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Abstract

In terms of the notion measurability introduced in previous
works of the author, this work gives statement and construction of
Classical Mechanics.

1 Introduction

This article is the continuation of the previous works of the author [1]–[8],
the first of which [1] was published in autumn, 2014.
The main idea of these works is as follows. At the present time physics is
using (not without success) the mathematical apparatus based on the use
of infinitesimal space-time variations (increments)

dt, dxi, i = 1, ..., 3 (1)

This mathematical apparatus comes from calculus [9], calculus of variations
[10] and classical mechanics [11],[12]. Continuous space-time forms the base
thereof.
The article [6] shows that while going over to the quantum theory at nat-
ural assumptions mentioned in [8] Principle of Bounded Space-Time
Variations (Increments) the notion of continuous space-time becomes
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empty. And this is related to the fact that measurement procedure and
Heisenberg’s Uncertainty Principle (HUP) [13] play a fundamental role in
the quantum theory.
If Principle of Bounded Space-Time Variations (Increments) is cor-
rect, minimal length lmin and time tmin = lmin/c appear in the nature,
(where c is light speed). Then, based on lmin and tmin definitions of mea-
surability and measurable quantities may be correctly input in theory.
Some examples show, although in this case it becomes discrete, but in low
energies, E, far from Planck E ≪ EP , it is close to the initial theory in
continuous space-time. Real discreteness of the theory is manifested only
at high energies E close to Planck E ≈ EP [1],[6],[8].
The main objective (hypothesis) of the author is as follows [6],[2],[8]:
It is possible to correctly construct the quantum theory and gravity as dis-
crete theories in terms of measurable quantities.
The word correctness in this case means the following:

I1. At low energies these theories must, to a high accuracy, represent the
results of the corresponding continuous theories.

I2. This theories should not have the problems of transition from low
to high energies and vice versa and, specifically, the ultraviolet (UV) and
infra-red (IR) divergences problem.

In this work a preliminary step is made on the way to the above-mentioned
objective:
Based on measurable quantities the construction of Classical Mechanics
is given.
As the mathematical apparatus based on the use of infinitesimal space-time
variations (increments) (1) for Classical Mechanics is absolutely adequate,
then the main objectives of this work are as follows:

I3. To show how in the natural passage to the limit measurable quantities
transform into the infinitesimal space-time variations (1) and fundamental
ingredients of Classical Mechanics.
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I4. To improve methods, and to make more precise and generalize main
definitions and formulae from [1]–[8] to solve the problems set up in I1. and
I2.

2 Previous Information and Some Specializ-

ing and Generalization

This section gives the necessary preliminary information from [1]–[8]. Part
of previous results is presented in detail [6],[8], as without this it’s not
possible to understand more precise definition and generalization of the main
definitions (Definition 1 and Definition 2) and formulae (for example
formula (40)).

2.1 Minimal Length and Definition of Primary and
Generalized Measurability

The present study is based on two initial, simple and quite natural, suppo-
sitions [6],[8]:

I. Any small variation increment ∆̃xµ of any spatial coordinate xµ of the ar-
bitrary point xµ, µ = 1, ..., 3 in some space-time system R may be realized
in the form of the uncertainty (standard deviation) ∆xµ when this coor-
dinate is measured within the scope of Heisenberg’s Uncertainty Principle
(HUP) [13]

∆̃xµ = ∆xµ,∆xµ ≃ ~
∆pµ

, µ = 1, 2, 3 (2)

for some ∆pµ ̸= 0.
Similarly, for µ = 0 for pair “time-energy” (t, E), any small variation

(increment) in the value of time ∆̃x0 = ∆̃t0 may be realized in the form of
the uncertainty (standard deviation) ∆x0 = ∆t and then

∆̃t = ∆t,∆t ≃ ~
∆E

(3)

for some ∆E ̸= 0. Here HUP is given for the nonrelativistic case. In the rel-
ativistic case HUP has the distinctive features [14] which, however, are of no
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significance for the general formulation of Any small variation (increment)

∆̃xµ of any spatial coordinate xµ of the arbitrary point xµ, µ = 1, ..., 3 in
some space-time system R may be realized in the form of the uncertainty
(standard deviation) ∆xµ when this coordinate is measured within the scope
of Heisenberg’s Uncertainty Principle (HUP)

∆̃xµ = ∆xµ,∆xµ ≃ ~
∆pµ

, µ = 1, 2, 3 (4)

for some ∆pµ ̸= 0. Similarly, for µ = 0 for pair “time-energy” (t, E), any

small variation (increment) in the value of time ∆̃x0 = ∆̃t0 may be realized
in the form of the uncertainty (standard deviation) ∆x0 = ∆t and then

∆̃t = ∆t,∆t ≃ ~
∆E

(5)

for some ∆E ̸= 0. Here HUP is given for the nonrelativistic case. In the
relativistic case HUP has the distinctive features [14] which, however, are of
no significance for the general formulation of I., being associated only with
particular alterations in the right-hand side of the second relation Equation
(2).
It is clear that at low energies E ≪ EP (momenta P ≪ Ppl) I. sets a lower

bound for the variations (increments) ∆̃xµ of any space-time coordinate xµ.
At high energies E (momenta P ) this is not the case if E (P ) have no

upper limit. But, according to the modern knowledge, E (P ) are bounded
by some maximal quantities Emax, (Pmax)

E ≤ Emax, P ≤ Pmax, (6)

where in general Emax, Pmax may be on the order of Planck quantities
Emax ∝ EP , Pmax ∝ Ppl and also may be the trans-Planck’s quantities.

In any case the quantities Pmax and Emax lead to the introduction of the
minimal length lmin and of the minimal time tmin.
II. There is the minimal length lmin as a minimal measurement unit for
all quantities having the dimension of length, whereas the minimal time
tmin = lmin/c as a minimal measurement unit for all quantities having the
dimension of time, where c is the speed of light.
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lmin and tmin are naturally introduced as ∆xµ, µ = 1, 2, 3 and ∆t in
Equations (2) and (3) for ∆pµ = Pmax and ∆E = Emax.

For definiteness, we consider that Emax and Pmax are the quantities on
the order of the Planck quantities, then lmin and tmin are also on the order
of Planck quantities lmin ∝ lP , tmin ∝ tP .

I.,II. are quite natural in the sense that there are no physical principles
with which these suppositions are inconsistent.

The combination of suppositions I, II will be called the Principle of
Bounded Space-Time Variations (Increments) .
Then, since in fact Suppositions I.,II. introduce the minimal length lmin, in-
stead of HUP, we can consider its widely known high-energy generalization—
the Generalized Uncertainty Principle (GUP) that naturally leads to the
minimal length lmin [15]–[26]:

∆x ≥ ~
∆p

+ α′l2P
∆p

~
. (7)

Here α′ is the model-dependent dimensionless numerical factor and lP is
the Planckian length. As Equation (7) is a quadratic inequality, then it
naturally leads to the minimal length lmin = ξlP = 2

√
α′lP .

As the minimal unit of measurement lmin is available for all the quantities
L having the dimensions of length, the “Integrality Condition” (IC) is the
case

L = NLlmin, (8)

where NL > 0 is an integer number.
In a like manner the same “Integrality Condition” (IC) is the case for all
the quantities t having the dimensions of time. And similar to Equation
(8), we get the for any time t:

t ≡ t(Nt) = Nttmin, (9)

Due to (8), we have
∆x = N∆xlmin. (10)

Then the transition from high to low energies in GUP, i.e. (GUP,∆p →
0) = (HUP ), is nothing else but

(N∆x ≈ 1) → (N∆x ≫ 1). (11)
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Substituting (10) into (7) and making the necessary calculations, we can
see that in the general case

∆p ≡ ∆pN∆x
=

~
(N∆x − 1

4N∆x
)lmin

. (12)

Whereas at low energies E ≪ EP

∆p ≡ ∆pN∆x
=

~
N∆xlmin

. (13)

At the same time, for the corresponding energy E we get

∆E ≡ ∆E(Nt) =
~

(Nt − 1
4Nt

)tmin

(14)

or for low energies

∆E ≡ ∆E(Nt) =
~

Nttmin

. (15)

In the relativistic case the formulae corresponding to (20),(14) have been
derived in [2],[6].
Note that the above-mentioned formulae may be conveniently rewritten in
terms of lmin with the use of the deformation parameter αa [6]. This pa-
rameter has been introduced earlier in the papers [27]–[34] as a deformation
parameter (in terms of paper [35]) on going from the canonical quantum
mechanics to the quantum mechanics at Planck’s scales (early Universe)
that is considered to be the quantum mechanics with the minimal length
(QMML):

αa = l2min/a
2, (16)

where a is the measuring scale.
Actually, with the equality (∆p∆x = ~) Equation (7) is of the form

∆x =
~
∆p

+
α∆x

4
∆x. (17)

In this case due to Equations (8), (11) and (17) takes the following form:

N∆xlmin =
~
∆p

+
1

4N∆x
lmin (18)
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or

(N∆x −
1

4N∆x
)lmin =

~
∆p

. (19)

That is

∆p =
~

(N∆x − 1
4N∆x

)lmin

. (20)

From Equations (18)–(20) it is clear that HUP Equation (2) appears to
a high accuracy in the limit N∆x ≫ 1 in conformity with Equation (11).

It is easily seen that the parameter αa from Equation (16) is discrete as
it is nothing else but

αa = l2min/a
2 =

l2min

N2
a l

2
min

=
1

N2
a

. (21)

At the same time, from Equation (21) it is evident that αa is irregularly
discrete.

It is clear that from Equation (20) at low energies (|N∆x| ≫ 1), up to a
constant

~2

l2min

=
~c3

4α′G
(22)

we have
α∆x = (∆p)2, (i.e.α∆x ∝ (∆p)2). (23)

Definition 1 (Elementary or Primary Measurability.)
(1) Let us define the quantity having the dimensions of length L or time
t elementarily or primarily measurable, when it satisfies the relation
Equation (8) (and respectively Equation (9)).
(2)Let us define any physical quantity elementarily or primarily mea-
surable, when its value is consistent with points (1) of this Definition.

However, physical quantities complying with Definition 1 won’t be enough
for the research of physical systems.
Indeed, such a variable as

αNlmin
(Nlmin) = lmin/N, (24)
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(where αNlmin
is taken from formula (21) at a = Nlmin), is fully expressed

in terms only Primarily Measurable Quantities of Definition 1 and
that’s why it may appear at any stage of calculations, but apparently doesn’t
comply with Definition 1. That’s why it’s necessary to introduce the fol-
lowing definition generalizing Definition 1:

Definition 2. Generalized Measurability
We shall call any physical quantity as generalized-measurable or for
simplicity measurable if any of its values may be obtained in terms Ele-
mentary or Primarily Measurable Quantities of Definition 2.

In what follows for simplicity we will use the term Measurability instead
of Generalized Measurability.
It’s evident that any primarily measurable quantity (PMQ) is mea-
surable. Generally speaking, the contrary is not correct, as indicated by
formula (24).

Naturally, of course that, a minimal possible primarily measurable and
change of length is lmin. It corresponds to some maximal value of the energy
Emax or momentum Pmax, If lmin ∝ lP , then Emax ∝ EP ,Pmax ∝ PPl, where
Pmax ∝ PPl, where PPl is where the Planck momentum. Then denoting in
nonrelativistic case with △p(w) a minimal measurable change every spatial
coordinate w corresponding to the energy E we obtain

△Pmax(w) = △Emax(w) = lmin. (25)

Evidently, for lower energies (momentums) the corresponding values of
△p(w) are higher and, as the quantities having the dimensions of length are
quantized Equation (8), for p ≡ p(Np) < pmax, △p(w) is transformed to

|△p(Np)(w)| = |Np|lmin. (26)

where |Np| > 1 is an integer number so that we have

|Np −
1

4Np

|lmin =
~

|p(Np)|
. (27)
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In the relativistic case the Equation (25) holds, whereas Equations (26)
and (27) for E ≡ E(NE) < Emax are replaced by

|△E(NE)(w)| = |NE|lmin, (28)

where |NE| > 1 is an integer.
Next we assume that at high energies E ∝ EP there is a possibility only

for the nonrelativistic case or ultrarelativistic case.
Then for the ultrarelativistic case, formula (27) takes the form [6]:

|NE − 1

4NE

|lmin =
~c

E(NE)
=

~
|p(Np)|

, (29)

where NE = Np.
In the relativistic case at low energies we have

E ≪ Emax ∝ EP . (30)

and formula (26) is of the form

|△E(NE)(w)| = |NE|lmin =
~c

E(NE)
, |NE| ≫ 1 − integer. (31)

In the nonrelativistic case at low energies Equation (30) due to Equa-
tion (27) we get

|△p(Np)(w)| = |Np|lmin =
~

|p(Np)|
, |Np| ≫ 1− integer. (32)

In a similar way for the time coordinate t, by virtue of Equations (9)–
(15), at the same conditions we have similar Equations (25)–(27)

△Emax(t) = tmin. (33)

For E ≡ E(Nt) < Emax

|△E(Nt)(t)| = |Nt|tmin, (34)
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where |NE| > 1 is an integer, so that we obtain

|Nt −
1

4Nt

|tmin =
~c

E(Nt)
. (35)

In the relativistic case at low energies

E ≪ Emax ∝ EP , (36)

equation (26) takes the form [6]:

|△E(Nt)(w)| = |Nt|lmin =
~c

E(Nt)
, |Nt| ≫ 1− integer. (37)

We shall make two important Commentaries:

Comment 2.1.
What’s the main difference between Definition 1 and Definition 2?

2.1.1.Definition 1 defines variables which may be obtained as a result of
an immediate experiment.

2.1.2. Definition 2 defines the variables which may be calculated based
on primarily measurable quantities, i.e. based on the data obtained in
previous clause 2.1.1.

Comment 2.2.
It’s evident that HUP-derived (2) ∆pi

.
= ∆pi,HUP ; i = 1, ..., 3 are primarily

measurable quantities:

∆pi ≃
~

∆xi

=
~

N∆xi
lmin

(38)

However, variables ∆pi
.
= ∆pi,GUP obtained from GUP (7) and defined by

formula (20) are already obviously not the same, but only measurable
quantities.
From formulae (22) and (23) follows that in case of correctness of HUP (2)
i.e. in low energies E ≪ Emax ∝ EP , in notations of formulae (26)–(37)

αNplmin
(HUP )

.
= α∆x = p(Np)

2 l
2
min

~2
=

1

N2
p

(39)
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where ∆x = Nplmin and p(Np) is calculated from formula (32).
However, in high energies E ≈ EP , HUP is replaced with GUP, primarily
measurable quantity p(Np) from formula (32) is replaced with general-
ized measurable quantity ∆pi

.
= ∆pi,GUP from formula (27).

Then αNplmin
(HUP ) may be replaced with αNplmin

(GUP ):

αNplmin
(GUP ) = p(Np, GUP )2

l2min

~2
=

=
l2min

(Np − 1
4Np

)2l2min

=
1

(Np − 1
4Np

)2
(40)

When going over from high energies E ≈ EP to low energies E ≪ EP we
have:

αNplmin
(GUP )

(|Np|≈1)→(|Np|≫1)−→ αNplmin
(HUP ) (41)

In what follows all the considerations are given in terms of measurable
quantities in the sense of Definition 2 given in this Section.

2.2 Space-Time Lattice of Primary Measurable Quan-
tities and Dual Lattice

For convenience, we denote the minimal length lmin ̸= 0 by ℓ and tmin ̸= 0
by τ = ℓ/c.
So, provided the minimal length ℓ exists, two lattices are naturally arising.
I. Lattice of the space-time variation—LatS−T representing, to within the
known multiplicative constants, for sets of nonzero integers Nw ̸= 0 and
Nt ̸= 0 in corresponding formulae from the set Equations (26) and (37) for
each of the three space variables w

.
= x; y; z and the time variable t

LatS−T
.
= (Nwℓ,Ntτ). (42)

Which restrictions should be initially imposed on these sets of nonzero
integers?

It is clear that in every such set all the elements (Nwℓ,Ntτ) should
be sufficiently “close”, because otherwise, for one and the same space-time
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point, variations in the values of its different coordinates are associated with
principally different values of the energy E which are “far” from each other.

Note that the words “close” and “far” will be elucidated further in this
text.

Thus, at the admittedly low energies (Low Energies) E ≪ Emax ∝ EP

the low-energy part (sublattice) LatS−T [LE] of LatS−T is as follows:

LatS−T [LE] = (Nwℓ,Ntτ); |Nx| ≫ 1, |Ny| ≫ 1, |Nz| ≫ 1, |Nt| ≫ 1. (43)

At high energies (High Energies) E → Emax ∝ EP we, on the contrary, have
the sublattice LatS−T [HE] of LatS−T

LatS−T [HE] = (Nwℓ,Ntτ); |Nx| ≈ 1, |Ny| ≈ 1, |Nz| ≈ 1, |Nt| ≈ 1. (44)

We will call lattice LatS−T (42) as primary (or primitive) lattice of
the space-time variation.

II. Next let us define the lattice momenta-energies variation LatP−E as a
set to obtain (px(Nx,p), py(Ny,p), pz(Nz,p), E(Nt)) in the nonrelativistic and
ultrarelativistic cases for all energies, and as a set to obtain
(Ex(Nx,E), Ey(Ny,E), Ez(Nz,E), E(Nt)) in the relativistic
(but not ultrarelativistic) case for low energies E ≪ EP , where all the com-
ponents of the above sets conform to the space coordinates (x, y, z) and
time coordinate t and are given by corresponding formulae (25)–(37) from
the previous Section.

Note that, because of the suggestion made after formula Equation (30)
in the previous Section, we can state that the foregoing sets exhaust all the
collections of momentums and energies possible for the lattice LatS−T .
From this it is inferred that, in analogy with point I of this Section, within
the known multiplicative constants, we have

LatP−E
.
= (

1

Nw − 1
1/4Nw

,
1

Nt − 1
1/4Nt

), (45)

where Nw ̸= 0, Nt ̸= 0 are integer numbers from Equation (42). Similar to
Equation (43), we obtain the low-energy (Low Energy) part or the sublattice
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LatP−E[LE] of LatP−E

LatP−E[LE] ≈ (
1

Nw

,
1

Nt

), |Nw| ≫ 1, |Nt| ≫ 1. (46)

In accordance with Equation (44), the high-energy (High Energy) part
(sublattice) LatP−E[HE] of LatP−E takes the form

LatP−E[HE] ≈ (
1

Nw − 1
1/4Nw

,
1

Nt − 1
1/4Nt

), |Nw| → 1, |Nt| → 1. (47)

It is important to note the following.
In the low-energy sublattice LatP−E[LE] all elements are varying

very smoothly enabling the approximation of a continuous theory.

3 Classical Mechanics in “Measurable For-

mat”

3.1 Preliminary Information

We will preserve the lattice LatP−E, but primary lattice LatS−T will be
replaced with “α − lattice“, measurable space-time quantities, which
will be denoted by LatαS−T :

LatαS−T
.
= (αNwℓNwℓ, αNtτNtτ) = (

ℓ

Nw

,
τ

Nt

). (48)

In the last formula by the variable αNtτ we mean the parameter α corre-
sponding to the length (Ntτ)c:

αNtτ
.
= α(Ntτ)c. (49)

As in this case low energies E ≪ EP are discussed, αNwℓ in this formula is
consistent with the corresponding parameter from formula (39):

αNwℓ = αNwℓ(HUP ) (50)
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As it was mentioned in the previous section, in the low-energy E ≪ Emax ∝
EP all elements of sublattice LatP−E[LE] are varying very smoothly en-
abling the approximation of a continuous theory.
It is similar to the low-energy part of the LatαS−T [LE] of lattice LatαS−T will
vary very smoothly:

LatαS−T [LE] = (
ℓ

Nw

,
τ

Nt

); |Nx| ≫ 1, |Ny| ≫ 1, |Nz| ≫ 1, |Nt| ≫ 1. (51)

In sectin 5 of [6] three following cases were selected:

(a)“Quantum Consideration, Low Energies”:

1 ≪ |Nw| ≤ Ñ;

(b)“Quantum Consideration, High Energies”:

|Nw| ≈ 1;

(c)“Classical Picture”:

1 ≪ Ñ ≪ |Nw|.

Here Ñ is a cutoff parameter , defined by the current task [6].
In “Classical Picture” (c) the passage to the limit

|Nw| → ∞, |Nt| → ∞iscorrect. (52)

That’s why, if for three space coordinates xi; i = 1, 2, 3 we introduce the
following notation:

∆(xi)
.
= ∆̃[αN∆xi

] = αN∆xi
ℓ(N∆xi

ℓ) = ℓ/N∆xi
;

∆[F (xi)]

∆(xi)
≡ F (xi +∆(xi))− F (xi)

∆(xi)
, (53)
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then it’s evident that

lim
|N∆xi

|→∞

∆[F (xi)]

∆(xi)
= lim

∆(xi)→0

∆[F (xi)]

∆(xi)
=

∂F

∂xi

. (54)

Respectively, for time x0 = t we have:

∆(t)
.
= ∆̃[αN∆t

] = αN∆tτ (N∆tτ) = τ/N∆t;

∆[F (t)]

∆(t)
≡ F (t+∆(t))− F (t)

∆(t)
, (55)

then

lim
|N∆t|→∞

∆[F (t)]

∆(t)
= lim

∆(t)→0

∆[F (t)]

∆(t)
=

dF

dt
. (56)

We shall designate for pulses pi; i = 1, 2, 3

∆pi =
~

N∆xi
ℓ
;

∆piF (pi)

∆pi
≡ F (pi +∆pi)− F (pi)

∆pi
=

F (pi +
~

N∆xi
ℓ
)− F (pi)

~
N∆xi

ℓ

. (57)

From where similarly (54) we get

lim
|N∆xi

|→∞

F (pi +∆pi)− F (pi)

∆pi
= lim

|N∆xi
|→∞

F (pi +
~

N∆xi
ℓ
)− F (pi)

~
N∆xi

ℓ

=

= lim
∆pi→0

F (pi +∆pi)− F (pi)

∆pi
=

∂F

∂pi
. (58)

Therefore, in low energies E ≪ EP , i.e. at |N∆xi
| ≫ 1; i = 0, ..., 3 in

passages to the limit (54),(56),(58) it’s possible to obtain known partial
derivatives like in case of continuous space-time.

Definition Cl1.
Let some quantity Ξ depend on integers N∆xi

, N∆t, at all values of N∆xi
, N∆t

15



is measurable and formula (52) is correct, i.e. we have “Classical Picture”
(c). Then, if there are passages to the limit

lim
|N∆xi

|→∞
Ξ(N∆xi

) = Ξxi
; lim
|N∆t|→∞

Ξ(N∆t) = Ξt, (59)

then the respective limits Ξxi
,Ξt shall be also called measurable quantities.

Particularly, if F in formulae (53)–(58) is a measurable quantity, then
from Definition 2 follows directly that the values
∆[F (xi)]
∆(xi)

, ∆[F (t)]
∆(t)

,
∆piF (pi)

∆pi
are also measurable quantities. Then, according to

this definition, the same are the quantities ∂F
∂xi

, ∂F
∂pi

, dF
dt
. in formulae (54),(56),(58).

Commentary to Definition Cl1.
By virtue of (52) it’s evident that Definition.Cl1 is applicable only to case (c)
above (Classical Picture) and not applicable to cases (a) and (b),(Quantum
Consideration, Low Energies) and (Quantum Consideration, High Energies)
respectively

We shall make two notes
Remark 3.1
There is a significant difference between formulae (54),(56) on the one hand
and formula (58) on the other hand.
Limits in (54) and in (56) may be obtained also when going over to contin-
uous space-time

ℓ → 0; τ → 0;

lim
ℓ→0

∆[F (xi)]

∆(xi)
=

∂F

∂xi

;

lim
τ→0

∆[F (t)]

∆(t)
=

dF

dt
. (60)

But in formula (58) passage to the limit at ℓ → 0 is not possible, as it leads
to an infinitely great denominator.
Remark 3.2 The above-mentioned calculations show that in this offered
discrete approach by virtue of Definition Cl1. in low energies in classical
consideration it’s possible to obtain all the main attributes of the continued
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theory, particularly, for any respective function F the quantities ∂F
∂xi

, dF
dt
, ∂F
∂pi

are defined correctly.
Here it’s not necessary to observe the condition ~ → 0, i.e. ~ ̸= 0 remains
also in the classical situation and is suppressed due to the passage to the
limit |N∆xi

| → ∞.

3.2 Lagrangian Formalism and Principle of Least Ac-
tion in Terms of Measurable Quantities

By virtue of Definition Cl1. and formulae (53)–(58), as well as some of
their generalizations, it’s possible to show that all the main provisions of
classical mechanics both in Lagrangian and Hamiltonian formalism remain
correct in terms of measurable quantity, in the presence of quite natural
additional assumptions.
Hereinafter we will use standard terminology of classical mechanics [11],[12].
Let there be a Lagrangian L

.
= L(q, q̇, t), where q are generalized coordi-

nates; q̇ are generalized speeds and t is time. However, in the duscussed
case t changes discretely, according to the formulae above.

Definition Cl2. We shall call L as a measurable analogue and denote
by Lmeas(q, q̇, t), the quantity satisfying the following properties:

Cl1.1. Time t, and the generalized coordinate q included into Lmeas(q, q̇, t)
are primarily measurable quantities in terms of Definition 1

Cl1.2. The quantity q̇ is obtained from formulae (55),(56), (where F (t) =
q(t)) and that’s why according to Definition Cl1., it’s a measurable
quantity.

Cl1.3. In case of fulfillment of conditions Cl1.1. and Cl1.2.

Lmeas(q, q̇, t) = L(q, q̇, t) (61)

Hereinafter we will assume that the Lagrangian L(q, q̇, t) is measurable,
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i.e.

L(q, q̇, t) = Lmeas(q, q̇, t) (62)

It’s necessary to make an important note:
Remark 3.3.
In formulae (53)–(58) Cartesian coordinates xi were used and respective
pulses pi in terms of measurable quantities. However, it’s not difficult to
obtain analogue (53),(54),(57),(58) formeasurable generalized coordinates
q and speeds q̇.
Indeed, let ∆̃q and ∆̃q̇ be measurable small increments q and q̇ respec-
tively. We shall introduce the following notations for the measurable value
of time ti:

∆q(ti) = αti∆̃q(ti);∆q̇(ti) = αti∆̃q̇(ti), (63)

where αti = αNtiτ
from formula (49).

It’s clear that as ∆̃q and ∆̃q̇ are measurable small increments of q and q̇
respectively, then ∆q and ∆q̇ will be the same, and as we are discussing low
energies and, consequently, for each ti from formula (63) ti = Ntiτ, |Nti| ≫ 1,

then |∆q(ti)| ≪ |∆̃q(ti)|, |∆q̇(ti)| ≪ |∆̃q̇(ti)|.
In formula (63) measurable small increments are set with the help of the

corresponding parameter α by actual generalization for the case ∆̃q, ∆̃q̇ of
“α− lattice“ measurable space-time quantities LatαS−T (48).
However, it’s possible to act in a more simple way: as under the definition q
and q̇ are measurable quantities, then ∆q(ti) =

1
Nti

q(ti) = ( ℓ~pNti
)q(ti) as

well as ∆q̇(ti) =
1

Nti
q(ti) = ( ℓ~pNti

)q̇(ti) are measurable small increments

q and q̇ at |Nti| ≫ 1, which go to zero, at |Nti| → ∞.
Next, we shall define

∆F (q(ti))

∆q(ti)
≡ F (q(ti) + ∆q(ti))− F (q(ti))

∆q(ti)
(64)

and, respectively,

∆F (q̇(ti))

∆q̇(ti)
≡ F (q̇(ti) + ∆q̇(ti))− F (q̇(ti))

∆q̇(ti)
(65)
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Then it’s evident that for the measurable function F right parts (64)
and (65) will also be measurable and according to Definition Cl1. it’s
possible to obtain measurable limits:

lim
|Nti |→∞

∆F (q(ti))

∆q(ti)
= lim

∆q(ti)→0

∆F (q(ti))

∆q(ti)
=

∂F

∂q
;

lim
|Nti |→∞

∆F (q̇(ti))

∆q̇(ti)
= lim

∆q̇(ti)→0

∆F (q̇(ti))

∆q̇(ti)
=

∂F

∂q̇
(66)

As according to Definition Cl2. the time t is a primarily measurable
quantity we shall denote as follows

t̃− t̂ = ∆t = N∆tτ (67)

In this case it’s possible to define a measurable action as a sum:

Smeas,N∆t
(q, q̇, t) =

∑
1≤i≤N∆t,t̂≤ti≤t̃

Lmeas(q(ti), q̇(ti), ti)αN∆t
(N∆tτ) =

=
∑

1≤i≤N∆t,t̂≤ti≤t̃

Lmeas(q(ti), q̇(ti), ti)
τ

N∆t

, (68)

where L(q, q̇, t) satisfies (62).
However, by virtue of Definition Cl1. in this particular case of classical
mechanics the passage to the infinite limit is correct:

Smeas,N∆t
(q, q̇, t)

|N∆t|→∞−→ Smeas(q, q̇)
.
=

∫ t̃

t̂

Lmeas

(
q,

·
q, t
)
dt (69)

Based on Definition Cl1, (69) may be rewritten as

Smeas,N∆t
(q, q̇, t)

|N∆t|→∞−→ Smeas(q, q̇) =

∫ t̃

t̂

Lmeas

(
q,

·
q, t
)
dt (70)

Next, quite a natural supposition will be taken:

Supposition.Cl1.
For each measurable quantity κ and quite large ∆t (or the same for quite
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large |N∆t| and, naturally, for |N∆t| → ∞) there is a measurable variation
of δκ.

(Indeed, this is a very natural supposition. As q is a primary measurable,
then q/N = PN ℓ

~ q is a measurable quantity and at quite large N it may
be made arbitrary close to the measurable variation of δκ).
Taking as κ a measurable quantity q, according to Supposition.Cl1. we
may obtain a measurable variation δq. Considering Definition Cl1., we
obtain

d

dt
(δq) = δq̇ (71)

is a measurable quantity as well.
Next, step by step we may obtain Principle of Least Action [11],[12] in terms
of measurable quantities. For this we need to make sure that at each step
of proof of this principle only measurable quantities appear.
Indeed, as Smeas,N∆t

(q, q̇, t) is a measurable quantity, then by virtue of
measurability δq and δq̇, the sum Smeas,N∆t

(q + δq, q̇ + δq̇, t) will be also
measurable. By virtue of Definition Cl1., using the passage to the limit
(70), but already for Smeas,N∆t

(q + δq, q̇ + δq̇, t), we obtain measurable
quantity Smeas(q + δq, q̇ + δq̇):

Smeas,N∆t
(q + δq, q̇ + δq̇, t)

|N∆t|→∞−→ Smeas(q + δq, q̇ + δq̇) =

=

∫ t̃

t̂

Lmeas

(
q + δq,

·
q +δq̇, t

)
dt (72)

From where it follows directly that the variation δSmeas(q, q̇) is also mea-
surable:

δSmeas(q, q̇) = Smeas(q + δq, q̇ + δq̇)− Smeas(q, q̇) = [δS(q, q̇)]meas (73)

Equating the right part (73) to zero we obtain the equation in which all the
components are measurable quantities:

[δS(q, q̇)]meas = δ

∫ t̃

t̂

Lmeas

(
q,

·
q, t
)
dt =

∫ t̃

t̂

(
∂Lmeas

∂q
δq +

∂Lmeas

∂
·
q

δ
·
q

)
dt = 0(74)
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Indeed, ∂Lmeas/∂q, ∂Lmeas/∂q̇ are measurable according to Remark 3.3.
and respective formulae. δq, q̇ are measurable according to Supposition.Cl1.,Definition
Cl1. and formula (71).
That’s why using formula (71) and an integration by parts [11], which evi-
dently does not destroy measurability we obtain the following from (74):

δS =

[
∂Lmeas

∂
·
q

δq

]t̃
t̂

+

∫ t̃

t̂

(
∂Lmeas

∂q
− d

dt

∂Lmeas

∂
·
q

)
δqdt = 0 , (75)

where as usually q(t̂) = q(t̃) = 0, d
dt

∂Lmeas

∂
·
q

are measurable by virtue of Def-

inition Cl1. and formula (56) at F (t) = ∂Lmeas

∂
·
q

and as it was already used

in formulae (68), (69) in case of classical mechanics dt is also a measurable
quantity, as according to Definition Cl1. it appears within the limits for
a measurable quantity

τ/N∆t
N∆t→∞−→ dt. (76)

From where the following representation follows Euler-Lagrange equations
[11] in terms of only measurable quantities :

∂Lmeas

∂q
− d

dt

∂Lmeas

∂
·
q

= 0,

or

d

dt

(
∂Lmeas

∂
·
qi

)
− ∂Lmeas

∂qi
= 0, (i = 1, 2, ..., s) (77)

3.3 Hamiltonian Formalism and Measurability

Using the results of the previous Subsection it’s not difficult to obtain also
Hamiltonian Formalism in terms of measurable quantities. As well as in
the previous Subsection it’s necessary to make sure that at each step all
members in respective formulae are measurable.
Indeed, using “measurable” Euler-Lagrange equations (77) it’s possible to
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introduce measurable generalized momenta and their time derivatives:

pmeas =
∂Lmeas

∂q̇
; ṗmeas =

∂Lmeas

∂q
(78)

From where, using Legendre transformation [11], the following appears
“measurable” Hamiltonian H:

Hmeas(q, p, t) =
∑
i

q̇i(pi)meas − Lmeas(q, q̇, t) (79)

Here we don’t put subscript meas for variables q, q̇, as they are measurable
by virtue of Definition Cl2.
Total differential of left part (75) will be equal to:

d[Hmeas(q, p, t)] =
∑
i

[q̇id[(pi)meas]− ˙(pi)measdqi]−
∂Lmeas

∂t
dt (80)

In right part (80) the member ∂Lmeas

∂t
dt will be measurable by virtue of

Definition Cl1. and formulae (56) and (76). qi, q̇i are measurable by
virtue of Definition Cl1.,Definition Cl2., measurability (pi)meas and
˙(pi)meas was obtained in (78). Finally, dqi and d[(pi)meas] will be measur-

able according to Definition Cl1. and formulae (63)–(66).
Therefore, right part (80) is a measurable quantity, that’s why also left
part (80) is a measurable quantity. From where

d[Hmeas(q, p, t)] = d[Hmeas(q, p, t)]meas (81)

From (81) and standard representation of total differential for Hmeas(q, p, t),
which will also evidently be a measurable quantity Canonical Hamilton’s
Equations in terms of measurable quantities follow immediately:

∂Hmeas

∂qi
= − ˙(pi)meas,

∂Hmeas

∂(pi)meas

= q̇i,
∂Hmeas

∂t
= −∂Lmeas

∂t
. (82)

Next, it’s tacitly supposed that p = pmeas. Then any function of canonical
variables G(q, p, t) will be a measurable quantity, in that sense that any
of its meanings may be obtained in terms of measurable set of variables
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G(q, p, t).
By virtue of the results obtained above, Poisson bracket [, ]PB of two mea-
surable functions G(q, p, t) and Φ(q, p, t) [11] will also be a measurable
function:

[Φ, G]PB =
∑
j

(
∂Φ

∂pj

∂G

∂qj
− ∂Φ

∂qj

∂G

∂pj
) (83)

Particularly, if Φ(q, p, t) = H(q, p, t) = Hmeas(q, p, t), we come to the basic
equation of the Hamiltonian mechanics [11], obtained in terms of measur-
able quantities:

dG

dt
=

∂G

∂t
+ [H, G]PB (84)

Note.
It’s evident that in this formalism Canonical Hamilton’s Equations in terms
of measurable quantities (82) may be obtained from Principle of Least
Action, if in Definition Cl2. we make a replacement L → H, Lmeas →
Hmeas and add measurable generalized momentum p.

4 Final Commentaries,Explanations and Con-

clusion

F1. Primary measurable the generalized coordinates q and measurable
the generalized velocities q̇ from Definition Cl2. are standard quantities
of classical mechanics [11],[12], on which only one limitation is imposed:
Changes of all parameters,(naturally including time t), on which q and q̇
depend satisfy Definition 1 and Definition 2 respectively.
The exception is the procedure to obtain q̇ by q, as here q cannot be consid-
ered as a primary measurable quantity, but only ameasurable quantity.
This is discussed in details in clause F4.

F2. If the theory supposes the passage to the infinite limit (52), then
this theory may be considered a Classical Theory and then Definition
Cl1. is absolutely correct, as for limits Ξxi

and Ξt from (59) at quite large
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|N∆xi
|, |N∆t| it’s always possible to findmeasurable quantities Ξ(N∗

∆xi
),Ξ(N∗

∆t)
arbitrary close to Ξxi

and Ξt. I.e. with high precision Ξxi
and Ξt may be

replaced with primary measurable quantities Ξ(N∗
∆xi

) and Ξ(N∗
∆t).

F3. It may seem that “α− lattice“ LatαS−T (formula (48)) is introduced in
this work artificially. But in reality this is not true. It appears, but with
“factor“ 1/4 from equation (17) written in the form

∆x− ~
∆p

=
1

4
α∆x∆x. (85)

It’s evident that factor 1/4 in right part (85) is not significant in this case.

F4. Despite the fact that the generalized coordinate q from Definition
Cl2. is initially a primarily measurable quantity in terms of Defini-
tion 1, “the speed of its variation in time“, i.e. q̇ already cannot be the
same and is just a measurable quantity in terms of Definition 2. More-
over, for its definition, according to formulae (55),(56), (at F (t) = q(t)) the
generalized coordinate q and time t should be also considered as measur-
able quantities. There is no contradiction here. If during definition of q̇
we considered q as a primarily measurable quantity, then in formula
(55) at larger |N∆t| and F (t) = q(t) we would obtain generally a discrete
divergent row of values

∆̂(t)
.
= N

∆̂(t)
τ ;

∆̂(t)[q(t)]

∆̂(t)
≡

q(t+N
∆̂(t)

τ)− q(t)

N
∆̂(t)

τ
, (86)

where N∆t = N
∆̂(t)

.

And then the limit (56) , i.e. q̇ would not even exist!

F5. It’s clear that the passage to the limit (76) from a measurable quan-
tity τ/N∆t to infinitesimal quantity dt, which in case of Classical Mechanics
by virtue of Definition Cl1. will also be a measurable quantity, may be
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generalized as space variables and written as follows:

(
τ

N∆t

= pN∆tc
ℓ2

c~
)
N∆t→∞−→ dt,

(
ℓ

N∆x

= pN∆x

ℓ2

~
)
N∆x→∞−→ dx,

(
ℓ

N∆y

= pN∆y

ℓ2

~
)
N∆y→∞
−→ dy,

(
ℓ

N∆z

= pN∆z

ℓ2

~
)
N∆z→∞−→ dz. (87)

Left parts of all four limits given in formula (87), are measurable quan-
tities, which depend on available energies. They will be necessary in the
construction of the Quantum Theory in terms of measurable quantities.

F5. Remarks 3.1,3.2 and formula (58) show that in this formalism, as
distinct from the standard case of continuous space-time it will be possible
to keep ~ ̸= 0 during the passage from Quantum Picture to Classical Picture.

Therefore, summing up it should be stated that at some natural suppo-
sitions Classical Mechanics may be correctly formulated in terms of mea-
surable quantities of the [1]–[8] and present paper.
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