holds:

|ΔMNP |
|ΔABC| =

4R2

|R2 −OK1
2| (2)

with O being the circumcenter and R being the circumradius of ΔABC, and K1

being the isogonal of K (see Figure 4).

Recall that two points K,K1 are said to be isogonal to one another with respect
to ΔABC if K1A is the reflection of KA across the median from A in ΔABC,
plus similar conditions for the vertices B and C.

2 The Proof of Theorem 1

To simplify notation, we will use Δ for ΔABC and ΔP for ΔA′B′C′. Consider
the lines AB, BC, AC, given by the equations αCx + βCy + γC = 0, αAx +
βAy+γA = 0, αBx+βBy+γB = 0, respectively. The signs of the corresponding
coefficients for each line are selected such that if a point P (x, y) is inside ΔABC,
then αCx + βCy + γC > 0, αAx + βAy + γA > 0, αBx + βBy + γB > 0. Also,
for a point P (x1, y1), we denote by dC , dA, and dB the distance from P to AB,
BC, and AC, respectively (see Figure 1). As a result, we have explicit formulas

for dC , dA, and dB . For example, dC = |αCx1+βCy1+γC |√
α2

C
+β2

C

, and similar expressions

hold for dA and dB. In addition, by dC , etc., we denote the directed line segment
of length dC , i.e., dC := ± dC , with the choice of sign dictated by the location
of P with respect to the line AB. In particular,

dC =
αCx1 + βCy1 + γC√

α2
C + β2

C

. (3)
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We can express dA and dB in the same manner. A direct computation shows
that

|ΔP | = ±dBdC sin(� )A)
2

± dAdC sin(� )B)

2
± dAdB sin(� )C)

2
, (4)

where the selection of + or − is dictated by the location of the point P . With
the convention that (+,+,+) means that the signs of the three fractions on
the right-hand side of (4) are positive, and similarly for all the other possible
combinations, the picture below shows the regions in the plane which yield a
particular combination.
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An analysis of this partitioning further implies that

±|ΔP | = dB dC sin(� )A)
2

+
dA dB sin(� )C)

2
+

dA dC sin(� )B)

2
, (5)

where + corresponds to the case when P is contained in the circle of center O
(denoted by (O)), and − corresponds to the case when P is outside (O). Making
now use of (3) and the corresponding formulas for dA, dB, we can re-write (5)
as

±|ΔP | =
αBx1 + βBy1 + γB√

α2
B + β2

B

· αCx1 + βCy1 + γC√
α2
C + β2

C

· sin(� )A)
2

+
αAx1 + βAy1 + γA√

α2
A + β2

A

· αCx1 + βCy1 + γC√
α2
C + β2

C

· sin(� )B)

2

+
αAx1 + βAy1 + γA√

α2
A + β2

A

· αBx1 + βBy1 + γB√
α2
B + β2

B

· sin(� )C)

2
. (6)

In addition, using the fact that |Δ| is a real constant that depends only on A,
B and C, (6) yields

±|ΔP |
|Δ| = (ax1 + by1 + c)(dx1 + ey1 + f)

+(gx1 + hy1 + i)(jx1 + ky1 + l)

+(mx1 + ny1 + o)(px1 + qy1 + r), (7)

where a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q and r are real constants that depend
only on A, B and C.
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At this point, we observe that (1) becomes

±|ΔP |
|Δ| =

R2 −OP 2

4R2
, (8)

provided we select + when P is in (O) and − when P is outside (O). Hence, if
we now take into account (8) and (7), we obtain that (1) is equivalent with

λ1x
2
1 + λ2y

2
1 + λ3x1y1 + λ4x1 + λ5y1 + λ6 = 0, (9)

where λ1, λ2, λ3, λ4, λ5, and λ6 are real constants that depend only on A, B,
and C. Any points that satisfy (1) satisfy (9), and vice versa. We know that
any quadratic equation in terms of x and y has as its graph a conic section.
Since the graph of the quadratic equation is the locus of all points satisfying the
equation, this means that the locus of points satisfying (9) has the shape of a
conic. Thus, the shape of the locus of points satisfying (9) is a conic, meaning
that the locus of points satisfying (1) is either a point, two intersecting lines, a
parabola, a hyperbola, a circle, an ellipse, or the whole plane (if all the lambdas
are zero). One can see that six points that satisfy (1) are as follows: the vertices
A, B, and C, and the points diametrically opposed to the vertices, A′′, B′′, and
C′′, which all lie on the circumcircle of ΔABC. It is fairly easy to see that the
point O also satisfies (1), as both sides of (1) will be 1

4 . Using these seven points,
A,B,C,A′, B′, C′ and O, one can eliminate all of the possible conics except for
the whole plane. This means that for every P in the plane (1) holds.

3 The Area of an Antipedal Triangle

Theorem 1 provides us with an efficient formula to compute the area of a pedal
triangle given the geometry of the reference triangle and the location of the
pedal point. This is also useful for other purposes, such as computing the area
of an antipedal triangle in terms of the geometry of the reference triangle and the
location of the antipedal point. Before proceeding with the proof of Theorem 2,
we prove a useful result on homotopic triangles.

Given a triangle A1A2A3 along with a triangle B1B2B3 inscribed in it,
we describe a procedure for obtaining a triangle, C1C2C3, that is inscribed in
ΔB1B2B3 and is homotopic to ΔA1A2A3. Recall that two triangles are called
homotopic if their sides are parallel.

Proposition 1 Let ΔA1A2A3 be arbitrary and assume that B1 ∈ A2A3, B3 ∈
A2A1, B2 ∈ A1A3 (see Figure 3 below). Take C1 ∈ B2B3, C2 ∈ B1B3, C3 ∈
B1B2 such that

A2B3

B3A1
=

B2C3

C3B1
,

A3B1

B1A2
=

B3C1

C1B2
,

A1B2

B2A3
=

B1C2

C2B3
, (10)

Then ΔA1A2A3 and ΔC1C2C3 are homotopic and, in addition, |ΔB1B2B3| is
the geometric mean of |ΔA1A2A3| and |ΔC1C2C3|, i.e.

|ΔB1B2B3|2 = |ΔA1A2A3| · |ΔC1C2C3|. (11)
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Conversely, if ΔA1A2A3 and B1 ∈ A2A3, B3 ∈ A2A1, B2 ∈ A1A3 are given
and C1 ∈ B2B3, C2 ∈ B1B3, C3 ∈ B1B2 are such that ΔA1A2A3 and ΔC1C2C3

are homotopic, then (10) and (11) hold.
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Proof: Recall that an affine transformation of the plane into itself consists
of a linear transformation followed by a translation. An affine transformation
has the following properties: maps lines into lines, parallel lines into parallel
lines, and preserves the ratio of line segments determined by points on a line.

Thus it suffices to prove Proposition 1 for the particular triangle A1A2A3:
A1 = (0, 1), A2 = (0, 0), A3 = (1, 0), since any other triangle can be transformed
via an affine transformation into this particular triangle while preserving the
desired properties. In addition, let B1, B2, B3, C1, C2, C3 be as in Proposition 1.
We set

k1 :=
A3B1

B1A2
=

B3C1

C1B2
, k2 :=

A1B2

B2A3
=

B1C2

C2B3
, k3 :=

A2B3

B3A1
=

B2C3

C3B1
. (12)

Recall that if M,N,P are three collinear points, with coordinates M(m1,m2),
P (p1, p2), and N between M and P , satisfying MN

NP = k, for some real, positive
constant k, then N has coordinates

N =
(m1 + kp1

1 + k
,
m2 + kp2
1 + k

)
. (13)

This fact, in combination with (12) yields

B1 =
( 1

1 + k1
, 0
)
, B2 =

( k2
1 + k2

,
1

1 + k2

)
, B3 =

(
0,

k3
1 + k3

)
. (14)

Furthermore,

C1 =
( k1k2

1+k2

1 + k1
,

k3

1+k3
+ k1

1+k2

1 + k1

)
, C2 =

( 1
1+k1

1 + k2
,

k2k3

1+k3

1 + k2

)
,
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C3 =
( k2

1+k2
+ k3

1+k1

1 + k3
,

1
1+k2

1 + k3

)
. (15)

It is obvious that

|ΔA1A2A3| = 1

2
. (16)

Next, using vector calculus, we will compute the areas of ΔB1B2B3 and ΔC1C2C3.
More specifically,

|ΔB1B2B3| = 1
2

∥∥∥−−−→B1B2 ×−−−→
B1B3

∥∥∥

=
k1k2k3 + 1

2(1 + k1)(1 + k2)(1 + k3)
. (17)

A similar reasoning applies to ΔC1C2C3, namely

|ΔC1C2C3| = 1
2

∥∥∥−−−→C1C2 ×−−−→
C1C3

∥∥∥ =
(k1k2k3 + 1)2

2(1 + k1)2(1 + k2)2(1 + k3)2
. (18)

Identity (11) now follows by combining (16), (17), and (18), thus completing
the proof of the first part of Proposition 1.

Finally, the converse statement (as recorded in the last part of the proposi-
tion) follows from the uniqueness of a triangle homotopic with �A1A2A3 and
inscribed in �B1B2B3, plus what we have proved so far. The proof of the
proposition is therefore complete. QED

After this preamble, we are ready to present the

Proof of Theorem 2. If ΔDEF is the pedal triangle of the pointK1 with respect
to ΔABC, then

� )FK1A+ � )K1AF =
π

2
. (19)
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However, because K is the isogonal of K1, this means that

� )FK1A+ � )KAE =
π

2
. (20)

Keeping mind that the quadrilateral AFK1E can be inscribed in a circle, (20)
means that AK⊥EF , therefore PN‖EF . Similar reasoning can be done to
show that PM‖DF and MN‖DE. This implies that ΔMNP and ΔDEF are
homotopic. From Proposition 1 we obtain

|ΔDEF | · |ΔMNP | = |ΔABC|2, (21)

Theorem 1 implies

|ΔDEF |
|ΔABC| =

|R2 −OK1
2|

4R2
. (22)

Therefore, |ΔMNP |
|ΔABC| = |ΔABC|

|ΔDEF | =
4R2

|R2−OK1
2| , as claimed.
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