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Abstract

We consider composition and division algebras over the real numbers: We note two rôles
for the group G2: as automorphism group of the octonions and as the isotropy group of a
generic 3-form in 7 dimensions. We show why they are equivalent, by means of a regular
metric. We express in some diagrams the relation between some pertinent groups, most of
them related to the octonions. Some applications to physics are also discussed.

1 Introduction

The first exceptional Lie group G2 (dimension 14, rank 2) was first discovered, as its complex
Lie algebra, in 1887 by W. Killing, in his (redundant) list of all complex simple Lie algebras;
the list was fixed by É. Cartan in his Paris Thesis (1894). G2 is the only Lie group which
has a Dynkin diagram with a triple bond, • ≡ ◦: the two smallest representations (6= Id)
are of dimensions 7 and 14. In physics the group G2 appears in several context, as in 7-dim
compactifications from M-theory.

On the other hand, the division algebra of the octonions was first written by J. Graves in
Christmas, 1843 (letter to W. Hamilton, who soon realized they were non-associative); however,
the eight-squares sum, related also to octonions (as the four- squares sum (Euler, 1738) was
related to the quaternions), had been found earlier by C. Degen (1818); in 1845 A. Cayley also
(re)discovered the octonions in relation to his work on hyperelliptic functions; so the name
Cayley numbers, octaves and octonians are also used in the literature for the octonions.

É. Cartan was the first to consider the group G2 (in its real compact form) as the auto-
morphism group of the octonion algebra (1914; it is quoted even in an earlier article of his
in 1908); he also showed there exists another, noncompact real form, that today we know it
is the automorphism group of the split octonions. But already in 1900, F. Engel (who wrote
with S. Lie the monumental 3-volume book on Transformation Groups [3]) established (the
complex form of) G2 as the isotropy group of a generic 3-form in 7-dimensional complex space;
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his disciple W. Reichel worked out the details of this description of G2, including the two real
forms, in 1907. In modern times (ca. 1984) this 3-form has been much used by Bryant [12] in
relation to manifolds of G2 holonomy. All this historical record is narrated in detail in [1] and
[2], see also [4, 5].

This paper is devoted to the relation between composition and division algebras and the
two approaches for G2; indeed, the two conceptions (G2 = Aut (Octonions) and G2 = isotropy
group of a generic 3-form in 7 dimensions) have been already noticed as equivalent by [2, 1] and
others, but it seems to us rather obscure the stated relations (one exception is [14]). Specifically,
we shall construct the octonions starting with the regular 3-form φ, wherefrom the dual role
of G2 will be evident: the 3-form determines a regular metric β, which converts the form φ, as
(0, 3)-tensor, in a (1, 2)-tensor: that is, an algebra γ = β(φ), which turns out to be, of course,
the octonion algebra: the group G2 becomes automatically the automorphism group of that
algebra. In the work of Bonan [6], a reverse result seems to be stated: starting from Cartan’s
description of compact G2 as the automorphism group of the octonions, he saw how to derive
from its multiplicative law an invariant 3-form. Before this we shall elaborate on composition
and division algebras and then also extend some remarks of [2] on the relations of Spin(8),
Spin(7) (both have a 8-dim real representation) and other smaller groups, including G2, to the
above work. Several physical applications will be also briefly mentioned, including some rôle
for SU(3) connected with octonions.

But first we need to recall some important fact about reals R, complex C, quaternions H

and octonions O, and their split forms (for the last three).

2 Complex and quaternions as composition algebras

If F is a field of numbers, an algebra A = A(F) is a vector space over F with a linear map:
A × A → A distributive with respect to addition. We shall not assume commutativity nor
associativity in the algebra. Typical examples are the complex numbers C over the reals R, or
the generic linear maps End(V ) for V an n-dim vector space over F.

An algebra is called composition algebra, if there is a bilinear regular symmetric form
β : A × A → F whose associated quadratic form Q(a) := β(a, a) satisfies Q(ab) = Q(a)Q(b);
we shall usually take F = R or C. It is called division algebra if ab = 0 implies either a = 0
or b = 0; it is called normed algebra if it has a norm as a vector space N : A → R verifying
N(a 6= 0) > 0 and N(ab) = N(a)N(b); if A is division algebra, then Q = Q(A) is definite, and
N is +

√
Q: only division algebras can be normed, although sometimes the norm is defined as

N = +
√

|Q|.
Let us briefly recall the composition algebras over the reals, F = R. An algebra on R

2 is
determined once J2 is known, where J := {0, 1} is a second unit vector, besides 1 = {1, 0}.
There are three cases [4]: if J2 = 0, we have the degenerate complex numbers C

0; we shall
not consider them any further. If J2 = −1, we have the ordinary complex numbers C, and if
J2 = +1, we have the split complex numbers C

′; for C and also for C
′ we have the involutory

automorphism z = x+ Jy 7→ z = x− Jy, with x, y reals. Then Q(z) := zz ∈ R is a quadratic
form, and as Q(zz′) = Q(z)Q(z′), we have two possible composition algebras, for the complex
numbers C and for the split complex C

′. For C, we have a field (=commutative division algebra),
because z−1 := z/Q(z), z 6= 0, makes sense, whereas in C

′, the split case, Q(z) = 0 implies
that z lies in any place in the ”light cone” x = ±y. So both the complex and the split complex
make up a composition algebra, but only the complex C are also a division algebra and it is a
field, as it is commutative. For both C and C

′ we have the two-squares identity, which are just
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the expression of the composition property Q(zz′) = Q(z)Q(z′): for z = x+ Jy, z′ = x′ + Jy′,
J2 = ±1; known from antiquity, they are

(

x2 + y2
) (

x′2 + y′2
)

=
(

xx′ − yy′
)2

+
(

xy′ + yx′
)2

from C (J2 = −1) (2.1)
(

x2 − y2
) (

x′2 − y′2
)

=
(

xx′ + yy′
)2 −

(

xy′ + yx′
)2

from C
′ (J2 = +1) (2.2)

If C
∗ = C−{0} is the multiplicative group of the field C, we have topologically C

∗ ≃ S
1×R

+

(polar decomposition), where S
1 are just the Q(z) = 1 complex numbers and R

+ the positive
reals. The automorphisms of both C and C

′ as R-algebras are just complex conjugation, Aut(C)
= Aut(C′) = Z2 = O(1) ≃ S

0 (O(n) is the n-dim real orthogonal group, n ≥ 1, and S
n the

n-sphere, n ≥ 0); the fix point set is the real line (Recall the complex as a field has other
(discontinuous) automorphisms).

The story is analogous in the next step, the (split) quaternions (Hamilton, 1843). One has
now two units, i and j, both of square ±1; then k := ij has to be another unit, so one has the
vector space R

4. For the division algebra case, H, i2 = j2 = k2 = −1, the three e: i, j and k are
anti-involutory (e4 = 1) and anticommuting, and then, if q is a generic quaternion, q = u+σ · x

= real plus imaginary, where σ = {i, j, k} and x is a real 3-vector, the conjugation q 7→ q is an
(anti-)automorphism, and again Q(q) := qq ∈ R is a quadratic form, definite, Q(q) = u2 +x ·x:
sum of real squares, satisfying Q(qq′) = Q(q)Q(q′). The inverse is q−1 = q/Q(q), q 6= 0, and
one has the division algebra of the quaternions H. Notice the conventional vector product
in 3-dim is x ∧ y = Im(xy) = [x,y] /2, where x,y are imaginary quaternions, and the scalar
product verifies x ·y = −Re(xy). The pair q = (u,x) was already called by Hamilton the scalar
(u) and the vector (x) part of the quaternion; the ”noncommutative field” of the quaternions
is named at times a skew-field.

To get the split quaternions H
′ one takes one of the units involutory, e.g. i2 = +1. Then

everything works similarly as in the split complex case, with now j2 = −1 and k2 = (ij)2 = +1,
and one still has a composition algebra; but the quadratic form is of (+ + −−) signature:
Q(q) = u2 − x2 + y2 − z2; (if the three units have square +1, they do not anticommute, and
there is no composition algebra!).

It is interesting to look at (anti)automorphisms of these algebras H and H
′. For the (true)

quaternions H, it is easy to see that any rotation in the 3-space of unit imaginary q’s is an
automorphism, and viceversa, so Aut(H)= SO(3): any frame ǫ(i, j, k = ij) is rotated in another
one ǫ′ with the same orientation. Conjugation is an antiautomorphism, i.e. (qq′) = q′q , so
the group of autos and antiautos AntiAut(H) is O(3). There is also the group Z3 = A3

permuting cyclically the imaginary units i, j and k, as it is an oriented frame. The SO(3)
automorphism group leaves the imaginary volume form (a 3-form) invariant; the quadratic
form Q(q) is invariant under O(4), of course.

For the split quaternions H
′ the automorphism group is the connected part of the orthogonal

group for the (+ + −)-metric, SO0(2, 1), and there is no cyclic symmetry. In the full split
quaternions H

′ the metric is of signature (2, 2), so the isometry group of Q(q) is now O(2, 2).
Unit quaternions make up S

3 = SU(2) = Sq(1) = Spin(3) (the double and universal cover of
SO(3)), and can be used efficiently to describe rotations in 3- and 4-space [7]. We also have
the ”polar” decomposition H

∗ = H − {0} ≃ S
3 × R

+, where S
3 ≃ SU(2). We name Sq(n) the

”unitary” n× n group, with quaternion entries.
It is remarkable that at this level, for the composition character only anticommutativity

{i, j} = 0 plays a role, whereas for the division property one needs also the anti-involutory
condition, that is, J2 = −1 for the three units i, j, k.
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We omit the corresponding two four-squares identities (Euler) for H and H
′, analogous to

(2.1) and (2.2), for brevity.
The application of complex numbers in physics needs no apology; we only mention here

that the very first formulations of Quantum Mechanics incorporate the i, both in Heisenbergs
matrix mechanics (June, 1925) as in the more widespread Schrödinger wave equation (January,
1926).

Quaternions are used in the 3-dim vector calculus, as stated above, although generally
without mentioning the origin in the quaternion algebra. Rotations in Quantum Mechanics
again use the covering group, Sq(1) =Spin(3), but the usual notation, as SU(2), makes it easy
to forget the true nature is really the unit quaternions. But quaternion product as a way to
quickly compose 3-dim rotations are used in many devices, even in some electronic games...

3 Octonions and split octonions

If we now have three algebraically independent units i, j, k, one has to go to R
8, with units

1; i, j, k; ij, jk, ki; (ij)k. For the (true) octonions O the seven units anticommute and square
to −1. Define o := u + ρ · ξ, (8=1+7), where u is real, ξ a real 7-vector, and ρ is a short
for the seven imaginary units; define routinely the conjugate as o = u − ρ · ξ, so Q(o) :=
oo = u2 + ξ2 ≥ 0, and inverse as o−1 = o/Q(o), o 6= 0. One sees at once that in order oo
to be real you need alternativity: i(jk) = −(ij)k en lieu of associativity: this is the peculiar
property of the octonions (and what made Hamilton to reject them). Just here composition
character implies alternativity (and a hint of Hurwitz theorem: you cannot proceed beyond
dim 8 with composition algebras), whereas the division condition would imply again anti-
involutory character of all seven imaginary units. Then o = Re o+ Im o (8=1+7), with norm
N(o) = |o| = +

√
oo; in this division algebra case the Q is definite. Another way to obtain

alternativity is to insist that two of the three units (i, j, k) generate a quaternion algebra.
The precise definition of alternativity is this: an algebra A is alternative, if the alternator
[a, b, c] := (ab)c − a(bc) is fully antisymmetric in the three arguments: any associative algebra
is alternative, of course, as [a, b, c] = A−A = 0. The polar decomposition is again O

∗ ≃ S
7×R

+,
on the understanding that S

7 is not a group (it has a structure called a loop). We recall that
the four spheres S

0,S1,S3 and S
7 are the only parallelizable ones, and clearly described the

Q(x) = 1 numbers for x in R,C,H and O respectively.
For the split octonions O

′ we can take e.g. (e1 = i)2 = +1, and then (e1e2) = e4, (e3e1) = e6
and e7 are also involutive, so the 7-dim metric has signature (+−−+−+ +), and Q = oo has
(4, 4) signature; of course, one still needs alternativity to guarantee Q(oo′) = Q(o)Q(o′).

The situation is thus nearly identical for the three division algebras C,H and O: the new
units are anti-involutory, and have to anticommute in this, the division algebra case; C is
commutative and associative, H is associative but not commutative, and O is neither. Anti-
commutativity restricts non-commutativity for quaternions, and alternativity substitutes non
associativity for octonions; as there are no more properties to sacrify, there are neither com-
position nor divison algebras in higher dimensions, although there are some rings, called e.g.
sedenions (dim 16) for the next case, of four algebraically independent units: if one proceeds
to these sedenions, with four units i, j, k, l, and (1+4+6+4+1)= 16 dimensions, the possible
algebras are neither composition nor division (Hurwitz, 1896; Zorn, 1930). The process, which
is a variant of the Cayley-Dickson method [1], continues...

A nice way to represent the octonions is the Fano plane F2P
2 (see e.g. [1]), the projective

plane over the (Galois) field of two elements F2: it draws the 7 = p2 + p + 1 (for p = 2)
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imaginary units in a triangle (three vertices, three mid-lines and the center). Recall the order
of the (projective) symmetry group PGL3(2) = PSL2(7) is 168 = (23 − 1)(23 − 2)(23 − 4) =
(72 − 1)(72 − 7)/2, and it is the second smallest non-Abelian simple group, the first one being
A5 = PSL2(5), of order 60 = 5!/2.

What about octonion automorphisms? The possible group Aut(O) has to lie inside SO(7),
with dim 21, because there is norm and orientation to preserve; let us just call Aut(O):= G2;
it has to be smaller than SO(7), because not any 7-frame goes into any other: both Baez [1]
and Rosenfeld [4] make easy the case for G2 to have dimension 14; taking i = e1 in the 6-dim
sphere of unit imaginary octonions, j = e2 has to lie in the orthogonal equator (S5), and k = e3
in the 3-dim space orthogonal to (i, k and ij): so dim Aut(O)= 6 + 5 + 3 = 14 (this shorter
argument is also in ([7], p. 76)). Then, as G2 acts transitively in the 6-sphere of unit imaginary
octonions, the isotropy group K ⊂ G2 has dimension 14 − 6 = 8: it turns out to be the SU(3)
group with the real irreducible 6-dim representation (becoming 3+3 over the complex): SU(3)
leaves the S

5 diameter of the previous 6-sphere fixed, embeddable in a R
6 space; we have then

G2/SU(3) ≃ S
6 as an homogeneous space (it turns out not to be a symmetric space), and also

SU(3)/SU(2) = S
5, as the exact sequence is SU(2) → SU(3) → S

5 ⊂ R
6. See diagrams at the

end of the paper, in Sect. 6.
What about a discrete group, in this octonionic case, which would play the role of the

Z3 = A3 in the quaternion case? The seven imaginary units can be cyclically permuted, which
gives a Z7 group, but this is not all: the Fano projective plane is also the projective line over
F7; one has also triangular 2π/3 rotations as symmetries, and they combine with Z7 to make
up a non-Abelian group of order 21. The natural group acting on the Fano plane is PGL2(7),
of order 336, while |PSL2(7)| = 168. Our discrete group is thus

Z7 ⋉ Z3, (3.1)

where Z3 ⊂ Z6 = Aut(Z7) determines the semidirect product. This corresponds to the A3 case
for the quaternions, but here Z7 ⋉ Z3 ⊂ A7 ; incidentally, this 21 order non-Abelian group is
the only other, with the direct sum abelian group Z3 ⊕ Z7, of this order.

Finally unit imaginary octonions form S
6, which admits a quasi-complex structure (Borel-

Serre) due to imaginary octonion multiplication: among the even spheres only S
2 and S

6 admit
a (quasi-)complex structure, truly complex for S

2.
Incidentally, it was Richard Feynman who first established a kind of 7-dimensional vector

product, (ξ∧η) = [ξ,η] /2 = Im (ξη), for ξ,η imaginary octonions, generalizing the Hamilton-
Gibbs vector calculus in three dimensions [9].

The automorphism group of the split octonions O
′ is the noncompact real form of G2,

which lives inside SO0(4, 3). The split octonion quadratic form Q′ admits the O(4, 4) group as
isometry, of course.

Modern high-energy physics uses many groups associated with the octonions, as G2 (holon-
omy of compactifying from 11-dim space), E8 as gauge group of the M-Theory still in 11-dim,
not to speak of E2

8 , used in string theory, or E6, which appears in Grand Unification Theories
(GUTs).

4 Some classes of tensors

We start now a seemingly totally independent development. Consider T p
q (=tensors on a vector

space, say V over a field F); take a particular one, t ∈ T p
q ; imagine the general linear group,

with g ∈ GL(V ) acting on it in the natural way, write g · t = t′, and try to classify the tensors
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by equivalence classes (orbits) under the GL action: as dimGL(V ) = n2, the simple vectors x
(as T 1

0 tensors) are classified: the zero vector and the rest; the little group of the later orbit
is the affine group An−1. Rank two covariant tensors T 0

2 (⇐⇒ bilinear forms) split first into
symmetric and antisymmetric parts, and there is also regular character (or not): any bilinear
form b ∈ T 0

2 generates a linear map from V to the dual space V ∗, b′ : V → V ∗, and as they
have the same dimension, the form b is called regular if the map b′ is an isomorphism (for good
reasons, Hitchin [15] speaks of stable forms instead of regular). The isotropy groups for the
regular case give rise to the orthogonal and symplectic groups in the known way. We recall:

If Q is a regular quadratic form, the isotropy group {g, g ·Q = Q} defines an orthogonal
group O(n); if ω is a regular 2-form, the group is the symplectic one, Sp(n) (acting on even
dimension 2n space); if τ is a volume form (or n-form 6= 0), the isotropy group is the unimodular
group, SL(n): so over any field, we have the three classical series of matrix groups of Cartan:
B-D, C and A; for some fields, e.g. over the reals, there is a further distinction by the Sylvester
signature.

The natural question now arises: Is there any other orbits possible, tensors under GL(V ),
besides the obvious Q,ω, τ and with isotropy groups? If so, which (new) groups arise? For
endomorphisms End(V )≃ T 1

1 the orbits under GL(n) are the so-called ”elementary divisors”,
which classify matrices; their little groups are easily identified, and are not very interesting for
our purposes. The next possible case are p-forms [14], with dimension dim

∧

T 0
p (Fn) =

(

n

p

)

,

but as
(

9

3

)

= 84 > 92 = 81, we have potentially four cases only:

• 3-forms on F
7 (72 = 49 >

(

7

3

)

= 35).

• 3-forms on F
8 (82 = 64 >

(

8

3

)

= 56).

• (Self)-3-forms in F
6 (62 = 36 >

(

6

3

)

= 20 > 1

2

(

6

3

)

= 10).

• Self-4-forms in F
8(82 = 64 > 1

2

(

8

4

)

= 35.

As we have 1

2

(

2n
n

)

=
(

2n−1

n−1

)

=
(

2n−1

n

)

, we have dim (self-3-forms in F
6)= 10 = dim (2-forms

in F
5), but the 3-forms themselves are very interesting, the isotropy group being SL3(C)2 for

F = C (62 − 2 · 10 = 16) and SL3(C) for F = R, [14]. For F = C the really interesting case is
the generic 3-forms in C

7. So for a generic 3-form φ, we have dim Aut(φ)= 49 − 35 = 14, the
same as the dimension of complex G2! In fact, Bryant [12] bases his study of G2 as invariance
group of φ. Engel and Reichel (see above) determined that there are two regular (stable) real
forms, with isotropy the compact and noncompact forms of real G2.

Is there any sensible isotropy group for a generic 3-form in R
8? It will be of dimension

82 −
(

8

3

)

= 64 − 56 = 8, and in the compact case the candidate would be SU(3)/Z3 = PU(3),
which has a nice 8-dim real representation, in fact the adjoint of SU(3); but we do not consider
this case anymore (see again [14, 15]), except the trivial remark that then the SU(3) group
would appear a second time in relation to R

8 (and the octonions), with possible applications
in physics: both flavour and colour physics use the group SU(3) consistently.

The (anti-)self-dual 4-forms are classes under SL8(R) and have also dimension 35; they are
called Cayley forms. They are not generic; the pertinent group happens to be Spin(7), which
has also a single real 8-dim representation; a nice discussion is in ([8], p. 255), as Spin(7),
together with G2, are the two exceptional holonomy groups. In a precise way, which we do not
elaborate, the 3-form in F

7 comes really from the self and antiselfdual forms in F
8.
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The proof that there are no more left over cases is just numerical: n2 = dimGLn(F) is less
than any other generic tensor; the reader can be convinced by himself that generic tensors of
any other rank would be equivalent to the above ones or have no room for isotropy groups.

5 The 3-form in dimension 7 and the octonions

Starting with a generic 3-form φ in F
7, if there is such a thing, the isotropy group, of dimension

14, will be a certain group G := G(3; 7). One suspects, of course, that for F = R, G(3; 7) =
Aut(O); how does one prove this? We shall only indicate the idea of the proof. Start by
the 3-form in F

7 (for F = R,C) and try to recover the octonions, with the group G2 playing
the dual role: it is the isotropy group of a ”generic” 3-form in F

7 and at the same time the
automorphism group of the (constructed) octonion algebra. The idea of the proof goes along
the following steps:

1. There is also a sense of regularity in the 3-form: in fact, a such form φ, generates an
special bilinear symmetric form β (found already by Engel, see [2, 14]): for x,y vectors
in F

7, if φ(x) is the 2-form contraction, φ(x) = xyφ,

β(x,y) := φ(x) ∧ φ(y) ∧ φ, (i.e., a 7 − form) (5.1)

2. Call φ regular if β(φ) is regular (non-degenerate). The isotropy group of this special 7-
dimensional metric is SO(7,F), and one recovers the natural inclusion G(3; 7) ⊂ SO(7,F).
Engel proved that, in the three cases (F = C and the two F = R), the β form is non-
degenerate for a generic (=lying in an open set) 3-form φ.

3. The SO group lies inside SL(F), hence there is a volume element; therefore, there is the
Hodge duality operator ∗, and there is also an invariant 4-form ψ =∗ φ, as φ ∧∗ φ = τ is
the volume element. Recall dim 3-forms = dim 4-forms for n = 7.

4. With the regular metric β and the 3-form φ, one gets an algebra! This is because an
algebra is a (particular) T 1

2 tensor, as xy = z means precisely this; the metric being
regular, ∃β−1, and one flips an index, passing from φ a ∧T 0

3 tensor to a T 1
2 one; write

β1(φ) = γ. Hence, in F
7 one has an algebra, with γ(x,y) = z. It is antisymmetric,

γ(e1, e2) = e1e2 = −e2e1 (for a basis e1, ..., e7), because so is φ in two indices, and it is
alternative, because φ is fully antisymmetric! See 8) below.

5. One has reproduced the ”vector” product of imaginary octonions!, and so you can recon-
struct the Fano plane for imaginary octonionic multiplication.

6. Adding now the unit 1, so that e2i is not zero but −1 (or +1, see below), we have
reconstructed the octonion composition and division algebras in the case F = R! And of
course, now it is clear that the G2 group has two faces: it is either the isotropy group
of a 3-form, or automatically the Aut group of the algebra: this is the looked-for Two

Faces of G2. One shows also that G2 is compact for the octonion division case (O), and a
noncompact form, lying in SO0(4, 3), for the split case, where some of the units square to
+1. Engel and Reichel proved [2] that there is a unique generic class of generic 3-forms
for F = C, and two for F = R.

7. Comparing this with the (true) quaternions H, there the 3-form is the volume form,
with SL3(R) as isotropy group; but the metric is put by hand, so the group becomes
SL3 ∩O(3) = SO(3); and indeed Aut(H)= SO(3).
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8. For the concrete form of the 3-form one mimics the octonion product: if {ei} is a basis
in, say, R

7, with ωi the dual basis, ωi(ej) = δij , the generic 3- form can be defined [12, 8]
as

φ = (124) + (157) + (163) + (235) + (276) + (374) + (465), (5.2)

where (124) means ω1 ∧ ω2 ∧ ω4 etc. Passing through the metric β and to the algebra γ,
one should reproduce the octonion product of Sect. 3, to wit

e1e2 = e4, e2e3 = e5, ... (5.3)

9. The argument above is oversimplified; for example, in the same way that a bilinear form
over the reals might have a signature (Sylvester), it turns out that there are two cases
of generic 3-forms in R

7 (Engel, Reichel). So one goes to the octonions and to the split
octonions, as the isotropy group of these forms is compact and noncompact respectively.

10. Notice the difference between the two cases (corresponding to the true and split octonions)
comes from adding the units, e2i , and does not depend much on the 7-dim structure (see
6 above).

6 Spin groups

We conclude by establishing the following relations between the several groups appearing in
our study, inspired in ([8], p. 256); we first recall the coincidences among the small dimension
spin groups (see e.g. [10]):

Spin (1) = O(1); Spin (2) = SO(2) = U(1); Spin (3) = SU(2) = Sq(1);

Spin (4) = Spin (3)2 ; Spin (5) = Sq(2); Spin (6) = SU(4). (6.1)

We consider now the five groups with an irreducible representation of real dimension 8,
namely SO(8), Spin(8), SU(4), Sq(2) and Spin(7); they are clearly related to R,C,H and O;
they also act transitively on the 7-sphere S

7. We shall consider three diagrams to illustrate
these relations. Figure 1. shows the relation of the quaternions and the complex numbers,
Figure 2. that of the octonions and the complex numbers, while considering the reals and the
octonions yields the following diagram of Figure 3.:

Figure 1: H and C

Spin (3) = SU (2) = Sq (1) −→ Sq (2) = Spin (5) −→ S
7
⊂ R

8 = H
2

SU(3)
?

- SU(4) = Spin (6)
?

- S
7
⊂ R

8 = C
4

S
5

?

==================== S
5

?
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Figure 2: O and C

SU (3) - SU(4) = Spin (6) - S
7
⊂ R

8 = C
4

G2

?

- Spin (7)
?

- S
7
⊂ R

8 = H
2

S
6

?

============ S
6

?

Figure 3: R and O

G2
- Spin (7) - S

7

SO(7)
?

- SO(8)
?

- S
7

w

w

w

w

w

w

w

w

w

w

RP
7

?

======= RP
7

?

Only the first two columns require an explanation: as obviously Spin(8)/Spin(7)= S
7, and

Spin(8) covers SO(8) twice, we have SO(8)/Spin(7)= the real projective space RP
7 ≃ S

7/Z2.
The relation between spin groups and division algebras, in particular the octonion algebras,

is noteworthy; we elaborate this in [11]. Lastly, a remark on Spin(8), which exhibits a wonderful
triality: the extension of O(8) by the three 8-dim representations (permuted by triality) gives
rise to F4, the second exceptional group, (

(

8

2

)

+ 3 · 8 = 52 = dimF4), whereas the quotient of
O(8) by the same triality automorphism group generates G2 (again!): the triple bond in the
Dynkin diagram for G2 (see Sect. 1) comes really from triality in O(8) ≃ D4! [13].

The center of Spin(8), as any Spin(4n) group, is V = Z2 ⊕ Z2: and we know that Aut(V )
is the symmetric group S3; in all cases except Spin(8) (and PO(8) = Spin(8)/V ) the outer
automorphisms of the group shrinks to Z2 (which e.g. permutes the two chiral representations),
but in Spin(8) the S3 group of autos of the center lifts to a S3 group of autos (triality!) of the
full group: the deep reason of this is the ”loop” multiplicative character of the seven sphere
of unit octonions, which appears twice in Spin(8): the sphere homology product of Spin(8) is
S

3 ⊙ S
7 ⊙ S

7 ⊙ S
11.

This triality is at the base of some supersymmetric field theories in physics, in particular
N = 1 Susy Yang-Mills in 10 = (1, 1) + (8, 0) dimensions, as well as the string theory IIA,
with N = 2 Supersymmetries, involving the vector and the two spinor representations for the
light cone group O(8) as dictated by triality; see [16]. So in conclusion, as regards to physics,
both the groups SU(3) ⊂ G2 and triality (as enhancement of duality), which is connected with
octonions, seem to be related, if not unavoidable, in modern physical theories.
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Even the group F4 does appear in an unexpected place in physics: namely, in M-Theory
or rather in the low-energy particle content. P. Ramond as shown [17] that the particles h
(graviton, dim 44), Ψ (gravitino, dim 128) and C (3-form, dim 84) are related to the Moufang
octonionic plane, OP

2, which as symmetric space is F4/Spin(9): the three represenations are
induced from the Id representation of F4, where the triplet is related to the Euler number, as
χ(OP

2) = 3. For further developments and extensions to F-Theory, see [18].
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