On the Area of Pedal and Antipedal Triangles

Adrian Mitrea

May 1, 2012

Abstract

We give a new proof of the formula expressing the area of the triangle whose vertices are the projects of an arbitrary point in the plane onto the sides of a given triangle, in terms of the geometry of the the given triangle and the location of the projection point. Other related geometrical constructions and formulas are also presented.

pedal triangles, area, conics
Primary: 51M25, 51M16. Secondary 51M04, 51M15, 51N20.

1 Introduction

Recall that, given a triangle $A B C$, a triangle $A^{\prime} B^{\prime} C^{\prime}$ is called a pedal triangle (with respect to $\triangle A B C$) if $A^{\prime}, B^{\prime}, C^{\prime}$ are the projections of a point P onto the sides of $\Delta A B C$. The point P will be called the pedal point of $\Delta A^{\prime} B^{\prime} C^{\prime}$.

The main goal of this note is to give a new proof to the formula for the area of a pedal triangle of a point, relative to a fixed triangle. This formula takes into consideration, besides the geometrical characteristics of this fixed triangle, only the location of the pedal point. With the convention that $|\triangle X Y Z|$ denotes the area of the triangle $X Y Z$, the following holds:

Theorem 1 Let $\triangle A B C$ be a given triangle and denote by O and R the center and the radius of the circumcircle, respectively. Let P be a an arbitrary point and let $A^{\prime} \in B C, B^{\prime} \in A C, C^{\prime} \in A B$ be the projections of P onto the sides of $\triangle A B C$ (i.e., $\Delta A^{\prime} B^{\prime} C^{\prime}$, is the pedal triangle of P with respect to $\triangle A B C$; cf. Figure 1). Then the following formula holds:

$$
\begin{equation*}
\frac{\left|\Delta A^{\prime} B^{\prime} C^{\prime}\right|}{|\Delta A B C|}=\frac{\left|R^{2}-O P^{2}\right|}{4 R^{2}} . \tag{1}
\end{equation*}
$$

This is a classical result that has been around for many years. However, the proofs existing in the literature (we are aware of [1] and [2]) are rather complex and involved. Here we present an approach of algebraic nature, which is considerably more economical and direct. In addition, as consequences of Theorem 1 we note a couple of results, of independent interest.

Corollary 1 The locus of all points for which the ratio of the area of the pedal triangle to the area of an arbitrary triangle $A B C$ (with respect to which the pedal triangle is constructed) is constant is a circle concentric with the circle circumscribed to triangle $A B C$.

Corollary 2 The locus of all points with the property that their projections onto the sides of a given triangle $A B C$ are three collinear points is the circumcircle of $\triangle A B C$.

These are both obvious from (1). Corollary 2 is usually attributed to Simpson, and our contribution in this regard is to provide a conceptually new proof of this well-known fact.

As a natural counterpart to Theorem 1 we also derive a formula of a similar nature for the area of an antipedal triangle. Recall that $\triangle M N P$ is called the antipedal triangle of a point K with respect to $\triangle A B C$ if the lines $K A, K B, K C$ are perpendicular to $P N, M P$ and $M N$, respectively. We have:

Theorem 2 If $\triangle M N P$ is the antipedal triangle of the point K with respect to $\triangle A B C$ then the following relation holds:

$$
\begin{equation*}
\frac{|\Delta M N P|}{|\Delta A B C|}=\frac{4 R^{2}}{\left|R^{2}-O K_{1}^{2}\right|} \tag{2}
\end{equation*}
$$

with O being the circumcenter and R being the circumradius of $\triangle A B C$, and K_{1} being the isogonal of K (see Figure 4).

Recall that two points K, K_{1} are said to be isogonal to one another with respect to $\triangle A B C$ if $K_{1} A$ is the reflection of $K A$ across the median from A in $\triangle A B C$, plus similar conditions for the vertices B and C.

2 The Proof of Theorem 1

To simplify notation, we will use Δ for $\Delta A B C$ and Δ_{P} for $\Delta A^{\prime} B^{\prime} C^{\prime}$. Consider the lines $A B, B C, A C$, given by the equations $\alpha_{C} x+\beta_{C} y+\gamma_{C}=0, \alpha_{A} x+$ $\beta_{A} y+\gamma_{A}=0, \alpha_{B} x+\beta_{B} y+\gamma_{B}=0$, respectively. The signs of the corresponding coefficients for each line are selected such that if a point $P(x, y)$ is inside $\triangle A B C$, then $\alpha_{C} x+\beta_{C} y+\gamma_{C}>0, \alpha_{A} x+\beta_{A} y+\gamma_{A}>0, \alpha_{B} x+\beta_{B} y+\gamma_{B}>0$. Also, for a point $P\left(x_{1}, y_{1}\right)$, we denote by d_{C}, d_{A}, and d_{B} the distance from P to $A B$, $B C$, and $A C$, respectively (see Figure 1). As a result, we have explicit formulas for d_{C}, d_{A}, and d_{B}. For example, $d_{C}=\frac{\left|\alpha_{C} x_{1}+\beta_{C} y_{1}+\gamma_{C}\right|}{\sqrt{\alpha_{C}^{2}+\beta_{C}^{2}}}$, and similar expressions
hold for d_{A} and d_{B}. In addition, by \bar{d}_{C}, etc., we denote the directed line segment of length d_{C}, i.e., $\bar{d}_{C}:= \pm d_{C}$, with the choice of sign dictated by the location of P with respect to the line $A B$. In particular,

$$
\begin{equation*}
\bar{d}_{C}=\frac{\alpha_{C} x_{1}+\beta_{C} y_{1}+\gamma_{C}}{\sqrt{\alpha_{C}^{2}+\beta_{C}^{2}}} . \tag{3}
\end{equation*}
$$

Figure 1
We can express \bar{d}_{A} and \bar{d}_{B} in the same manner. A direct computation shows that

$$
\begin{equation*}
\left|\Delta_{P}\right|= \pm \frac{d_{B} d_{C} \sin (\not \Varangle A)}{2} \pm \frac{d_{A} d_{C} \sin (\Varangle B)}{2} \pm \frac{d_{A} d_{B} \sin (\Varangle C)}{2}, \tag{4}
\end{equation*}
$$

where the selection of + or - is dictated by the location of the point P. With the convention that $(+,+,+)$ means that the signs of the three fractions on the right-hand side of (4) are positive, and similarly for all the other possible combinations, the picture below shows the regions in the plane which yield a particular combination.

Figure 2
An analysis of this partitioning further implies that

$$
\begin{equation*}
\pm\left|\Delta_{P}\right|=\frac{\bar{d}_{B} \bar{d}_{C} \sin (\not \Varangle A)}{2}+\frac{\bar{d}_{A} \bar{d}_{B} \sin (\not \Varangle C)}{2}+\frac{\bar{d}_{A} \bar{d}_{C} \sin (\not \Varangle B)}{2} \tag{5}
\end{equation*}
$$

where + corresponds to the case when P is contained in the circle of center O (denoted by (O)), and - corresponds to the case when P is outside (O). Making now use of (3) and the corresponding formulas for \bar{d}_{A}, \bar{d}_{B}, we can re-write (5) as

$$
\begin{align*}
\pm\left|\Delta_{P}\right|= & \frac{\alpha_{B} x_{1}+\beta_{B} y_{1}+\gamma_{B}}{\sqrt{\alpha_{B}^{2}+\beta_{B}^{2}}} \cdot \frac{\alpha_{C} x_{1}+\beta_{C} y_{1}+\gamma_{C}}{\sqrt{\alpha_{C}^{2}+\beta_{C}^{2}}} \cdot \frac{\sin (\npreceq A)}{2} \\
& +\frac{\alpha_{A} x_{1}+\beta_{A} y_{1}+\gamma_{A}}{\sqrt{\alpha_{A}^{2}+\beta_{A}^{2}}} \cdot \frac{\alpha_{C} x_{1}+\beta_{C} y_{1}+\gamma_{C}}{\sqrt{\alpha_{C}^{2}+\beta_{C}^{2}}} \cdot \frac{\sin (\not \subset B)}{2} \\
& +\frac{\alpha_{A} x_{1}+\beta_{A} y_{1}+\gamma_{A}}{\sqrt{\alpha_{A}^{2}+\beta_{A}^{2}}} \cdot \frac{\alpha_{B} x_{1}+\beta_{B} y_{1}+\gamma_{B}}{\sqrt{\alpha_{B}^{2}+\beta_{B}^{2}}} \cdot \frac{\sin (\not \subset C)}{2} . \tag{6}
\end{align*}
$$

In addition, using the fact that $|\Delta|$ is a real constant that depends only on A, B and C, (6) yields

$$
\begin{align*}
\pm \frac{\left|\Delta_{P}\right|}{|\Delta|}= & \left(a x_{1}+b y_{1}+c\right)\left(d x_{1}+e y_{1}+f\right) \\
& +\left(g x_{1}+h y_{1}+i\right)\left(j x_{1}+k y_{1}+l\right) \\
& +\left(m x_{1}+n y_{1}+o\right)\left(p x_{1}+q y_{1}+r\right) \tag{7}
\end{align*}
$$

where $a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q$ and r are real constants that depend only on A, B and C.

At this point, we observe that (1) becomes

$$
\begin{equation*}
\pm \frac{\left|\Delta_{P}\right|}{|\Delta|}=\frac{R^{2}-O P^{2}}{4 R^{2}} \tag{8}
\end{equation*}
$$

provided we select + when P is in (O) and - when P is outside (O). Hence, if we now take into account (8) and (7), we obtain that (1) is equivalent with

$$
\begin{equation*}
\lambda_{1} x_{1}^{2}+\lambda_{2} y_{1}^{2}+\lambda_{3} x_{1} y_{1}+\lambda_{4} x_{1}+\lambda_{5} y_{1}+\lambda_{6}=0 \tag{9}
\end{equation*}
$$

where $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}$, and λ_{6} are real constants that depend only on A, B, and C. Any points that satisfy (1) satisfy (9), and vice versa. We know that any quadratic equation in terms of x and y has as its graph a conic section. Since the graph of the quadratic equation is the locus of all points satisfying the equation, this means that the locus of points satisfying (9) has the shape of a conic. Thus, the shape of the locus of points satisfying (9) is a conic, meaning that the locus of points satisfying (1) is either a point, two intersecting lines, a parabola, a hyperbola, a circle, an ellipse, or the whole plane (if all the lambdas are zero). One can see that six points that satisfy (1) are as follows: the vertices A, B, and C, and the points diametrically opposed to the vertices, $A^{\prime \prime}, B^{\prime \prime}$, and $C^{\prime \prime}$, which all lie on the circumcircle of $\triangle A B C$. It is fairly easy to see that the point O also satisfies (1), as both sides of (1) will be $\frac{1}{4}$. Using these seven points, $A, B, C, A^{\prime}, B^{\prime}, C^{\prime}$ and O, one can eliminate all of the possible conics except for the whole plane. This means that for every P in the plane (1) holds.

3 The Area of an Antipedal Triangle

Theorem 1 provides us with an efficient formula to compute the area of a pedal triangle given the geometry of the reference triangle and the location of the pedal point. This is also useful for other purposes, such as computing the area of an antipedal triangle in terms of the geometry of the reference triangle and the location of the antipedal point. Before proceeding with the proof of Theorem 2, we prove a useful result on homotopic triangles.

Given a triangle $A_{1} A_{2} A_{3}$ along with a triangle $B_{1} B_{2} B_{3}$ inscribed in it, we describe a procedure for obtaining a triangle, $C_{1} C_{2} C_{3}$, that is inscribed in $\Delta B_{1} B_{2} B_{3}$ and is homotopic to $\Delta A_{1} A_{2} A_{3}$. Recall that two triangles are called homotopic if their sides are parallel.

Proposition 1 Let $\Delta A_{1} A_{2} A_{3}$ be arbitrary and assume that $B_{1} \in A_{2} A_{3}, B_{3} \in$ $A_{2} A_{1}, B_{2} \in A_{1} A_{3}$ (see Figure 3 below). Take $C_{1} \in B_{2} B_{3}, C_{2} \in B_{1} B_{3}, C_{3} \in$ $B_{1} B_{2}$ such that

$$
\begin{equation*}
\frac{A_{2} B_{3}}{B_{3} A_{1}}=\frac{B_{2} C_{3}}{C_{3} B_{1}}, \quad \frac{A_{3} B_{1}}{B_{1} A_{2}}=\frac{B_{3} C_{1}}{C_{1} B_{2}}, \quad \frac{A_{1} B_{2}}{B_{2} A_{3}}=\frac{B_{1} C_{2}}{C_{2} B_{3}}, \tag{10}
\end{equation*}
$$

Then $\Delta A_{1} A_{2} A_{3}$ and $\Delta C_{1} C_{2} C_{3}$ are homotopic and, in addition, $\left|\Delta B_{1} B_{2} B_{3}\right|$ is the geometric mean of $\left|\Delta A_{1} A_{2} A_{3}\right|$ and $\left|\Delta C_{1} C_{2} C_{3}\right|$, i.e.

$$
\begin{equation*}
\left|\Delta B_{1} B_{2} B_{3}\right|^{2}=\left|\Delta A_{1} A_{2} A_{3}\right| \cdot\left|\Delta C_{1} C_{2} C_{3}\right| . \tag{11}
\end{equation*}
$$

Conversely, if $\Delta A_{1} A_{2} A_{3}$ and $B_{1} \in A_{2} A_{3}, B_{3} \in A_{2} A_{1}, B_{2} \in A_{1} A_{3}$ are given and $C_{1} \in B_{2} B_{3}, C_{2} \in B_{1} B_{3}, C_{3} \in B_{1} B_{2}$ are such that $\Delta A_{1} A_{2} A_{3}$ and $\Delta C_{1} C_{2} C_{3}$ are homotopic, then (10) and (11) hold.

Figure 3
Proof: Recall that an affine transformation of the plane into itself consists of a linear transformation followed by a translation. An affine transformation has the following properties: maps lines into lines, parallel lines into parallel lines, and preserves the ratio of line segments determined by points on a line.

Thus it suffices to prove Proposition 1 for the particular triangle $A_{1} A_{2} A_{3}$: $A_{1}=(0,1), A_{2}=(0,0), A_{3}=(1,0)$, since any other triangle can be transformed via an affine transformation into this particular triangle while preserving the desired properties. In addition, let $B_{1}, B_{2}, B_{3}, C_{1}, C_{2}, C_{3}$ be as in Proposition 1. We set

$$
\begin{equation*}
k_{1}:=\frac{A_{3} B_{1}}{B_{1} A_{2}}=\frac{B_{3} C_{1}}{C_{1} B_{2}}, \quad k_{2}:=\frac{A_{1} B_{2}}{B_{2} A_{3}}=\frac{B_{1} C_{2}}{C_{2} B_{3}}, \quad k_{3}:=\frac{A_{2} B_{3}}{B_{3} A_{1}}=\frac{B_{2} C_{3}}{C_{3} B_{1}} \tag{12}
\end{equation*}
$$

Recall that if M, N, P are three collinear points, with coordinates $M\left(m_{1}, m_{2}\right)$, $P\left(p_{1}, p_{2}\right)$, and N between M and P, satisfying $\frac{M N}{N P}=k$, for some real, positive constant k, then N has coordinates

$$
\begin{equation*}
N=\left(\frac{m_{1}+k p_{1}}{1+k}, \frac{m_{2}+k p_{2}}{1+k}\right) \tag{13}
\end{equation*}
$$

This fact, in combination with (12) yields

$$
\begin{equation*}
B_{1}=\left(\frac{1}{1+k_{1}}, 0\right), \quad B_{2}=\left(\frac{k_{2}}{1+k_{2}}, \frac{1}{1+k_{2}}\right), \quad B_{3}=\left(0, \frac{k_{3}}{1+k_{3}}\right) \tag{14}
\end{equation*}
$$

Furthermore,

$$
C_{1}=\left(\frac{\frac{k_{1} k_{2}}{1+k_{2}}}{1+k_{1}}, \frac{\frac{k_{3}}{1+k_{3}}+\frac{k_{1}}{1+k_{2}}}{1+k_{1}}\right), \quad C_{2}=\left(\frac{\frac{1}{1+k_{1}}}{1+k_{2}}, \frac{\frac{k_{2} k_{3}}{1+k_{3}}}{1+k_{2}}\right)
$$

$$
\begin{equation*}
C_{3}=\left(\frac{\frac{k_{2}}{1+k_{2}}+\frac{k_{3}}{1+k_{1}}}{1+k_{3}}, \frac{\frac{1}{1+k_{2}}}{1+k_{3}}\right) . \tag{15}
\end{equation*}
$$

It is obvious that

$$
\begin{equation*}
\left|\Delta A_{1} A_{2} A_{3}\right|=\frac{1}{2} \tag{16}
\end{equation*}
$$

Next, using vector calculus, we will compute the areas of $\Delta B_{1} B_{2} B_{3}$ and $\Delta C_{1} C_{2} C_{3}$. More specifically,

$$
\begin{align*}
\left|\Delta B_{1} B_{2} B_{3}\right| & =\frac{1}{2}\left\|\overrightarrow{B_{1} B_{2}} \times \overrightarrow{B_{1} B_{3}}\right\| \\
& =\frac{k_{1} k_{2} k_{3}+1}{2\left(1+k_{1}\right)\left(1+k_{2}\right)\left(1+k_{3}\right)} \tag{17}
\end{align*}
$$

A similar reasoning applies to $\Delta C_{1} C_{2} C_{3}$, namely

$$
\begin{equation*}
\left|\Delta C_{1} C_{2} C_{3}\right|=\frac{1}{2}\left\|\overrightarrow{C_{1} C_{2}} \times \overrightarrow{C_{1} C_{3}}\right\|=\frac{\left(k_{1} k_{2} k_{3}+1\right)^{2}}{2\left(1+k_{1}\right)^{2}\left(1+k_{2}\right)^{2}\left(1+k_{3}\right)^{2}} \tag{18}
\end{equation*}
$$

Identity (11) now follows by combining (16), (17), and (18), thus completing the proof of the first part of Proposition 1.

Finally, the converse statement (as recorded in the last part of the proposition) follows from the uniqueness of a triangle homotopic with $\triangle A_{1} A_{2} A_{3}$ and inscribed in $\triangle B_{1} B_{2} B_{3}$, plus what we have proved so far. The proof of the proposition is therefore complete.

QED
After this preamble, we are ready to present the
Proof of Theorem 2. If $\triangle D E F$ is the pedal triangle of the point K_{1} with respect to $\triangle A B C$, then

$$
\begin{equation*}
\left\lfloor F K_{1} A+\Varangle \not K_{1} A F=\frac{\pi}{2} .\right. \tag{19}
\end{equation*}
$$

Figure 4

However, because K is the isogonal of K_{1}, this means that

$$
\begin{equation*}
\Varangle F K_{1} A+\Varangle K A E=\frac{\pi}{2} \tag{20}
\end{equation*}
$$

Keeping mind that the quadrilateral $A F K_{1} E$ can be inscribed in a circle, (20) means that $A K \perp E F$, therefore $P N \| E F$. Similar reasoning can be done to show that $P M \| D F$ and $M N \| D E$. This implies that $\triangle M N P$ and $\triangle D E F$ are homotopic. From Proposition 1 we obtain

$$
\begin{equation*}
|\Delta D E F| \cdot|\Delta M N P|=|\Delta A B C|^{2} \tag{21}
\end{equation*}
$$

Theorem 1 implies

$$
\begin{equation*}
\frac{|\Delta D E F|}{|\Delta A B C|}=\frac{\left|R^{2}-O K_{1}{ }^{2}\right|}{4 R^{2}} \tag{22}
\end{equation*}
$$

Therefore, $\frac{|\triangle M N P|}{|\triangle A B C|}=\frac{|\triangle A B C|}{|\triangle D E F|}=\frac{4 R^{2}}{\left|R^{2}-O K_{1}^{2}\right|}$, as claimed.

References

[1] W. Gallatly, The Modern Geometry of the Triangle, Francis Hodgson, London, 1910.
[2] G. Oprisan, Gazeta Matematica, No. 9 (1961), 530-533, Bucharest, Romania.

[^0]
[^0]: California Institute of Technology
 e-mail: amitrea@gmail.com

