
© 2012 by Zheng Huimin. All rights reserved.

On Measurement and
Computation

by

ZHENG HUIMIN

supervised by Prof. Song Fangmin

A dissertation submitted to
the Graduate School of Nanjing University
for the degree of Master of Engineering

Department of Computer Science & Technology
Nanjing University

May 2012

研 究 生 毕 业 论 文
（申请硕士学位）

论文题目 : 论测量与计算

作 者 : 郑惠民

院 系 : 计算机科学与技术

专 业 : 计算机软件与理论

研究方向 : 量子计算、数理逻辑

指导老师 : 宋方敏 教授

二〇一二年五月

Abstract

Inspired by the work of R.Feynman, D.Deutsch, We formally propose the theory

of physical computation and accordingly, the physical complexity theory. To

achieve this, a framework that could be used to evaluate almost all forms of

computation making use of various physical mechanisms is established. Here, we

focus on applying this framework to Quantum Computation. As a preliminary

study on more general problems, some examples of other physical mechanisms

are also discussed in this paper.

Key Words: Quantum Computation, Physical Computation, computational

complexity

i

摘摘摘要要要

受 R.Feynman，D.Deutsch 等人工作的启示，我们形式地建立了物理可计

算理论以及相应的物理复杂度理论。文章中建立了一个评估框架，它可以用来

评估几乎所有利用物理机制进行的计算。这里我们特别关注了如何将该框架应

用在量子计算中。作为对更一般问题的初步探索，一些利用物理机制的其他算

例也在本文中进行了详细的论述。

关键词： 量子计算，物理计算，计算复杂度

ii

To My Parents.

iii

Contents

List of Tables . vi

List of Figures . vii

Chapter 1 Introduction . 1
1.1 Quantum Computation . 1
1.2 ‘Physical Computation’ . 2

Chapter 2 Models of Quantum Computation 3
2.1 Quantum Turing machine . 3
2.2 Quantum Circuit Model . 4

Chapter 3 The Theory of Physical Computation 5
3.1 Observer . 5
3.2 Physical States . 5
3.3 Physical processes and the operation ◦ 6
3.4 Physical Operator and the operation of operator 7
3.5 Physical Computability . 8

3.5.1 Deterministic Physical Computation 8
3.5.2 Non-deterministic Physical Computation 9

3.6 Complexity . 14
3.6.0.1 Resource and Complexity 16

3.7 Some Common Examples . 17
3.7.1 Mean of Three Numbers 18
3.7.2 Compass and straightedge constructions 19
3.7.3 Sorting Without Repeat 21
3.7.4 Volume of irregular shape 23
3.7.5 The centroid of Irregular Shape 24

3.8 Graph Isomorphism, Graph Spectrum and Oscillators 25
3.8.1 Spectrum of Graph . 25
3.8.2 Harmonic Oscillator of multi-freedom 27
3.8.3 The characteristic oscillators for a Graph 28
3.8.4 Comments . 29

3.9 Steiner Tree Problem . 30
3.10 DNA Computation . 31
3.11 N -body System and ECT . 33

3.11.1 Chaotic systems . 33
3.11.2 Chaotic systems with singularities 34

iv

Chapter 4 Computability . 36
4.1 Turing computable is physical computable 37
4.2 PLATO Machine . 37

4.2.1 N -body System and PHCT 38
4.2.1.1 classical mechanics 38
4.2.1.2 Smith’s idea . 40

4.2.2 Is N -body system too complex? 43
4.3 Recursive function whose derivative is not recursive 48
4.4 Physical States which is not computable 49
4.5 A few Comments . 50

4.5.1 Examples in Quantum Mechanics 50
4.5.2 Measure Reals . 51
4.5.3 Existence . 52

Chapter 5 Quantum Computation 54
5.1 Quantum Algorithms . 54

5.1.1 Quantum Computability and Quantum Complexity . . . 55
5.1.2 Deutsch-Josza Algorithm 55
5.1.3 Grover’s Algorithm . 57
5.1.4 Shor’s Algorithm . 58

5.2 Quantum Simulation and Quantum Algorithm 61
5.3 Conclusions and Future Works 63

Bibliography . 64

Publications . 68

Acknowledgements . 69

Vita . 70

v

List of Tables

vi

List of Figures

3.1 Mean of Three Numbers . 18
3.2 Compass and straightedge construction 21

4.1 A physical implementation of Plato Machine 47
4.2 . 51
4.3 . 52

vii

Chapter 1

Introduction

1.1 Quantum Computation

The research of quantum computation has been lasting for about 30 years since

R.Feynman proposed the concept of so-called ‘quantum computer’ in 1982[2].

Founding out that there do exist some quantum systems which are suspected

cannot be efficiently simulated by classical computers, early researchers natu-

rally speculated that quantum mechanism itself may provide stunning power

of computation. In order to strictly define what is ‘quantum computation’,

researchers introduced various new computational models, including Quantum

Turing machine [1] and Quantum Circuit Model[5]. However, at that time,

no convincing evidence was discovered to support the conjecture that quan-

tum mechanism can really be used to speed up the computation of some hard

problems greatly.

D.Deutsch found the first evidence that quantum computers may surpass the

Turing machine[9] in query. In fact, he constructed a special scene in which any

DTM(deterministic Turing machine)has to query the oracle for O(2n) times to

find the correct answer(for certain) in worst cases while QTM(quantum Turing

machine) need just once query in all cases.

One of the most remarkable results is quantum factorization, which is due

to Peter Shor[10, 11]. The best classical algorithm for factorization so far has

to run for O(exp(n1/3 log2/3 n)) steps. However, Shor showed that one can

use a family of quantum circuit, which contain O(log3 L) gates and needs

only O(L2 logL log logL) operations(where L ≡ ⌈log(N)⌉) to get the right an-

swer.

Grover’s Algorithm [13] is another successful example of quantum algo-

rithms. This algorithm can be used to search a database without structure.

It is easy to prove that the time complexity of this problem with respect to

Turing machine is O(n). However, there does exist a quantum algorithm whose

time complexity is O(
√
n). Since it has been showed that this is the optimal

algorithm for all algorithms that considering quantum mechanics [18] , so the

complexity of Grover’s algorithm can be looked as the quantum complexity of

this problem.

One of the most important reason that why Quantum algorithms(especially

1

Shor’s algorithm) seem so interesting to many computer scientists is that their

existence indicate a huge challenge to extended Church-Turing thesis[18], which

states that:

Any model of computation can be simulated on a probabilistic Turing ma-

chine with at most a polynomial increase in the number of elementary operations

required.

1.2 ‘Physical Computation’

On the other hand, with the exciting research in quantum computation as

well as other new paradigms of computations(e.g.DNA computation), the idea

that we may just look physical processes as computations(not just the Tur-

ing machine)was also developed. The seeds of this idea can be traced back to

Feynman[2], Deuthsch[3] and Pitowsky[7] et al.

It is not very hard to understand and appreciate this idea, for at first glance,

adopting this point of view has at least three benefits:

• It covers the concept of classical algorithms naturally, for an algorithm

on Turing machines(its physical implementation) can also be looked as a

family of physical processes and the corresponding measurement.

• With smart-designed physical oracle, it is possible for us to solve some

problems more efficient than any Turing machines.

• Being the ones which could be directly simulated, some physical methods

can also enlighten us to design smart algorithms on Turing machines.

What’s more, currently, it seems that we cannot exclude the possibility that

there may exists a family of physical processes which can help us to calculate

some problems which cannot be solved by a universal Turing machine in prin-

ciple.

However, because of vagueness and extraordinary generality, the theory of

so-called ‘physical computation’ has a significant defect yet.

• In many cases, people cannot decide how to define the resource for a

‘physical algorithm’. And as a result they cannot proof or even formally

conjecture whether a ‘physical algorithm’ is really superior to any algo-

rithms on Turing machines.

Note that the theory of quantum computation is almost free from such defect,

for researchers have completed the formal definition of the computational model

for quantum computation in the early years. Roughly speaking, things tend to

go wrong when:

• People adopt a design on which the physical postulates it depends is just

an empirical one.

• More than one different systems of physical postulates are used.

2

1.3 The structure of the article

In chapter-II we shall introduce two well-known models of quantum computation

and the definition of complexity respectively. And after that we will formally

establish the theoretical foundation of physical computation and propose the

theory of physical computability in chapter-III. In chapter-IV, we discuss some

famous examples which claimed that even universal Turing machine may not be

the most powerful computational model in our physical world. In the beginning

of chapter-V,we try to use the theory of physical computation to reanalyze the

quantum algorithms. In the end of chapter-V, we focus on the topic about how

to construct problems which take advantage of quantum simulations.

3

Chapter 2

Models of Quantum
Computation

2.1 Quantum Turing machine

Quatnum Turing machine was first introduced by Benioff[1] in 1980 and was

developed by Deustch and Yao. The modern definitioin was given by Bernstein

and Vazirani in 1997[4].

Definition 2.1.1. (Quantum Turing machine, Bernstein 1997) Let C̃ be a set

of complex nmber α satisfying: For each α, there exists a polynomial time

algorithm to compute the value of Im(α) and Re(α) close to 2−n within the

true value.

A Quantum Turing machine M is defined as the triple (Σ, Q, δ), where Σ is

a finite alphabet with an identified symbol # , Q is a finite set of states with

an identified initial state q0 and final state qf ̸= q0; δ, the quantum transform

function δ : Q × Σ → C̃Σ×Q×{L,R}. The QTM has a two-way infinite tape of

cells indexed by Z, and a single read/write tape head that moves along the

tape. We define configurations initial configurations and final configurations

exactly as for DTMs. Let S be the inner-product space of finite complex linear

combinations of configurations of M with the Euclidian norm. We call each

element phi ∈ S a superposition of M . The QTM M defines a linear operator

UM : S → S, called the time evolution operator of M as follows: If M starts in

configurations c with current state p and scanned symbol σ. The after one step

M will be in superposition of configurations ψ =
∑
i αici, where each non-zero

αi corresponds to a δ(p, σ, τ, q, d), and ci is the new configuration that results

from applying this transition to c. Extending this map to the entire space S

through linearity gives the linear time evolution operator UM .

Definition 2.1.2. If UM can keep Euclidian norm, then we say M is well

deformed.

Theorem 2.1.3. If QTM is in the superposition ψ =
∑
i αici and is observed,

the probability of the observer gets the configuration ci is |αi|2, and then M is

in the state ψ′ = ci.

Theorem 2.1.4. A QTM is well-deformed if and only if its time evolution

operator is unitary.

4

In QTM, the number of the read/write tape head moves during a computa-

tion is the cost of time.

Theorem 2.1.5. There exists a universal QTM, which is polynomially equiv-

alent to any QTMs.

2.2 Quantum Circuit Model

The first quantum circuit model was due to Deutsch. Then quantum circuit

model was improved by Yao[5], who also proved that for any QTM, there exists

a uniform family of quantum circuit which is polynomially equivalent to that

QTM.

Not like QTM, quantum circuit model tends to describe an algorithm by us-

ing universal quantum gates and circuits without loops. Quantum circuit model

does not need infinite many quantum gates, but finite many quantum gates

which called the universal quantum gates. It has been proved that Hadamard

Gate, phase gate, C-NOT Gate and π/8 Gate are universal. For any finite

dimensional U operators, we can always approach it effectively by means of a

universal family of circuits U , which only consists 4 gates above, i.e.

∀ε(∃n ∈ U), E(U, Ũn) ≡ max
|ψ⟩

∥(U − Ũn)|ψ⟩∥ < ε

The scale of a quantum circuit is defined as the number of the universal

gates and the depth is defined as the longest path from input to output, if the

gates is looked as vertices.

Both Quantum circuit model and QTM are important models of quantum

computation. But we do not know whether they are the most natural mod-

els of quantum computation or do they fully take the advantage of quantum

mechanics, no matter in the theory of quantum computability and quantum

complexity.

5

Chapter 3

The Theory of Physical
Computation

3.1 Observer

Measurement is in terms of observer. Though there are many differences among

people’s opinions about the exact definition of human beings, we prudently

assume that an observer is classical, that is, the observer will never get incom-

patible results during one measurement.

In this article, we will never use the terminology such like ‘a observer of the

observer’, or in other words, by ‘observer’ we always mean the last one outside

the whole experiment.

In order to unify various forms of results, we require that the observer only

accept the symbols on a tape(just something like the one of Turing machine)

and also only use this to initialize an experiment.

So we define the legal inputs and outputs as the elements in set Σ+, where

Σ = { 0, 1, ∗, . }

and Σ+ the finite string composed by elements in Σ.

The concept of observer is crucial to our theory.

3.2 Physical States

We use (usually finite) attributes which may contribute to the computations to

label the physical states. In addition, though may not be actually concerned

in every computation, three fundamental quantities, namely, space, energy and

mass are always included in a state for the sake of analysis of resource and

complexity.

We have:

Ω ⊂ {x1}A1 × {x2}A2 × · · · × {xn}An × {m}M × {s}S × {e}E

Or more generally(Quantum),

Ω ⊂ {x1}A1 × {x2}A2 × · · · × {xn}An × {Cm}M × {Cs}S × {Ce}E

6

For simplicity, fundamental attributes are usually omitted, i.e.

Ω ⊂ {x1}A1 × {x2}A2 × · · · × {xn}An

For a certain attribute Ai, what really matters is its type which is constrained

by its dimension. Note that dimensionless quantity(e.g.friction coefficient) can

also be assigned to a null type. When a quantity is expressed by combination

of other quantities, it’s dimension type should be preserved, or rather, any

equations should be dimensional balanced.

For example:

E[D:ML2T−2] ::=m[D:M]g[D:LT−2]h[D:L] = mgh[D:ML2T−2]

E[D:ML2T−2] ::=
1

2
(m)[D:M](v2)[D:L2T−2] =

1

2
(mv2)[D:ML2T−2]

E[D:ML2T−2] ::=(m)[D:M](c2)[D:L2T−2] = (mc2)[D:ML2T−2]

are all dimensional balanced.

3.3 Physical processes and the operation ◦

Physical process on a state space Ω is a set of physical state whose elements are

labeled by moment t(t ∈ [0, T], T ∈ R+).

P ∈ { (T, P̃)| T ∈ R+, P̃ : [0, T] → Ω } ≡ P

If two physical processes on Ω satisfies

(π2P1)(π1P1) = (π2P2)(0)

we can define operation ◦ : P × P → P i.e.

P2 ◦ P1 = P3

satisfies:

1. π1P3 = π1P1 + π1P2

2. if 0 ≤ t ≤ π1P1 ,(π2P3)(t) = (π2P1)(t)

3. if π1P1 ≤ t ≤ π1P1 + π1P2 ,(π2P3)(t) = (π2P2)(t− π1P1)

For convenience, we introduce �P� as the initial state of P , and �P� the final

state of P , i.e.

�P� ≡ (π2P)(0),�P� ≡ (π2P)(π1P)

7

3.4 Physical Operator and the operation of

operator

Physical operator is a tuple whose first component is a state x in Ω and the

second component is a physical process whose initial state is x, i.e.

O ⊂ {(x, P)|x ∈ Ω,�P� = x}

In particular, a deterministic physical operator O means: O is a physical oper-

ator, and

if O(x1) ̸= O(x2), then x1 ̸= x2

if we only care about the effect the operator do to the initial state, we can look

operator as a mapping in Ω, i.e. O : Ω → Ω.

The operation between two deterministic physical operator is defined as

follows(if O1, O2 are productive):

O3 = O2 ◦O1

which satisfies

∀x(O3(x) ≡ O2(�O1(x)�) ◦O1(x))

In some more general cases, it is useful to talk about non-deterministic phys-

ical operators or random physical operators. A random physical operator Õ

contains the tuples which has the same initial states but different physical pro-

cesses, i.e.

Õ ⊂ {(x, P)|x ∈ Ω,�P� = x}.

and

if Õ(x1) ̸= Õ(x2), it is still possible that x1 = x2

People cannot decide the output Õ(x) just by the initial state x ∈ Ω.

Similarly, if just care about extensionality, we can look operator as a rela-

tionship on Ω i.e.Õ : Ω× Ω

We can also define operations between two non-deterministic operators, if

some preconditions are satisfied. To do so, we first expand the definition of

some symbols.

O(x) ≡ {P |� P� = x}

O(X) ≡ {P |� P� ∈ X ⊂ Ω}

�O(x)� ≡ {y|y ∈ Ω,∃P ∈ O(x)s.t.� P� = y}

So O2 ◦O1 (if they are productive) can be defined as:

O2 ◦O1(x) ≡ {P2 ◦ P1|P1 ∈ O1(x), P2 ∈ O2(�O1(x)�)}

8

Note that of all the processes created by random physical operators, in the

end their last states shall be exposed to outside world, or rather, the observer.

For instance, if the operator

H =
1√
2

(
1 1

1 −1

)
,

usually called Hadamard gate, is not measured in the end, it will not be thought

as non-deterministic or random operator.

3.5 Physical Computability

3.5.1 Deterministic Physical Computation

Definition 3.5.1. (Deterministic Physical System)Deterministic Physical Sys-

tem P is a Five-Tuple

P ≡ (Ω,Σ,∇,H,∆)

where:

• Σ = {0, 1, ∗, .}, Σ+ is the collection of finite string formed by elements

in Σ , ΩΣ+ is the the set of physical implementation of Σ+.

• Ω = {ψi, i ∈ Λ}, Ω ̸= ΩΣ+ ,Λ is an index set, Ω is a set of distinguishable

physical states(labeled by their attributes).

• ∇ : ΩΣ+ → Ω, initialization operator

• H : Ω → Ω, evolution operator

• ∆ : Ω → ΩΣ+ , Measurement operator

Definition 3.5.2. (Partial Physical Computable Arithmetic Functions)For any

partial arithmetic function f : N → N is said to be partial physical computable,if

and only if there exists a Deterministic Physical System

P ≡ (Ω,Σ,∇,H,∆)

which satisfies:

If x ∈ dom(f), then,

�
(
(∆ ◦ H ◦ ∇)pxq

)
�

.
= pf(x)q

Similarly, we can define Total Physically Computable Arithmetic Functions

Definition 3.5.3. (Total Physically Computable Arithmetic Functions) For

any total arithmetic function f : N → N is said to be Total Physically Com-

putable, if and only if there exists a Deterministic Physical System (Ω,Σ,∇,H,∆)

which satisfies:

9

∀x ∈ N,we have:

�
(
(∆ ◦ H ◦ ∇)pxq

)
�

.
= pf(x)q

In order to extend the definition of physical computability to non-arithmetic

functions, we should take into consideration the precision of the measurement

and computation. Therefore, we need a distance function to measure the pre-

cision of two values and define the computability as the ability of computing in

any desired precision.

Definition 3.5.4. (Partial Physically Computable Functions)Given a partial

function f : A→ B,and a metricD : B×B → R, f is said to be partial physically

computable with respect to the metric D , if and only if for any ϵ > 0 there

exists (Ω,Σ,∇,H,∆),s.t. for any x ∈ A,we have:

if x ∈ dom(f),

D
(
x�
(
(∆ ◦ H ◦ ∇)pxq

)
�y, f(x)

)
< ϵ

Similarly, we can also define Total Physical Computable Functions.

Definition 3.5.5. (Total Physically Computable Functions)Given a total func-

tion f : A → B,and a metric D : B × B → R,f is said to be partial physically

computable with respect to the metric D if and only if for any ϵ > 0 there

exists (Ω,Σ,∇,H,∆), such that,

∀x ∈ A

D
(
x�
(
(∆ ◦ H ◦ ∇)pxq

)
�y, f(x)

)
< ϵ

3.5.2 Non-deterministic Physical Computation

On the other hand, many physical processes are considered to be non-deterministic,

which enable us to implement so-called ‘randomized algorithms’ and ‘quantum

algorithms’. Our Probabilistic Physical System is defined as follows.

Definition 3.5.6. (Probabilistic Physical System)Probabilistic Physical Sys-

tem P∗ is a five-tuple:

P∗ ≡ (Ω,Σ,∇,H∗,∆)

. where,

• Σ = {0, 1, ∗, .}.

• Ω = {ψi, i ∈ Λ}.

• ∇ : ΩΣ+ → Ω,which is also called initialization operator

• H∗ : Ω×Ω ,which also called evolution operator, which is non-deterministic.

• ∆ : Ω → ΩΣ+ , which is also called measurement operator.

10

Non-deterministic does not necessarily cause probability, but let’s convention

that in this article we always discussed the randomness which has a probabilistic

distribution.

Definition of the computable functions by means of P∗ is an analog to that

of P. As an example, we define Total Non-deterministic Physical Computable

Functions.

Definition 3.5.7. (Total Non-deterministic Physical Computable Func-

tions(Las Vegas)) For any total function f : N → N is said to be total

non-deterministic physical computable function, if and only if there exists a

five-tuple

(Ω,Σ,∇,H∗,∆)

s.t.

∀x
(
�
(
∆ ◦ H∗ ◦ ∇)pxq

)
�

.
= pf(x)q

)
Because of randomness, for any identical inputs x, the system may call

different process to compute. The above definition is the counterpart of the

definition of the so called Las Vegas algorithm.

Definition 3.5.8. (Total Non-deterministic Physical Computable Func-

tions(Monte Carlo))For any total function f : N → N is said to be total

non-deterministic physical computable, if and only if there exists

(Ω,Σ,∇,H∗,∆)

s.t.

∀x ∈ N,
Pr{Event(x)occurs} > 2/3

where

Event(x) ≡
(
�
(
∆ ◦ H∗ ◦ ∇)pxq

)
�

.
= pf(x)q

)
Note that before being initialized, the states should be some ‘trivial’ ones in

Ω. The word ‘trivial’ means very easy or cheap to get or create. For the sake

of clarity, we assume there are infinite many such trivial states. People can get

any finite of them and only those being used will be discussed in the analysis of

complexity. This is actually quite similar to the cases in Turing machine: Turing

machine have infinite many checks and memories, but this does not imply every

Turing machine will consume infinite many resource.

Readers may ask that why we do not talk about something like‘evolution

environments’. Well, because here ‘environments’ are also treated as states.

In fact, ‘environments’ are usually constructed by some sorts of ‘elements’ and

the ‘blueprints’ which instruct how to build a proper ‘environment’ when scale

11

changes. The ‘blueprint’ are actually the counterpart of the programmes in

traditional computing. In addition, to make the whole physical computation a

uniform method, the length of ‘blueprints’ are required to be finite. Generally

speaking, infinite long ‘blueprint’ can produce physical experiments which can

compute uncountable infinite many function. For example, non-uniform circuit

model can exceed any Turing machines, because they can compute Turing’s

halting function. However, we don’t discussed computational models which is

not uniform. For simplicity, states denote ‘environments’ are not always written

in this article, especially for some very easy environments. Readers may always

think there is a Ωenv beside the main states space Ωmain, i.e.

Ω ≡ Ωenv × Ωmain.

Another fact we need to know is that for each physical system, P is not

unique. People can use different way to explain and understand the same object.

For example, if ∆ ◦ H ◦ ∇ computes a function, then ∆′ ◦ I ◦ ∇′ also computes

the same function, where

∇′ =H ◦∇

∆′ =∆

I satisfies

∀x(Ix = x).

I acts as a unit.

However, there may exist some ‘well formed’ decomposition. We may require

the operator ∇ is a functor from ΩΣ to Ω (or Ran(∇))(Of course, before doing

this, it is trivial that ΩΣ and Ω could be actually looked as categories or even

cartesian closed categories), which satisfies the following axioms for functors:

x̄→ ∇x̄

and

fx̄→ ∇fx̄

s.t.

idx̄ → ∇idx̄ = id∇x̄

and

g ◦ f → ∇g ◦ f = ∇g ◦ ∇f

12

for all morphism f : ΩΣ → ΩΣ and g : ΩΣ → ΩΣ. i.e.

∇x // ∇(fx) = (∇f)x

��
x //

OO

(fx)

In addition, if ∇ is not only a functor, but also satisfies

∀x1∀x2(∇x1 ̸= ∇x2)

which means ∇ is 1− 1 on Ω and thus reversible or we can say ∇ is an isomor-

phism between ΩΣ and Ran(∇). So in this case, ∆ could be defined as

∆ ≡ ∇−1.

Therefore, we have:

∇x // ∇(fx) = (∇f)x

��
x //

OO

(fx)

OO

Unfortunately, in most cases, ∇ cannot be a non-trivial functor. ∇(fx̄) may

not equals (∇f)(x̄).
(∇f)x

∇x //______

77ooooooooooooo
∇(fx)

��
x //

OO

(fx)

OO

This may happen when the ‘input’ is a position with dimension L and the

‘output’ is velocity with dimension LT−1. However, if there exist some project

operators πAi , i ∈ 1, 2, 3, . . . , s.t.

∃A1∃A2(πA1(∇(fx)) = πA2((∇f)(x)))

which indicate

πA1 ◦ ∇x // πA2((∇f)x)

��
∇x //________

OO

∇(fx)

��
x //

OO

(fx)

OO

13

s.t. Ω′ is isomorphic to ΩΣ under some isomorphism, but the functor may not

be constructed by ∇ or π. Another definition may lead the both categories

are not ccc. Suppose the initial states and the final states are always marked

explicitly. That is, substitute Ωbool × ΩΣ for ΩΣ. Thus πAi
i = 1, 2 could be

replaced as π, where π is defined as

π =

{
πA1 , if b=0;

πA2 , o.w.

and π ◦∇ and ∆ ◦ π−1 satisfies the axioms of functor, where π−1 is the original

image of π. This method actually look ⊤×∇x and ⊥× (∇f)(x) as elements in

a certain equivalence class.

⊤× π ◦ ∇x // ⊥× π((∇f)x) = ⊥× π∇(fx)

��
∇x //_____________

OO

∇(fx)

��
⊤× x //

OO

⊥× (fx)

OO

However, generally speaking, the extended space Ωbool × Ω is not cartesian

closed, for there may exist two objects without morphism between them.

Since Hilbert’s 6th problem has not been solved yet, i.e. the whole theory

of physics has not been axiomatized, we do not know that whether there exist

some additional fundamental mathematical constraints should be included in

this theory, though Beggs et al. have discussed the axioms of measurement

based on Hempel’s axioms[19]. Now, maybe the only restrictions here are the

finiteness of the resource cost by a physical process and the finiteness of the

attributes used to label a physical state set.

As a result this system may looks looser than many classical computational

models and may contains the ability to surpass all these models.

Well, our framework is actually not a specific model, but acts as a tem-

plate(or a meta-model) of some possible computational models. We would like

to let physicists to add more necessary restrictions into the system. On the

other hand, properties hold in this framework are universal and independent of

any instances(that is, the models) of it. For example, any inputs or outputs

of infinite length is forbidden in this framework, though some middle states of

infinite details may be permitted.

Of course, when it comes to a specific branch of the physics, we can always

know what is a legal states and processes. However, we wish to keep some

freedom: to let the experimenter combine various axioms in physics so as to

optimize the computations.

14

3.6 Complexity

For the physical systems defined above, we can even ignore that whether there

exists a physical mechanism in reality to implement it. Any functions which

could be written as the composition of the three operators would be considered

as computable(deterministic version).

Ω
H // Ω

∆

��
ΩΣ+

f
//

∇

OO

ΩΣ+

But any experiments which implement a certain system will cost resource. We

will focus on four kinds of resource, namely, time, space, energy and mass.

One can also include 7 fundamental sorts of attributes considering 7 dimen-

sions in SI(Systéme international d’unités). However, actually our decision is

not a totally empirical one. In fact, many differential equations which are es-

tablished to describe various phenomena involving these attributes are always

related to energy, time, and space. After properly choosing unit to make all

the constant into 1, we can just rewrite these dimensions in the forms of the

combinations of 4 fundamental dimensions, which enable us to continue to use

the 4 attributes to represent the increase of the resource. The counterexample

may occur only when m or more than m new attributes appear in n equations

and m > n, however these cases tend to be unlikely to happen, if these equa-

tions(theory) we discussed are assumed to be ‘enough’ for some phenomena in

nature.

Definition 3.6.1. (Resource) The resource of a physical process R includes:

• T: The (expectation of the)total time the whole process consumed;

• S: The maximum of (the expectation of)the space the whole process con-

sumed;

• M: The maximum of (the expectation of)the mass the whole process con-

sumed;

• E: The maximum of (the expectation of)the energy the whole process

consumed.

and R ≡ (T,S,M,E)

In the above definitions, the metric of them could be selected as the common

ones. Today, most physicists tends to believe that mass and energy are not

independent, neither do time and space. But for convenience, we still focus the

primitive forms of resource, for actually we don’t care about the independence

here.

15

In the above definitions, we don’t talk about the potential possibility that

even time could be reused.

We convention that the resource is with respect to an inertial system, i.e.

the observers obtain their results when they are in an inertial system to the

system running the ‘algorithms’, so as to rule out the paradoxes because of the

theory of relativity.

In many cases, we just cannot get a infinite precise estimation about the

resource, but for our purpose, we actually do not need such things. Of course,

there may exist some cases when we could not get an estimation without any

promise of any precision, however, we will not use such processes to construct

our implementation.

Suppose the projections of the fundamental attributes(resource) are πM(S),

πS(S) and πE(S) Then the resource a physical process consumed is:

TP ≡ π1P

MP ≡ max{πM(S), S ∈ Ran(π2P)}
SP ≡ max{πS(S), S ∈ Ran(π2P)}
EP ≡ max{πE(S), S ∈ Ran(π2P)}

In general cases, when we have to discuss the process of superposition, the

resource can be defined as:

TP ≡ π1P

MP ≡ max{EJπM(S)K, S ∈ Ran(π2P)}
SP ≡ max{EJπS(S)K, S ∈ Ran(π2P)}
EP ≡ max{EJπE(S)K, S ∈ Ran(π2P)}

So it is easy to see that

TP2 ◦ P1 = π1P1 + π1P2

MP2 ◦ P1 = max{MP1,MP2}
SP2 ◦ P1 = max{MP1,MP2}
EP2 ◦ P1 = max{MP1,MP2}

According to the definition above, the resource of a non-deterministic physical

operator O which is initialized by x ∈ Ω should be defined as:

TO(x) ≡ EJTOi(x)K, Oi(x) ∈ O(x)

MO(x) ≡ EJMOi(x)K, Oi(x) ∈ O(x)

SO(x) ≡ EJSOi(x)K, Oi(x) ∈ O(x)

EO(x) ≡ EJEOi(x)K, Oi(x) ∈ O(x)

16

So for operators’ operation, we have:

TO2 ◦O1(x) = TO1(x) + TO2(�O1(x)�)

MO2 ◦O1(x) = max{MO1(x),MO2(�O1(x)�)}
SO2 ◦O1(x) = max{SO1(x),SO2(�O1(x)�)}
EO2 ◦O1(x) = max{EO1(x),EO2(�O1(x)�)}

3.6.0.1 Resource and Complexity

Definition 3.6.2. (Resource(deterministic))A resource the physical pro-

cess which complete the whole computation consumed RP including:

TP(x) ≡ T((∆ ◦ H ◦ ∇)pxq)

SP(x) ≡ S((∆ ◦ H ◦ ∇)pxq)

MP(x) ≡ M((∆ ◦ H ◦ ∇)pxq)

EP(x) ≡ E((∆ ◦ H ◦ ∇)pxq)

i.e. RP(x) ≡ (TP(x),SP(x),MP(x),EP(x))

Definition 3.6.3. (Resource(Las Vegas))A resource the physical process

which complete the whole computation consumed RP including:

TP(x) ≡ T((∆ ◦ H∗ ◦ ∇)pxq)

SP(x) ≡ S((∆ ◦ H∗ ◦ ∇)pxq)

MP(x) ≡ M((∆ ◦ H∗ ◦ ∇)pxq)

EP(x) ≡ E((∆ ◦ H∗ ◦ ∇)pxq)

i.e. RP(x) ≡ (TP(x),SP(x),MP(x),EP(x))

Definition 3.6.4. (Resource(Monte Carlo))A resource the physical process

which complete the whole computation consumed RP including:

TP(x) ≡ T((∆ ◦ H∗ ◦ ∇)pxq)

SP(x) ≡ S((∆ ◦ H∗ ◦ ∇)pxq)

MP(x) ≡ M((∆ ◦ H∗ ◦ ∇)pxq)

EP(x) ≡ E((∆ ◦ H∗ ◦ ∇)pxq)

i.e. RP(x) ≡ (TP(x),SP(x),MP(x),EP(x))

17

The corresponding concept of complexity should be defined as the resource

consumed with respect to the length of the input.

Definition 3.6.5. Complexity The complexity of a kind of resource is a func-

tion of the length of the input x,

CT(n) = max{TP(x)|n− 1 ≤ log x ≤ n, n = 1, 2, 3 . . . }
CM(n) = max{MP(x)|n− 1 ≤ log x ≤ n, n = 1, 2, 3 . . . }
CS(n) = max{SP(x)|n− 1 ≤ log x ≤ n, n = 1, 2, 3 . . . }
CE(n) = max{EP(x)|n− 1 ≤ log x ≤ n, n = 1, 2, 3 . . . }

However, for simplicity, usually we’ll continue to use asymptotic notations,

such as big O notation, and the like.

Note: actually, the finiteness of resource cost is a necessary precondition for

all “uniform” physical computation models. Another necessary precondition is

that all the physical attributes should be at some trivial states(very easily to be

constructed, e.g. 0◦C, 0m/s) before the experiments. If these requirement are

not satisfied, the model will be a non-uniform one. This case is also discussed

in details by Beggs et al.[19],[22]

3.7 Some Common Examples

It is interesting to find some new methods to compute functions without the

help of universal Turing machine. Through the ages, people have found a lot of

such examples, the most famous of them are:

• Measure the volume of an object by putting it into the water;

• Obtain the centroid of an object by two-suspension method;

• Compute function sine by analog circuit;

• Decide the path of minimum cost using Fermat’s Principle;

• Calculate the mean of numbers by the second Law of Thermodynamics.

Actually, we can give even more similar examples:

• By making use of resonance, we can easily find the desired tuning fork

from a heap of them. Otherwise, we have to look up the label of them one

by one and even have to compute the frequency one by one if there is no

labels on them.

• We can compute the square root of an given number x by the law of free

fall. Prepare a vacuum tube T of length x and let it stand vertically, then

let an object o which is small enough fall. Get the time t when it touch

the bottom, and we have
√
x = t/c, where c = (2/g)1/2.

18

• We can sort a series of numbers through dangling poises by strings, where

the strings satisfies Hooke’s law. Given an array of numbers {xi} construct
or find poises whose mass is just xi, then dangle them by strings with the

same stiffness coefficient. When the system is stable, the position of the

poises with respect to their weight just indicate the relationship desired.

However, it is hard for us to estimate the cost of the methods above just

after we describe them informally. So we select a part of them to analyze next.

Conventions: x is the representation of number in digits, [x] is the value of

x, [x]A means the attribute A has the value x. [x]Σ
∗
means the representation

of quantity x though not on the tape.

3.7.1 Mean of Three Numbers

Given three numbers, compute the mean of them making use of law of thermo-

dynamics. This idea comes from Pitowsky [7].

The strict description of the problem: Given three numbers x1, x2, x3 ∈
[0, 100], compute

x̄ =
(x1 + x2 + x3)

3
(Accurate to two decimal places).

Pitowsky suggests that since all of the three numbers less than 100 and bigger

than zero, note that the freezing point of water is 0 C◦ and the boiling point

of water is 100 C◦ under the one standard air pressure, So for each number xi,

we can prepare the corresponding water of volume V and temperature of xiC
◦.

And then pour the water of three vessels into a bigger one, whose volume is

V ′(V ′ > 3V), and wait. After the water arrived at the balance point, measure

the temperature. Of course, we assume that during the whole procedure, no

calory is lose.

Figure 3.1: Mean of Three Numbers

Apparently, the physical state the method above deal with is the temperature

of water, so we have

Ω = {t⃗ |ti ∈ [0, 100], i = 1, 2, 3}T .

19

on the other hand, we suppose the water is heat up from 0 C◦, i.e. the initial

state of the experiment is ([0]T , [0]T , [0]T).

Therefore, the process could be depicted as following:

∇ : Σ+ → Ω, heat up the water to the desired temperature

∇(px1q, px2q, px3q) = (xT1 , x
T
2 , x

T
3)

H : Ω → Ω, admixture the water of different temperature, the second law of

thermodynamics is used

H(xT1 , x
T
2 , x

T
3) = (x̄T , x̄T , x̄T)

∆ : Ω → Σ+, measure the temperature of the water

∆(x̄T , x̄T , x̄T) = px̄q

For this problem, since the precision is finite, and there are only constant

(three) numbers and the numbers are bounded, we can easily deduct that RP is

a constant. As a matter of fact, for Turing machine, we can also find a constant

resource costing algorithm which is just looking up a finite list to solve the

problem.

3.7.2 Compass and straightedge constructions

We look ‘compass and straightedge constructions’(CSC) as a sort of physical

computation just because of the fact that physical laws permit us to create

compasses and rulers to help us to do some special computation. Another

implicit postulate is that people can find a ‘ideal’ or good enough physical

plane where Euclid’s axioms hold.

Note that though CSC is come from real rulers and compasses, there are

some difference between them. The ruler here is infinitely long, and only has

one side. Further more, there is no markings on the ruler(this is why the ruler is

called ‘straightedge’). The compass is assumed to collapse when lifted from the

page, so may not be directly used to transfer distances. (This is an unimportant

restriction, as this may be achieved via the compass equivalence theorem.)

All compass and straightedge constructions consist of repeated application

of five basic constructions using the points, lines and circles that have already

been constructed. These are:

• Creating the line through two existing points

• Creating the circle through one point with centre another point

• Creating the point which is the intersection of two existing, non-parallel

lines

20

• Creating the one or two points in the intersection of a line and a circle (if

they intersect)

• Creating the one or two points in the intersection of two circles (if they

intersect).

People have proved that there many problems which is impossible to solve

just by CSC. For example, Carl Friedrich Gauss in 1796 showed that a regular

n-sided polygon can be constructed with ruler and compass if the odd prime

factors of n are distinct Fermat primes. Gauss conjectured that this condition

was also necessary, but he offered no proof of this fact, which was provided by

Pierre Wantzel in 1837.

One of the most famous and interesting examples is to ‘compute’ function
√
x within system CSC. In fact, a Turing machine could be called to compute

⌈
√
x⌉(of course, this one is not necessarily the fastest one).

⌈
√
x⌉ :

0 1

1 0R19 0R2

2 0R3 1R2

3 1R4

4 1L5 1R4

5 0L6

6 0L13 1L7

7 0L8 1L7

8 0R9 1L8

9 0R16 0R10

10 0R16 0R11

11 0R12 1R11

12 1R4

13 0R14 1L13

14 0R19 0R15

15 0R19 0R1

16 0R17 1R16

17 0R18 1L17

18 0R19

If people choose to use CSC, he’ll get following series of operations:

• Given the segment L0 of length x

• L1:Create a segment l of length 1 beside the segment L0, suppose the

intersection of two segments is point p.

• C:Create a circle c0 whose diameter is 1 + x

• L2:Create a line l′ pass p and is perpendicular to the segment L0, suppose

the intersection of l′ and c0 is p′.

21

A few of computation will show that the length of p′p is
√
x.

Figure 3.2: Compass and straightedge construction

The whole procedure may be expressed as

∆ ◦ L2 ◦ C ◦ L1 ◦ ∇

Where
∇ : pxq → {AB}
L1 : {AB} → {AC,AB}
C : {AC,AB} → {AC,AB, B̃C

L2 : {AC,AB, B̃C} → {AC,AB, B̃C,AD}
∆ : {AC,AB, B̃C,AD} → p|AD|q

Compass and ruler construction actually take advantage of human’s eyes

which could find a desired point quickly, though it is still not infinitely precise.

However, even assume there exists an ‘ideal’ machine which could be used to

replace human’s eyes, CSC system is not very efficient. Considering the length

of the input x which is ⌈log(x)⌉ and the length of AB which is x, we know that

the space complexity of the operator ∇ is exponential, thus the complexity of

the whole method is also exponential. On the other hand, the time complexity

of the method is exponential either.

3.7.3 Sorting Without Repeat

Description of the Problem:

Input: Finite number series of length n:

A = {xi|xi ∈ Z+ ∩ [0,M](0 ≤ i ≤ n)};

Output: Finite number series of length m:

B = {xj |xj ∈ A(0 ≤ j ≤ m)},

s.t. if j1 < j2 then xj1 < xj2 .

22

Our plan is: for the given series, select a series of poises of length n, s.t. the

mass of the ith poise is equivalent to the ith number. Dangling the poises from

right to left by strings, whose restoring coefficient are k. Wait until the system

is stationary, open the parallel light source and measure the projection onto the

vertical ruler at the right end. The measurement could be done by machines

and present the results onto the tape for observer. For Example, we can embed

some photoconductive diodes in the ruler by graduations, diodes who is not

triggered should be read.

The physical state the method is primarily concerned with is the mass of

poise M , the horizontal positions of the poises X and the vertical ones Y , the

projections Y ′ and the boole value B indicating which diodes is triggered, i.e.

Ω ≡ ⊕ni {mi}M × {xi}X × {yi}Y ×⊕j{(j, Bj)}Y
′×B

So we have

∇ : Σ+ → Ω (Select poises)

(⊕ni xi) → (⊕i[xi]M [i]X [0]Y ⊕Mj [(j, 0)]Y
′×B)

H : Ω → Ω (Dangle poises)
⊕ni [xi]M

[i]X

[0]Y

⊕Mj [(j, 0)]Y
′×B

→


⊕ni [xi]M

[i]X

[[xi]g/k]
Y

⊕Mj [(j, 0)]Y
′×B


H′ : Ω → Ω(Open the parallel light)

⊕ni [xi]M

[i]X

[[xi]g/k]
Y

⊕j [(j, 0)]Y
′×B

→


⊕ni [xj]M

[j]X

[[xj]g/k]
Y

⊕Mj [(j, ϵA(j))]
Y ′×B


∆ : Ω → Σ+(read the projection)

⊕ni ([xj]M

[j]X

[[xj]g/k]
Y

⊕Mj [(j, ϵA(j))]
Y ′×B)

→ ⊕j′(xj′)

satisfies if j1 < j2 then

[xj1] < [xj2]

Considering the ideal implementation, we conclude that the RP is linear,

which is superior to Turing machines using comparisons, for the complexity for

them was proved to be O(n log n). However, there does exist Turing machine,

23

which is not based on comparisons, also has a linear time cost.

Note that if the number series is boundless, the complexity of the method

above will be exponential. This is the common defect of most analog computers.

3.7.4 Volume of irregular shape

For this issue, we shall restrict the range of the saying ‘irregular’ so as to rule out

the objects with infinite length of description. So actually, we tend to discuss a

subset of the set of all cases.

Description of the problem:

Inputs: point series of length n:(xi, yi)(1 < i < n), satisfies c + r ≤ xi ≤
a− c− r, c+ r ≤ yi ≤ b− c− r

Outputs: The volume of the box of length a and width b and height h0, not

including the series of cylinders(radius: r height: h0) which are induced

by the series of points. In addition, the parts which are isolated from the

side because of the cylinders are also excluded.

Our plan is simple. Assume we have a box of material of dense ρ, and a punch

to extract circles from it. Then we measure the mass of the rest then divide it

by its dense or just put it into water.

∇ : Σ+ → Ω

∇(⊕ni=1a(xi, yi)) = [ρh0(A−m(

n∪
i=1

ci))]
Mp0q

H1 : Ω → Ω

H1[ρh0(A−m(∪ni=1ci))]
Mp0q

= [ρh0(A−m(
n∪
i=1

ci))]
Mpρh0(A−m(

n∪
i=1

ci))q

H2 : Ω → Ω

H2[ρh0(A−m(
n∪
i=1

ci))]
Mpρh0(A−m(

n∪
i=1

ci))q

= [ρh0(A−m(

n∪
i=1

ci))]
Mph0(A−m(

n∪
i=1

ci))q

∆ : Ω → Σ+

∆[ρh0(A−m(
n∪
i=1

ci))]
Mph0(A−m(

n∪
i=1

ci))q = ph0(A−m(
n∪
i=1

ci))q

Apparently the resource complexity for this method is linear with respect to

the number of the points. However, because most people think that we cannot

do infinitely measurement during one experiment, this method can only provide

24

the result of finite precision. This is a good news to Turing machines because

this implies there exists a Turing machine which is almost equivalently efficient.

This may be astonish to someone, who may thought that a TM should at

least solve the equations first. However, because of the finite precision, Turing

machine can just split the object into lattice and use the so-called scan-line

algorithm to find the answer.

3.7.5 The centroid of Irregular Shape

Just as the last example, we restrict our topic into the same subsets of all cases.

Description of Problem:

Inputs: point series of length n:(xi, yi)(1 < i < n), satisfies c + r ≤ xi ≤
a− c− r, c+ r ≤ yi ≤ b− c− r

Outputs: The centroid of the box of length a and width b and height h0, not

including the series of cylinders which is induced by the series of points.

In addition, the parts which are isolated from the side because of the

cylinders are also excluded.

The method we suggest is similar to the last one, the difference of them is

that this time we will record some points.

∇ : Σ+ → Ω

∇(⊕ni=1a(xi, yi)) = [ρh0(A−m(∪ni=1ci))]
Mp0qp0qp0q

H1 : Ω → Ω (Suspend the box by V0)

[ρh0(A−m(∪ni=1ci))]
Mp0qp0qp0q

→ [ρh0(A−m(
n∪
i=1

ci))]
Mp
[
c− V0
|c− V0|

+ V0

]
qp0qp0q

H2 : Ω → Ω (Suspend the box by V ′
0)

[ρh0(A−m(
n∪
i=1

ci))]
Mp
[
c− V0
|c− V0|

+ V0

]
qp0qp0q

→ [ρh0(A−m(
n∪
i=1

ci))]
Mp
[
c− V0
|c− V0|

+ V0

]
qp
[
c− V ′

0

|c− V ′
0 |

+ V ′
0

]
qp0q

H3 : Ω → Ω(Extend the unit vectors: Get the point of intersection)

[ρh0(A−m(

n∪
i=1

ci))]
Mp
[
c− V0
|c− V0|

+ V0

]
qp
[
c− V ′

0

|c− V ′
0 |

+ V ′
0

]
qp0q

→ [ρh0(A−m(
n∪
i=1

ci))]
Mp
[
c− V0
|c− V0|

+ V0

]
qp
[
c− V ′

0

|c− V ′
0 |

+ V ′
0

]
qpcq

25

∆ : Ω → Σ+

[ρh0(A−m(
n∪
i=1

ci))]
Mp
[
c− V0
|c− V0|

+ V0

]
qp
[
c− V ′

0

|c− V ′
0 |

+ V ′
0

]
qpcq

→ pcq = pcxqpcyq

The time the system cost from oscillating to stillness can be bounded by a

constant. Because of the same reason this method does not break up the lower

bound of Turing machine. But for some other things, we tend to pay more

attention to it. Some relevant issues will be discussed in Sec-VI.

3.8 Graph Isomorphism, Graph Spectrum and

Oscillators

In this part of the section, we shall talk about a complex example in detail. We

do not mean to show that the method we designed here is superior to all of the

Turing machines constructed by the people of the same aim. We just want to

demonstrate a new style of computation.

3.8.1 Spectrum of Graph

Suppose X = (V,E) is a graph, A is it’s adjacent matrix. We say fA(λ) is the

characteristic polynomial of X, also denoted by fX(λ). (λ1, . . . , λn), the whole

root of f(λ), is called the spectrum of graph X.

Actually two different adjacent matrices may represent two isomorphic graphs.

If we alter the permutation of the number of the vertices, A will become P−1AP ,

where P is the corresponding permutation matrix. However, the characteris-

tic polynomials of them are the same. Therefore, fX(λ) and the spectrum

spec(X) = (λ1, . . . , λn) are uniquely determined by X.

For the relationship between spectrum and graph, people conjectured that

graph can be uniquely determined by spectrum, i.e. suppose

spec(A) = spec(B),

can we conclude that

A w B?

Unfortunately, the different graphs of the same spectrum were found soon[63].

Nonetheless, calculating the spectrum is also important. Because we can

know a lot of crucial properties[38][53], such as the extensionality, rapid mixing

time of Markov chains on the graph, by the spectrum of the graph. What’s

more, when two graph have same spectrum, and spectrum is never repeated, we

have a polynomial time algorithm to check whether they are isomorphic.

26

1. Input graphs G1,G2, compute their spectrum, denoted by Λ1,Λ2.

2. Compare the spectrums, if Λ1 ̸= Λ2, then return NOT ISOMORPHIC;else,

continue;

3. Check whether the product of the two similar matrices is a permutation

matrix, if it is true return ISOMORPHIC, otherwise return NOT ISO-

MORPHIC;

Notation: Here by Λ1 ̸= Λ2 we mean after sorting their eigenvalue, the two

series are not identical to each other. And accordingly G1, G2 should also be

altered into G̃1, G̃2. But for convenience, we do not differeciate Gi and G̃i.

Proof:

If Λ1 ̸= Λ2, then G1 � G2. So we only consider the case in which Λ1 =

Λ2 = Λ.

i.e.Suppose

G1 = PΛPT , G2 = QΛQT

then we have

PTG1P = Λ = QTG2Q

thus

G1 =
(
QPT

)T
G2

(
QPT

)
by the preconditon,Λ is never repeating, so P ,Q is the unique orthganol

matrices.

the rest is to show that if G1, G2 is isomorphic, then QPT is the permu-

tation matrix desired.

In fact, if G1
∼= G2,then there exists a permutation matrix S s.t.

G1 = STG2S

Since G2 = QΛQT , the formula above means

G1 = STQΛQTS =
(
QTS

)T
Λ
(
QTS

)
Because of the uniqueness of P , we can conclude that QTS = PT , and by

orthgonality of Q, we obtain

S = QPT .

�

27

3.8.2 Harmonic Oscillator of multi-freedom

Suppose s is the number of freedom of the system, qα0(α = 1, 2, . . . , s) is the

general coordinates[52][51] when the system is in balance. Without lose of gen-

erality, we can always assume that qα0 is just zero, i.e. qα0 = 0(α = 1, 2, . . . , s).

Because we only talk about little vibration, so we only keep several terms in

the Taylor series of the Lagrangians L of the system about qα0.

The potential energy:

V = V0 +
s∑

α=1

(
∂V

∂qα

)
0

qα +
s∑

α=1

s∑
β=1

1

2

(
∂2V

∂qα∂qβ

)
0

qαqβ + · · · .

Note that V0 can be omitted. Introduce the notation kαβ ,

kαβ = kβα =

(
∂2V

∂qα∂qβ

)
0

,

which is called the strength coefficient. According to the formula
(
∂V
∂qα

)
0
= 0,

the second order of the potential energy could be represented as

V =
1

2

s∑
α=1

s∑
β=1

kαβqαqβ .

Then assume ri = ri(q) is not relevant to time, i.e. the obligation is constant,

so the kinetic energy is:

T =
1

2

n∑
t=1

miṙi · ṙi =
1

2

n∑
i=1

s∑
α=1

s∑
β=1

mi
∂ri
∂qα

· ∂ri
∂qβ

q̇αq̇β .

Introduce the symbol mαβ ,

mαβ = mβα =
n∑
i=1

mi
∂ri
∂qα

· ∂ri
∂qβ

,

then the kinetic energy could be represented as

T =
1

2

s∑
α=1

s∑
β=1

mαβ q̇αq̇β .

Keep the formula above to second order and since q̇αq̇β is second order mαβ

should be expanded to zeroth order. In other words mαβ could be looked as

constants, we just take the value of them when the system is in balanced point.

So the Lagrangian could be written as

L =
1

2

s∑
α=1

s∑
β=1

(mαβ q̇αq̇β − kαβqαqβ).

28

Thus the Lagrangian equation is

d

dt

∂

∂q̇α

1

2

s∑
β=1

s∑
γ=1

mβγ q̇β q̇γ

− ∂

∂qα

−1

2

s∑
β=1

s∑
γ=1

kβγqβqγ

 = 0.

i.e.

d

dt

1

2

s∑
γ=1

mαγ q̇γ +
1

2

s∑
β=1

mβαq̇β

+

1

2

s∑
γ=1

kαγqγ +
1

2

s∑
β=1

kβαqβ

 = 0.

therefore
s∑

β=1

mαβ q̈β +
s∑

β=1

kαβqβ = 0 (α = 1, 2, . . . , s).

Let

qβ = Aβe
λt (β = 1, 2, . . . , s).

Take it into the former formula, we get the linear equations for Aβ .

s∑
β=1

(mαβλ
2 + kαβ)Aβ = 0 (α = 1, 2, . . . , s).

If the equations have non-trivial solutions, then following conditions should be

hold: ∣∣∣∣∣∣∣∣∣∣
m11λ

2 + k11 m12λ
2 + k12 · · · m1sλ

2 + k1s

m21λ
2 + k21 m22λ

2 + k22 · · · m2sλ
2 + k2s

...
...

...

ms1λ
2 + ks1 ms2λ

2 + ks2 · · · mssλ
2 + kss

∣∣∣∣∣∣∣∣∣∣
= 0

This is the equations of times s of λ2, and we can get s λ2, denoted by

λ2l (l = 1, 2, · · · , s).

3.8.3 The characteristic oscillators for a Graph

Making use of the conclusions above, we construct a specific oscillators for any

given connected graph.

Denote the vertices of graph by numbers 1 ∼ n, according to any order.

The mass of a vertex is set 1g. Connect the vertex 1 and n to ends by strings

whose k is zero by that direction. For the rest, we connect them according to

the adjacent matrix, i.e. if Aij = 1(Note that Aij = Aji), connect vertex i

and j by a string whose k = 1. Let’s study the motion of the system: First,

if two vertices is not connected by string, we have kαβ = kβα = 0. Second,

the vibration is little, so string is not an obligation. And we take the general

coordinates as the usual displacement vectors, so mαβ = mβα = δαβ , where δαβ

is the well known Kronecker notation.

29

At last, we obtain the determinant as follows, which is the characteristic

polynomial of our system.∣∣∣∣∣∣∣∣∣∣
λ2 + d1 −A12 · · · −A1s

−A21 λ2 + d2 · · · −A2s

...
...

...

−As1 −As2 · · · λ2 + ds

∣∣∣∣∣∣∣∣∣∣
= 0

It has been proved that λ2 < 0. So let −Λ = λ2 ,we can see that the determinant

above actually compute the spectrum of A′ which is converted from A by adding

multi-loops(the number of degrees). If a vertex is in the characteristic position, it

will take part in the vibrations of all frequencies, if no one is in the characteristic

position, then they just vibrate with respective frequency. In both cases, we’ll

measure the frequency and differentiate them by means of FFT, so as to get the

spectrum of A′.

Apparently, adding multi-loops is not harmful to the decision of whether A

and B are isomorphic, for if A′ ̸= B′, then A ̸w B If A w B, then A′ w B′,

which will also be checked by the oscillating system.

3.8.4 Comments

The whole procedure could be written as ∆ ◦ F ◦ S ◦ H ◦ ∇, where:

∇ : A→ Â× W⃗ |W=0⃗

H : Â× 0⃗ → Â× W⃗

S : Â× W⃗ → Â× ˜⃗
W

F : Â× ˜⃗
W → Â× F⃗

∆ : Â× F⃗ → ˜⃗
F

S is actually named after the word ‘sampling’ and F is named after the ‘Fourier’.

Suppose now the problem we want to solve is: try to find the n0−th(n0 is a

constant) value of such matrices. It is easy to see that the period of the system

satisfies
1√
nf0

≤ T ≤
√
n

f0
(or

1√
n
f0 ≤ f ≤

√
nf0),

where f0 is the eigenfrequency of a single string, considering the minimum case

occurs when the corresponding graph is totally parallel connected(two vertices

with n−multiple edges between them), while the maximum case occurs when it

is just a chain.

The total steps of sampling should be

N = 2BL = 2

(√
nf0 −

f0√
n

)(
cn0

√
n

f0

)

30

where the constant cn0 is related to the required precise n0. So we have:

O(N) = O(n) and the corresponding complexity for fast fourier transform

should be O(n lnn).

So we can say that the time complexity of this method should be

O(n2) +O

(√
n

f0

)
+O(n lnn) +O(n) = O(n2)

where the left O(n2) is the cost of constructing the system and O(n lnn) is

the complexity of FFT. On the other hand, if we use the well-known algorithm

called QR-method to get the answer, it will cost such Turing machine O(n3)

steps. However, we know little about wether our method is superior to any most

efficient Turing machines.

However, such analysis may not be enough. We cannot obtain a reliable re-

sult unless some specifications for the materials are considered. The procedure

of constructing the system according to an arbitrary graph is actually quite

tricky. For this system need n oscillators of the same mass and different length.

To achieve this, we have to assume that there exists a kind of ‘ideal’ material

which, at least for a large enough range, can be stretched to a desired length

easily(in O(n) time and totally O(n2)) and, at the same time, keep rigid. An-

other more natural setting may be that there are infinite many such sticks and

all of them are located by order.

3.9 Steiner Tree Problem

Steiner Tree Problem is a problem in combinatorics. The general version of

Steiner Tree Problem is NP-complete[53], which implies that this problem is

unlikely solved in polynomial time.

This problem is similar to the Minimal Spanning Tree Problem in metric

space. The difference is that Steiner Tree Problem allow people to add new

points v′(v′ ̸∈ V) and new edges e′(e′ ̸∈ E) into the original graph G, if neces-

sary. When |G| = 3, the new point (in this case, at most one point is needed)is

called Fermat point.

At a time, some people became to believe that the experiments of soup

membrane can be used to solve the Steiner Tree Problem. In fact, when |G| is
small, say, less than 5, this method really works. However, when the number of

vertices is 10 or more, this experiment just cannot give the right answer. One

can attribute the failure to different reasons and derive various explanations.

Of all these potential explanations, the one which states that ‘it is just the

errors during the experiment cause the failure’ made many people conjecture

faithfully that classical mechanics can be used to solve NP-complete Problems

in polynomial time(So they try to proof P=NP).

In fact, the foundation of the experiment is the well-known property that the

membrane will stay at a stationary state, where the surface it produces will be

31

just the minimal surface. Unfortunately, this theory has nothing to do with the

fact that the membrane can arrive at the stationary state fast. What’s more, no

one can proof the soundness of such property under the framework of classical

mechanics.

3.10 DNA Computation

In 1994, Adleman used a probabilistic DNA algorithm to solve HP problem

(Hamilton Path Problem). HP problem is NP-complete, which implies it is

difficult to find a polynomial algorithm to solve HP[53][37][14].

In order to understand Adleman’s method, the following knowledge seems

necessary.

(1) DNA contains chains consisted by four types of nucleotides, denoted by

A, C, G and T.

(2) These nucleotides forms complementary couples, i.e. A and T are comple-

mentary, C and G are complementary. If the corresponding positions of

two DNA chains are complementary, they will patch up as the twin-helix

structure.

(3) PCR, which proposed by Kary Mullis, is method to reproduce the specific

chain we need.

(4) There is a machine called ’sequencer’ which can be used to read out the

series of a DNA chain.

Adleman’s Algorithm contains five procedures(Suppose |G| = n):

(1) Randomly produce the paths in the Graph, encoded by DNA chains.

(2) Keep only those paths which begin with vin and end with vout.

(3) Keep only the paths whose length is n

(4) Keep only those paths which enter all vertices in G at least once.

(5) If any paths remain, return ’True’, else return ’False’.

Note that the first step of Adleman’s Algorithm, which is usually thought to

be work as an initialization operator ∇, is not polynomial with respect to the

resource mass M and space S at least. Considering asymptotically we can

only sequentially get the mass the algorithm need, so actually O(n!) mass can

cause O(n!) time T. As a matter of fact the other steps of this algorithm,

which require exponentially molecules fully blend by polynomially increasing

contacting facades, also cost a lot of resource T.

It is not very hard to appreciate the conclusion that we can obtain great

power of computation suppose we are provided with corresponding quantity of

32

mass, and do not take the cost of preparing such equipment at all. For one

thing, let’s consider the following ideal model.

Suppose we have enough universal Turing machines, each of them are de-

noted by their footnotes. What’s more, by some altering in the definition, these

UTMs have the ability to transmit their results to others. And the condition

of two UTMs Ui, Uj(i ̸= j) could communicate to each other is that they are

adjacent to each other, denoted by Adj(Ui, Uj).

So the computational model constructed following, called ‘Turing Tree’, can

exponentially speed up the computation of any NP-complete problems.

Definition 3.10.1. (Turing Tree) Suppose we have infinite many UTMs, each

of them denoted by unique footnotes, and

Adj(Ui, Uj) ⇔ j = 2i+ 1 ∨ i = 2j + 1 ∨ j = 2i+ 2 ∨ i = 2j + 2,

then we call this Turing Tree.

It is easy to see that the following relation holds:

Adj(U0, U1), Adj(U0, U2)

Adj(U1, U3), Adj(U1, U4), Adj(U2, U5), Adj(U2, U6)

.

For example, a TSP problem can be solved as following:

a The Observer input the weighted complete graph G to the U0, U0 decode

0 to a permutation and compute the sum of the weight, and then transmit

G and flag F = 0 to U1, U2.

b For index i,After Ui get F = 0 and G, it check whether i < ⌈log2 n!⌉,if
the answer if ’yes’ then decode i to a permutation and get the sum, and

transmit G and F = 0 to U2i+1 and U2i+2;else check whether i = ⌈log2 n!⌉,
if it is true, decode i to a permutation and get the sum, then submit the

weight sum to the U⌈i/2⌉−1. Else, do nothing.

c For index i, after Ui get F = 1 and two sum(come from U2i+1, U2i+2),

if it’s index is not zero, then submit min{Si, S2i+1, S2i+2} and F = 1 to

U⌈i/2⌉−1. Else return min{S0, S1, S2} and write it on to the tape.

It is easy to check that the subprocedure of the algorithm which is used to

decode a natural number to a permutation is polynomial. So the cost of time

the Turing Tree consumed should be O(2 log2 n!) ≤ O(2n log2 n) (Including once

sharing the task and once championship for the minimum). So it is the time to

answer how can we ‘easily’ construct a big enough Turing Tree.

33

3.11 N-body System and ECT

Let’s recall the statement of ECT(by YAO): if a function is computable by

some hardware device in time T (n) for input of size n, then it is computable by

a Turing machine in time (T (n))k for some fixed k(dependent on the problem).

Actually, there are lots of notorious examples in classical mechanics that

the results cannot be easily calculated by usual computing devices. In fact, we

can say people have not found a Turing machine, by which the mathematical

counterpart of these physical problems could not be solved in polynomial time

with respect to the length of input.

So naturally people can ask: can these examples provide evidences or even

a proof indicating that the ECT is wrong?

Again, we should formalized such ideas.

3.11.1 Chaotic systems

Firstly, we consider chaotic systems. When systems are chaotic, their behavior

are very difficult to predict. This, is due to one of the most crucial properties of

chaotic systems: being extremely sensitive to errors. Generally speaking, even a

most tiny change of the initial state can cause huge difference to the final result.

Usually, Ljapunov exponent can help us to estimate the average increment of

infinitesimal error of the initial state.

In order to understand the dilemma, it may be sufficient to know the fact

that many universal arithmetic algorithms used to solve ODEs or PDEs are

based on the opposite belief: using polynomial steps of iteration, the error

should be polynomial. So it is almost impossible for these sort of algorithms to

solve chaotic systems, though in principle, they are computable(Adding more

space and waiting longer time(both exponentially)).

So it seems we can construct difficult problems taking advance of the hard-

ness of chaotic physical system.

For instance, we could ask this question as follows:

Given an ODE(or PDE), which will become chaotic, and the initial condition,

the duration t(binary representation), precision ϵ(binary representation), what

is the configuration Ξ after t(satisfying D(Ξ̃,Ξ) < ϵ, where Ξ̃ is what we get

from any computing devices)?

Intuitively, this is a very hard question, as we have explained before.

On the one hand, from the point of view of complexity theory, at least no

one can show it belong to the class PSPACE. Any computing devices with poly-

nomial memory will fail to get the sufficient precision as long as they continue

to use ‘old’ style algorithms(such as Euler’s algorithm or RC and so on).

On the other hand, if there do exist real physical systems which evolve

according to the differential equation, it seems we could construct the system

and feed the system with desired initial condition, and after t, we shall naturally

get the state. For example, may be the famous Lorenz equation[33] will play

34

the role. 
ẋ = −σ(x− y),

ẏ = x(r − z)− y,

ż = xy − bz,

Thus, physical computational system P = ⟨∆,L,∇⟩ will be very efficient.

Where:

L ≡ L ⊗ T

Where L implement the Lorenz system,(x0, y0, z0; ẋ0, ẏ0, ż0)is the input, T act

as a timer and a trigger, when T.t = t ∆ will be asked to serve its function.

Well, there are about 3 problems in this plan.

• Though there is little good algorithms for chaotic system, it does not mean

we cannot find one forever.

• Chaotic systems can hardly be replayed. Because we cannot get perfect

implementation of operator∇, the experiment will not tell us a good result

too. And the most crucial problem is:

• This is actually a pseudo-polynomial physical algorithm. Pay attention

to the specification of the input. We are told to input the non-unary

representation of the duration of the time t, which means the length of

the input should be ⌈log t⌉. However, according to our design, we will wait

t which is exponential to the length ⌈log t⌉.

3.11.2 Chaotic systems with singularities

In order to overcome the third problem, we can put singularities into a chaotic

system. Singularities is something can help us to compress the infinite time of

the evolution to a finite one and at the same time, it can preserve the topology

of the trajectories. This idea is due to Smith[29].

Suppose there are N point-like particles, the i-th(1 ≤ i ≤ N) particle has

masses mi, position ri(t) at time t, which satisfy:

r̈i(t) = G
∑
j ̸=i

mj
rj(t)− ri(t)

|rj(t)− ri(t)|3

Usually, we call the systems above N -body systems. And the corresponding

computational task(often called N -body Problems) is: given the initial condi-

tions(that is (r1(0), . . . , rN (0), r′1(0), . . . , r
′
N (0),)), and t > 0, calculate the N

positions ri(t).

We say the solution runs into a singularity at time t0, if the solution is not

analytic at t = t0. The singularities due to collisions seem to be the most usual

and natural ones among all sorts of singularities, though, there do exist other

types of singularities which are non-trivial.

35

In 1895, Painlevé[26] proved that for N = 3 the singularities have to be due

to collisions and made the following conjecture.

Painlevé’s Conjecture: For N > 3, there exist non-collision singularities.

WhenN > 4 Xia[25] and Gerver[24](independently) both proved that Painlevé’s

Conjecture is true. However the case when N = 4 still remain open. Their re-

sults are both constructive, which implies that they explicitly found an initial

conditions but not reduction to absurdity. In their construction, the system can

exchange its gravitational potential energy for kinetic energy at a geometrically

faster rate. The speed of the particles increases so rapidly that at some finite

time t0, the particles go to (real)infinity.

Inspired by this ‘supernatural’ properties of the singularity, Smith get a

design of his own. For any initial condition β, define the predicate P (β) to be 1

if it leads to a non-collision singularity, and 0 otherwise(However, this can also

need infinite precision, for any finite one of β will cause P being not robust).

So we assume that the set of singularities is of non-zero measure. Let Q(β)

denote the probability for P (β′) to be 1, if the input β′ is randomly chosen from

a ball of some fixed radius centered at β. Then Q(β) is a continuous function

that can be probabilistically computed by a gravitational system. Then, if the

system is chaotic(hard to simulate), then it is usually hard for a Turing machine

to decide.

For the first defect, we may try to construct a set of chaotic systems, which

is recursively enumerable. If a property of this set P (x) is undecidable, then we

can conclude that there is no general method to avoid iterative style algorithms.

36

Chapter 4

Computability

In 1936, in order to study D.Hilbert’s Entscheidungsproblem[57, 56](in fact, this

problem can be traced back to one of Leibniz’s great ideals to logic)which asks: if

there was a mechanical procedure for separating mathematical truths from math-

ematical falsehoods, A.Church and Alan.Turing introduced their computational

models respectively, namely, λ− calculus[56] and Turing machine[31].

Definition 4.0.1. The alphabet of λ−calculus

• ∇ = {v, v′, v′′, v′′′ . . . }, ∇ is infinite.

• λ

• (,).

Definition 4.0.2. The set of λ−terms Λ is defined recursively as the minimal

set which satisfies following condition:

• x ∈ ∇ ⇒ x ∈ Λ

• M,N ∈ Λ ⇒MN ∈ Λ

• M ∈ Λ, x ∈ ∇ ⇒ (λxMN ∈ Λ).

Definition 4.0.3. (λ−definable) Suppose k ∈ N+, f : Nk → N is a k-variate

arithmetic function. We say f is λ−definable if there exists F ∈ Λ◦(closed term,

no free variables), s.t.

∀n1, . . . , nk ∈ N.Fpn1q · · · pnkq =β pf(n1, . . . , nk)q,

where pnq ≡ λfx.fnx, the meaning of =β could be found in many textbooks of

λ− calculi.

Definition 4.0.4. (Turing machine)Suppose set D ⊂ {0, 1}×N is finite. Func-

tion d : D → {0, 1}, p : D → {−1, 0, 1}, s : D → N+. A 3-tuple (d, p, s) is called

a Turing machine, denoted as M = (d, p, s).

Definition 4.0.5. (Turing computable)Suppose M is a Turing machine. f :

Nn → N is a k-variate function. We say M computes f if for any (x1, . . . , xn) ∈
Nn, with input (x1, . . . , xn) M outputs f(x1, . . . , xn). And we say f is Turing

computable.

37

Their models are both mathematical definition of ‘computation’(or ‘algo-

rithm’). Turing proved that λ− calculus and Turing machines are equivalent in

power of computation[61], that is, if a function could be computed by a Turing

machine, it is definable on λ− terms; and vise versa.

On the other hand, they proved that both these two computational models

are not ‘omnipotent’, which could be understood as : of all arithmetic functions,

there do exist functions which is not computable under their definitions[49][31].

Therefore, the answer to Entscheidungsproblem should be negative, if mathe-

maticians accept Church-Turing Thesis.

In many years, people have invented various kinds of models to depict the

intuitive idea ‘computation’ from different point of view and motivation(more

natural, more concise, more safe, more effective,etc.)[60][59]. Unfortunately,

none of them could compute the functions which have been proved to be not

Turing computable. This actually makes more and more people believe that CT

is correct, though CT is not a mathematical theorem[56] but rather a conjecture

or postulate to a fact of the real world.

4.1 Turing computable is physical computable

The topic about the existence of a theoretical physical system which can provide

an implementation of universal Turing machine has been studied by many schol-

ars. In addition to the current implementation of computers, scholars have con-

structed many other wonderful designs on various axiom systems of physics(e.g.

Classical Mechanics[18], Quantum Mechanics[5][3]).

Of course, the results above only imply that it is the ideal mathematic model

for a family of physical phenomenons can be look as equivalent to UTM in

terms of computability. After all, we cannot know for sure that some theory of

physics is completely correct. Because of this, when we talk about the ability

of computation for a certain family of physical system, we always assume either

of the two preconditions:

• The ideal mathematic model of some branch of physics is believed to be

absolutely right.

• At least in a very large scale, the theory works.

4.2 PLATO Machine

For several decades after the Church-Turing Thesis was proposed, people failed

to find a counter-example. This kind of counter-example, if they really exist,

should satisfies the property that most people think they can be effectively

computed in principle, and no Turing machine can compute them.

However, many physicists tend to make efforts in another direction, that is,

they want to find a family of processes in nature, whose functional expression

38

may not be intuitively computable, nor Turing Computable, but actually it can

be used to ‘compute’ a nonrecursive function by measurement[29][30][6][8].

Suppose the problem we attempt to deal with now may cost infinite many

steps for some computational model(e.g. Turing machine), does it necessarily

mean that we have to wait infinitely long time to get the results? This is

not always the case, PLATO Machine, which was proposed by H.Weyl[7], is

just a counter-example. Though it is named after Plato, the designer’s main

inspiration comes from one of Zeno’s Paradoxes.

Specifically, PLATO Machines use (1/2)n seconds to execute the n−th step.

For instance, suppose the decision problem we want to solve is ∃nP (n), where P
is a predicate and P (x) is used to describe some properties of x. Then PLATO

machine P will check whether P (1) = 1 holds in 1/2 seconds, and check whether

P (2) = 1 in 1/4 seconds,. . . , and check whether P (n) holds in 2−n seconds, and

so on. It is easy to conclude that if P find an answer, it will return the answer

in one second, otherwise it will return false after a second. Considering the sum

of geometric series, the proof is trivial. So the upperbound of the time for P to

solve any question is

T =

(
1

2

)1

+

(
1

2

)2

+ · · ·+
(
1

2

)n
+ · · · =

1
2

1− 1
2

= 1s

Apparently, if P does exist, its power is extraordinarily great, for it can even

solve Turing’s Halting Problem in one second.

So far we have seen two ideas to implement the PLATO machine P in the real

world. However, unfortunately, neither of them are successful. The first one is

to construct the machine according to the definitions of H.Weyl. Apparently, it

is difficult, for people do not believe that time is infinitely divisible. The second

one is to make use of the theory of general relativity. However, the computing

system will also exhaust the resource of the universe which make the observer

cannot get the answer.

4.2.1 N-body System and PHCT

Making use of Gerver’s results[24], Smith try to disprove CT just under the

framework of classical mechanics[29]. However, strictly speaking the phrase

‘Church Turing Thesis’ here are not very appropriate.

4.2.1.1 classical mechanics

By the phrase ‘classical mechanics’ we mean the mechanical system evolve under

some postulates[52][51] like:

39

• Newton’s law: 
ΣF = 0 ⇒ dv

dt , the first law;

F = mdv
dt = ma, the second law;

ΣFa,b = −ΣFb,a, the third law.

• or Lagrange equation:

d

dt

∂T

∂q̇α
− ∂T

∂qα
= Qα (α = 1, 2, . . . , s)

• or Hamilton equation: ∂H
∂qα

= −ṗα,
∂H
∂pα

= q̇α, (α = 1, 2, . . . , s)

Besides, law of universal gravitation is independent of above dynamic equa-

tions and should be looked as a fundamental postulate.

Also, classical mechanics should include other more fundamental postulates

like Galilean transformation[52][51]:

x′ = x− vt

y′ = y

z′ = z

t′ = t

Note that the last equation expresses the assumption of a universal time inde-

pendent of the relative motion of different observers.

However, for our purpose even Galilean transformation is not the most fun-

damental postulate. Actually, first, one has to admit that the Euclidean spaces

exist, where the desired topological properties hold and thus the concepts of

‘limitation’, ‘derivatives’ and ‘integral’(calculus) can be legally defined and ap-

plied. For example, we can thus define velocity as

lim
∆t→0

∆r

∆t
=
dr

dt
= ṙ

of course, when the limitation above is exist.

On the other hand, postulates for the ideal objects or behavior, should also

be discussed. In classical mechanics, ‘rigid body’, ‘point-like particle’, ‘light

string’, ‘perfect elastic collision’, etc are all legal. In fact, from the point of view

of classical mechanics, objects with more complicated properties are constructed

by means of such ideal objects.

40

4.2.1.2 Smith’s idea

The variation of Church-Turing Thesis (or also called physical Church-Turing

Thesis)is the belief that if a function can be computed by any conceivable hard-

ware system, then it can be computed by a Turing machine[29][62].

Though it may seems to be very complicated, Smith’s design can also be

looked as a special construction of PLATO machine.

Note that the set of computable reals CR has a property that

card(CR) ∼ card(TM).

And in fact, even for a subset of CR, say, CR2, we also have

card(CR2) ∼ card(TM).

where the CR2 is binary representation for CR, in which the elements are

consist of ‘1’s and ‘0’s. Of course, any other polynomially equivalent types of

representation will not affect the results.

In addition, the bijection between the two set is constructable. In fact, we

can just map the whole transition of a Turing machine(with some finite input,

of course) to a computable reals. Under this mapping, it is easy to see that the

following property holds:

TM(x) halting iff the corresponding computable real is a finite sequence.

By finite sequence, apparently we mean after some finite bit there are just

‘0’s(for some real implementation, may be a fresh symbol denoting ‘ending’ is

needed), and we do not try to combine some elements like

0.100 . . . 0 . . .︸ ︷︷ ︸
infinite

and 0.011 . . . 1 . . .︸ ︷︷ ︸
infinite

which means we just look them as different elements.

In his paper, Smith constructed a N -body system satisfying following state-

ment:

• For any initial condition, if the system will go to singularity, the singularity

should be non-collision singularity, which implies when go to singularity,

all particles will go infinity at some finite time (say, t0).

• For any initial condition, if the system will not go to singularity, then there

must be some particles, say, m(m > 0) which will pass the neighborhood

of original point whose measure is not zero (also in finite time)(say, t1(t1 <

t0)).

• The types of the topology of the trajectories of the particles will arise by

turns during [0, t0] and all of them can be looked as a sequence of the

symbols of the types.

41

The first two properties indicate that we can physically construct a predicate

Singular(∗), where

Singular(O(x)) =


1, the system O with initial condition x

will go to singularity;

0, o.w.

The third property actually inspired us to encode the sequence of the types of

the interaction ϕ to real numbers such that the sequence of the interaction is

finite iff the corresponding real number has finite non-zero bit.

Thus, we may appreciate the whole idea of Smith’s construction as following:

TM ↔ CR2 ↔ Φ

And following relation holds:

(∀x)(∀m ∈ TM)(∀r ∈ CR2)(∀ϕ ∈ Φ)
(
Halt(m(x̄)) iff Fin(r) iff Fin(ϕ)

)
Furthermore, Smith explained that given a sequence ϕ, the initial condition x0

can be recursively computed. This means that any finite prefix of ϕ’s corre-

sponding initial condition could be recursively computed. We suppose a Turing

machine M1 can do this work.

Therefore, for any M0 ∈ TM , and any input x̄, the formula M0(x̄) can be

naturally looked as a finite description of a computable reals, which can be

continuously be looked as a sequence of the types of the interaction. So M0(x̄)

is the finite description ot the sequence ϕ. Thus the output of

 M1

↓
M0

 (x̄) is

the desired initial condition.

Note that the problem: does there exist a Turing machine M2 satisfying

following property, 
M2

↓
M1

↓
M0

 (x̄) =

{
1, if M0 halts;

0, o.w.

is exactly the equivalent one to the famous Turing’s halting problem, as there

is no further constraint on machine M0. We know for sure that the answer is

negative:

 M2

↓
M1

 does not exist; now thatM1 exists, thusM2 shouldn’t exist.

On the other hand, however, the system can used as an oracle. We have

said that Smith’s N -body system can provide a physical implementation of the

42

predicate Singular(∗). Therefore, with input

x

 M1

↓
M0

 (x̄)y,

which is a quantity depicted by a computable real number.

Singular(x

 M1

↓
M0

 (x̄)y) =
{

1, if the system go to singularity;

0, o.w.

Note that the correspondence between Turing machine, Computable reals and

sequence talked before, we can immediately conclude that if the system go to

singularity then the sequence ϕ is infinite, thus the computable reals only have

finite non-zero bits, and in the end we are able to decide that Halt(M0) = 0.

Now we talk about some potential problem of Smith’s design. Smith’s design

could be written as

�(∆ ◦ H ◦ ∇)p#Mqpxq� = pHALT(#M,x)q =

{
p1q, if M(x) halts;

p0q, o.w.

Where
∇ ≡ ∇2 ◦ ∇1

H ≡ r̈i(t) = G
∑
j ̸=i

mj
rj(t)−ri(t)

|rj(t)−ri(t)|3

∆ ≡ Singular()

Where

∇1 : p#Mqpxq ∇1−−→ xM(x̄)y

∇2 : xM(x̄)y ∇2−−→ x

 M1

↓
M

 (x̄)y

For the resource T, we have:

T(∆ ◦ H ◦ ∇) = T(∇) + T(H) + T(∆)

= T(∇1 ◦ ∇2) + T(H) + T(∆)

= T(∇1) + T(∇2) + T(H) + T(∆)

=◃▹ + ◃▹ +max(t1, t0) + C

=◃▹

where ‘◃▹’ means “Infimum unknown, infinity so far”and C means the term of

constant.

43

Therefore, the complexityt =◃▹.

For the resource S, we have:

S(∆ ◦ H ◦ ∇) = S(∇) +S(H) +S(∆)

= S(∇1 ◦ ∇2) +S(H) +S(∆)

= S(∇1) +S(∇2) +S(H) +S(∆)

=◃▹ + ◃▹ +∞+ C

= ∞

Therefore the complexitys = ∞.

For the resource E, we have:

E(∆ ◦ H ◦ ∇) = E(∇) + E(H) + E(∆)

= E(∇1 ◦ ∇2) + E(H) + E(∆)

= E(∇1) + E(∇2) + E(H) + E(∆)

=◃▹ + ◃▹ +C+ C

=◃▹

Therefore the complexitye =◃▹.

For the resource M, we have:

M(∆ ◦ H ◦ ∇) = M(∇) +M(H) +M(∆)

= M(∇1 ◦ ∇2) +M(H) +M(∆)

= M(∇1) +M(∇2) +M(H) +M(∆)

=◃▹ + ◃▹ +C+ C

=◃▹

Therefore the complexitym =◃▹.

We conclude that C(n) = (◃▹, ◃▹,∞, ◃▹).

4.2.2 Is N-body system too complex?

In fact, Smith’s construction based on lots of beliefs which we do not know their

correctness so far. For example, his construction ask the particle be an ‘ideal’

particle, which should be a strict point without any non-zero length or area, or

rather, we could say that the diameter of the particle should be zero, if we look

the particle as a point set(or δ(x0, x)).

Another belief which is quite crucial to Smith’s construction is that com-

putable reals can be somehow effectively prepared(with infinite precision). More

exactly, we can map any computable real to a specific structure or state in Ω, we

may call them computable objects(e.g. velocity, volume and so on). However,

though computable reals have finite description, most of them have infinite de-

44

tails. Just being computable only enable us to recursively get a more refined

approximation of them. Unfortunately, any finite precision would fail according

to Smith’s design. This tell us that as long as the precision is finite, there is

no promise for the correctness of the results(not like other cases, more precision

usually can get more correct bits or more probability for correctness).

Therefore, we can see that these postulates are very powerful. Completing

the mapping above using finite resource usually means we have known many

non-recursively decidable properties of those recursively enumerable object. To

make it more clear, let’s study a more simple design of our own.

Convention:

1. It is possible for us to produce strictly point like particle δ(x0, x), using

finite resource. Furthermore, we can manipulate it and detect it.

2. It is possible for us to map any computable reals to any computable object

or state in Ω with finite precision, costing finite resource for each such reals.

The computable reals(binary) between 0 and 1 could be written as

∞∑
i=1

2−ibi (bi ∈ {0, 1})

There are another set of structure called S, a tuple (B,F), where B is a

sequence of the structure bi(i ∈ N) and F is a boolean indicating whether the

sequence B is finite or not. The structure b is defined as follows.

b ∈{(l, r, color, h)|l ∈ R+, r ∈ R+2, color ∈ Color ≡ {black,white}, h ∈ {T, F}}

where l indicate the length of a board(geometrically, the board only has length),

r indicate the position of a board, the set Color has only two elements: black

and white, it indicate the color of a board. The last boolean variable is used to

indicate whether the board has a hole.

Technically, we can also let the hole as a diameter d ∈ R+, d < l.And if

h = F , d = 0. it’s position which means its center is the same as the board. So

we can modify the definition b as:

b ∈ {(l, r, color, h)|l ∈ R+, r ∈ R+2, color ∈ Color, h ∈ {T, F}, d ∈ (0, l)}

For every bi ∈ B, we require the following properties hold:

1. If F = T , then {bi} is finite. If the most footnote is j, then hj = T ,

dj = (1/2)lj .

2. b0 satisfies l0 = l, r0 = (0, 0); bi satisfies

li =

(
1

2

)i
l

45

ri =

(
rs(i+ 1, 2)roddix + rs(i, 2)revenix , rs(i, 2)h

(
1

2

) i+1
2

)
where

θ0 ∈ (π4 ,
π
2), h cot θ0 > l/2

rs(x, y) , x −̇ y

[
x

y

]
and

revenix = 2hl cot θ0

(
1−

(
1

2

) i
2

)

roddix = revenix − h cot θ0

(
1

2

) i+1
2

Then we design the mapping which send every s ∈ S to CR2. For each

a ∈ CR2, a could be written as

a =
∞∑
i=1

2−iai, ai ∈ {0, 1}

We require that

color0 = white; colori =

{
black, if ai = 1;

white, o.w.

However, if the computable number is finite, then {bi} is also finite.

Note that according to the convention, the mapping could be built in finite

time and cost finite resource just need a description(description is always finite)

of the number(e.g. Turing machine). Now let a point like particle (mass m0 >

0), with velocity

v = v0
(cot θ0, tan θ0)

| cot θ0, tan θ0|

leaves from the origin (0, 0). Suppose all collision are perfect elastic collision.

In each case, if the given number has finite non-zero bits the particle will travel

through the hole. Assume there are some field outside the s, then the particle

will be push to the left most screen(according to the convention, anyway we can

detect the particle).

So it’s easy to find out that in both cases, we will know the ‘answer’ in

finite time through the facility. In fact, if no particle hit the screen after a time

t0(note that t0 is not just finite, it is constant with different given reals), then we

can conclude that the given number has infinite non-zero bits(reals with infinite

number bits will never enter the field, thus never come back). On the other

hand, if the real has finite non-zero bits, it must hit the screen within t0.

t0 is consisted of two parts: the time used to travel through the structure s

46

ts and the time used to travel through the field tf . For ts, we have

ts <

(
2h cot θ0
v0 cos θ0

)
·

(
1 +

(
1

2

)
+

(
1

2

)2

+ · · ·
(
1

2

)n
+ · · ·

)

=

(
4h cot θ0
v0 cos θ0

)
tf satisfies the following inequality:

tf <

√
8h cot θ0

a
+
v20 cos

2 θ0
a2

Totally, we have:

t0 <

(
4h cot θ0
v0 cos θ0

)
+

√
8h cot θ0

a
+
v20 cos

2 θ0
a2

which means any t0 larger than this bound should be large enough.

The whole experiment could be written as

∆ ◦ S ◦ ∇

Where

∇ : #M(x) → s

Recalling the convention before, this operator only cost finite resource for any

possible inputs. Thus we can suppose it is a general arithmetic function f . Note

that f may not be a computable function, but it’s adequate for the destination.

Therefore, the whole progress will cost finite resource for any inputs.

T(∆ ◦ S ◦ ∇)(x)

=T

(
∆(�

(
S
(
�∇(x)�

))
�

)
+ T

(
S
(
�∇(x)�

))
+ T(∇(x))

=C+ t0 + f

The resource E and M have the similar results. It is easy to see that the

total space we used is bounded by a constant, i.e.

S(∆ ◦ S ◦ ∇)(x)

=S

(
∆(�

(
S
(
�∇(x)�

))
�

)
+S

(
S
(
�∇(x)�

))
+S(∇(x))

=C+ C+ C

=C

We construct a ‘supercomputer’ or a real PLATO machine, which can solve

any problem in finite time, just under the framework of classical mechanics even

47

Figure 4.1: A physical implementation of Plato Machine

without the introduce of non-collision singularity.

With the finite input, classical mechanics and universal Turing machine may

be equivalent in computational power. If any infinite inputs are thought to be

legal, classical mechanics and universal Turing machine are also equivalent. Our

results actually show that given family of recursively enumerable oracles with

finite descriptions(may be infinite in details), respectively legal or existent ,

then classical mechanics is superior to universal Turing machine. Given infinite

tapes of all transitions of each Turing machine, whose description is finite, uni-

versal Turing machine still cannot decide undecidable problem, while just as we

discussed above, classical mechanics can use such oracles to construct PLATO

machine and thus surpass the universal Turing machine. In fact, infinite tapes

with finite description means nothing to universal Turing machine, it cannot

visit infinite checks in finite time. So at this time, we can say, let T M(CM)

denote the set of Turing computable functions(classical mechanics computable

functions): (
{[O∞

∞]}CM ∪ CM
)
=
(
{[O∞

∞]}TM ∪ T M
)

Where the superscript of O is the cardinality of O’s extension, the subscript of

O is the cardinality of O’s intension. [x]CM ([x]TM) indicates that x is legal in

classical mechanics(is in Turing’s tape form)

And there exist a family of [O∞
m]CM(m <∞), s.t. for all {[O∞

n]}TM, n <∞

(
{[O∞

m]}CM ∪ CM
)
⊃
(
{[O∞

n]}TM ∪ T M
)

48

However, in fact we could combine infinite such oracles into one, which can

also be described in finite symbol and cost finite resource, the conclusion may

be written as a more concise one:

∃m ∈ N∀n ∈ N
(
[O∞

m]CM ∪ CM
)
⊃
(
[O∞

n]TM ∪ T M
)

while the more fundamental question about whether we have

CM = T M

is still open.

By introducing magnetic field and accordingly it’s basic postulates, one can

actually construct another physical oracle with finite description in classical

electromagnetic theory without introduce of collision(because real collision cost

time after all). Though the magnetic intensity seems is divergent, but cleverly

selected shape(mainly, the volume) will still cost only finite energy.

4.3 Recursive function whose derivative is not

recursive

April 1970, J.Myhill published his astonishing result[6]: There exists a recur-

sive function, whose derivative is not recursive. In order to understand the

principles of the construction, knowing the following fact about the recursive

functions(whose domain is R) should be helpful.

Theorem 4.3.1. Suppose f is a real-valued function, {fn} is a series of recur-

sive functions, if there exists a recursive function e : N → N s.t. ∀x ∈ I,k ≥ e(n)

|fk(x)− f(x)| ≤ 1
2n , then f is recursively computable.

J.Myhill’s idea is to build a non-trivial structure(slope or bump) in the

neighborhood of 2−n in interval [0, 1], where n ∈ A , and A is a recursively

enumerable, nonrecursive set. Otherwise f(x) = 0. However, in order to make

the function computable, the scale of the structure should shrink as the n is

enumerated recursively, or rather, should be smaller than the bound in the the-

orem above. As a result, the derivative of the function is intuitively hard to

compute, and on the other hand we can proof that it is not recursive, because if

we could compute it we can use the result to decide whether ⌈x⌉ is an element

of A generally, contradicting the nonrecursiveness of A .

Specifically, suppose

θ(x) ≡

{
x(x2 − 1)2, if −1 ≤ x ≤ 1;

0, if |x| > 1.

It is easy to verify that θ(−1) = θ(0) = θ(1) = 0,θ′(−1) = θ′(1) = 0,θ′(0) =

1,and θmin = θ(−1/
√
5) ≡ −λ,θmax = θ(+1

√
5) ≡ +λ. We call θ a bump of

49

length 2 and height λ. Then the function θαβ(x) ≡ (β/λ)θ(x/α) satisfies the

following conditions:

θαβ(−α) = θαβ(0) = θαβ(α) = 0, θ′αβ(−α) = θ′αβ(α) = 0, θ′αβ(0) = θ/λα,

−β ≤ θαβ(x) ≤ β (α ≤ x ≤ α.)

For each n ∈ A ,we shall construct abump: θαnβn at 2−n i.e.

if n ∈ A , δ ∈ [−αn,+αn], f(2−n + δ) ≡ θαnβn(δ), otherwise f(x) ≡ 0. To

make f well-defined, parameters αn, βn, n ∈ A is defined as

α ≡ 2−k−2n−2, βn ≡ 2−k−n−2,

where n = h(k) and h is a function enumerating A without repetitions(It is

easy to proof that if there exists a recursive function enumerating A , then there

exists such function with no repetitions).

For physicists, does J.Myhill’s results imply that if an object move under the

condition that the displacement and the time satisfies the following relations

r(t) = f(t) =

{
θαnβn(δ)(n ∈ A), if t = 2−n + δ, δ ∈ [αn,+αn];

0, o.w.

The speed v ≡ r ′(t) will be a physical quantity which is not computable?

It is easy to see that the operator ∇ for the desired construction is very

difficult to implement. Again, any finite approximation here is useless. However,

suppose anyway we realize the operator∇, the operator ∆ also seems impossible:

A bound for finding a non-zero derivative is not Turing computable, therefore,

at least a näıve brute force method will fail. According to Hempel’s axiom[19]

(which means brute force is almost the only method for us)for measure, our

problem is actually equivalent to the original Turing’s Halting Problem. Now

we don’t know which physical will help us this time.

4.4 Physical States which is not computable

Pour-El et al published their results in 1997: for a differential equation, one can

design a specific initial state to make the solution after t (t could be take some

computable value)seconds is nowhere computable[8].

Consider the IVP of the following wave equation:{
∂2u
∂t2 = ∂2x

∂x2 + ∂2y
∂y2 + ∂2z

∂z2 ,

u(x, y, z, 0) = f(x, y, z), ∂u∂t (x, y, z, 0) = 0 .

where (x, y, z) ∈ R3, t ∈ [0,+∞) for all f ∈ C 1 this IVP has a form of

50

solution known as Kirchhoff’s formula:

u(−→x , t) =
∫∫

S2

[f(−→x + tn) + t∇f(−→x + t−→n) · −→n]dσ(−→n)

The conclusion Pour-El get is the following theorem:

Theorem 4.4.1. For all compact set D ⊂ R3 × [0,∞), there exists a com-

putable function f(x, y, z) ∈ C 1, s.t. the corresponding solution u(−→x , t) is not

computable in the neighborhood of any point in D.

Pour-El et al construct the initial value through the non-computable real

number:
∑∞
i=0

1
2a(i) , a(i) ∈ A .

Apparently, one can conclude that in this wave equation, the initial state is

computable but the state u(0, 0, 0, 1) is a state which can not be compute.

For us, can we safely conclude that

{Turing Computable} ⊂ {Physical Computable}

but

{Turing Computable} ̸⊃ {Physical Computable}?

Just like the design of Myhill, Pour-EL’s construction also need a design

of ∇, the initial value is far more trivial. A good news for us is that suppose

anyway we implement the ∇, the final state is measurable in principle! That

is to say: the value of that quantity could be measured progressively digit by

digit. The method is actually based on the idea of amplification which we will

discussed in details later.

4.5 A few Comments

In the above scenario, the use of (actual) infinity is their common theme. They

ask the system to run for infinite steps or just encode the solutions into real

numbers. It is easy to find out that adding either of these two presumption into

a physical system will make the original system extraordinarily powerful.

4.5.1 Examples in Quantum Mechanics

For example, we can throw a particle onto a plane [0, 1]× [0, 1] at random(obey

the uniform distribution), then we can proof that with high probability, the

x-coordinate(or y-coordinate) of the center of the particle will indicate a non-

recursive real number. In fact, in cell [0, 1] × [0, 1], the Lebesgue measurement

for the recursive real numbers is 0, while the rest is 1, i.e.

m([0, 1]× [0, 1] ∩ Rr) = 0,m([0, 1]× [0, 1] ∩ Rcr) = 1

51

This is geometric probability and consider the uniform distribution, the proba-

bility of the either event of the two are just their measurement. Therefore we

can look the x−coordinate as a function with respect to the digits. According

to Beggs et al, a theoretical machine called SME may help us to get the value

of the position coordinates[20][21][22].

4.5.2 Measure Reals

Here, we give another stepwise method to measure a true real number, our

method is more realistic than Begg’s.

Perhaps the most commonly used thoughts of measuring physical quan-

tity(expressed by real numbers) is try to enlarge the effects related to them.

Note that a point could be determined by two lines, if we randomly shoot two

segment(instead of just a point-like particle) towards a screen we could com-

pute the point determined by this two segment. Also, of course, the physical

implementation of segment is not perfect, it may have the dimension ‘width’ in

addition to ‘length’. Without loss of generality, we assume that each segment is

actually a set of points. By sampling the point in each segment, people can use

various numerical algorithms(e.g.least squares method) to acquire the equation

whose image is an approximation of the line. To acquire a better approxima-

tion, that is, to get more and more digits of the number, we should amplify

the whole image. Though the precision of the sampling is the same, amplifica-

tion enable the experimenter to sample more points. Thus the results could be

refined progressively.

Figure 4.2:

52

People might argue that the rectangle shape is hard to find in microscopic

scale, well, we could use another plan which need 4 times shooting quantum

particles with round profile.

Figure 4.3:

Fortunately, amplifying an image that is thought to be easily to implement.

There are many devices which can complete this job. For simplicity, suppose

there is a point-like light source behind the screen and the screen is replaced by a

transparent one. On the other side of the transparent screen, we put an opaque

screen. Assume that the distance between the light source and the transparent

screen is d, the distance between the transparent screen and the opaque screen

is −9d at first time. After turning on the light source, we could get the 10 times

shadow of the original image. If we move the opaque screen to the position

−99d, a 100 times shadow of the original image will be displayed on the opaque

screen. And so on, if the distance is (10i− 1)d, the opaque screen will show the

shadow which is 10i times the size of original image.

However, does the strict plane really exist in the physical world? We just do

not know.

4.5.3 Existence

Now we give some levels for f which is not computable. Suppose o is an operator,

ô is a physical implementation of o and operators ∆ , ∇ always mathematically

exist. For f ∈ F where all elements in F are non-recursive functions, we have the

level of existence as follows (Assume here the representations are all well-formed

or para well-formed).

• Existence-I

53

∃p̂∀x(�(∆ ◦ p̂ ◦ ∇)(pxq)� .
= pf(x)q)

• Existence-I*

∃p̂∃∇̂∃∆̂∀x((f ∈ F) ∧ (Pr{�(∆̂ ◦ p̂ ◦ ∇̂)(pxq)� .
= pf ′(x)q|f ′ ∈ F} > 0))

• Existence-II

∃∆̂∃p̂∀x(�(∆̂ ◦ p̂ ◦ ∇)(pxq)� .
= pf(x)q)

• Existence-II*

∃p̂∃∇̂∀x(�(∆ ◦ p̂ ◦ ∇̂)(pxq)� .
= pf(x)q)

• Existence-III

∃p̂∃∆̂∃∇̂∀x(�(∆̂ ◦ p̂ ◦ ∇̂)(pxq)� .
= pf(x)q)

Some more weak class are omitted here. Apparently, we have

Existence− I ⊃ Existence− I∗ ⊃ Existence− II ⊃ Existence− III

Existence− I ⊃ Existence− I∗ ⊃ Existence− II∗ ⊃ Existence− III

According to the levels we proposed above, assuming the space is continuous, we

can find out that P ∈ Existence-II, J.Myhill’s function f ∈ Existence-I, Pour-

El’s construction ϕ ∈ Existence-II, our example is in Existence-I*. Of course,

we wish to find an example in Existence-III.

54

Chapter 5

Quantum Computation

5.1 Quantum Algorithms

For general quantum computation, we only need to explain the definition of the

physical state set and the required evolution operators. More over, we only talk

about Monte Carlo styled quantum algorithms.

According to von Neumann’s four postulates[18] for quantum mechanics,

we require that the state of any representation should be vectors in Hilbert

space,i.e.

Ω ⊂ H

and the evolution operators should be unitary, i.e.

H†H = HH† = I.

Without loss of generality, we can assume that the measurement operators

is projection operators(POVM could be substituted by projection operators

through adding more auxiliary qubits)

Our framework for quantum mechanics is more extensive than quantum Tur-

ing machine and quantum circuit model. This quantum computational model

consider uncountable or countable unitary operators while other models only

talk about finite Hilbert space and the unitary operators could be represented

as matrix. These differences may be insignificant in quantum complexity the-

ory. However, in computability theory, our model is quite different from the

ones before. The example in chapter IV implies that our model is a little more

powerful than Turing machine and quantum Turing machine(or quantum circuit

model), while quantum Turing machine(or quantum circuit model) have been

proved equivalent to Turing machine.

55

5.1.1 Quantum Computability and Quantum Complexity

The resource cost by a computation is

RP((∆ ◦ H ◦ ∇)(pxq)) = (T((∆ ◦ H ◦ ∇)(pxq)),
S((∆ ◦ H ◦ ∇)(pxq)),
E((∆ ◦ H ◦ ∇)(pxq)),
G((∆ ◦ H ◦ ∇)(pxq))

Our definition here is special a case of the one in chapter-III. Suppose our

discussion is restricted to QCM, i.e. we have finite kinds of universal quantum

operators, then the number of gates used and the depth of the whole circuit will

be the main parameter which should be took into account. It is easy to find

out that this definition is similar to that of quantum circuit model. One of the

difference between them is that we will also take the cost of design(usually this

costs time) of a new circuit into account. Though in most cases, this will not

cause great difference from the result given by QCM, however, we don’t think

we can safely ignore the potential exceptions just because it is usually easy to

expand the scale of some circuits.

So far, people always assume that qubit is relatively easy to prepared. At

least in the asymptotic sense, no matter how difficult to prepared a quantum

bit, the cost should be bounded by a constant. We will also do this.

5.1.2 Deutsch-Josza Algorithm

Deutsch-Josza algorithm is one of the most successful algorithms in the early

years. The corresponding problem of the algorithm is: consider two sets of

functions:

A:

{
φ|φ : {0, . . . , 2n − 1} → {0, 1}, and ∀x(φ(x) = 0)

}

B:

{
φ|φ : {0, . . . , 2n − 1} → {0, 1},and

∣∣∣{x|φ(x) = 0}
∣∣∣ = ∣∣∣{x|φ(x) = 1}

∣∣∣}
Apparently we have A ∩ B = ∅, now suppose f ∈ A ∪ B and there is an oracle

to compute f . We are required to decide whether f ∈ A or not. It is no doubt

that people wish to reduce the times of query the oracle as much as possible.

Note that the cost of constructing the oracle is not taken into account,

because we assume some others have implemented it.

The algorithm needs a trivial input ψ0 = |0⟩⊗n|1⟩, and used the gate H⊗n⊗
H onto the stateψ0 a nd get ψ1, i.e.

ψ1 =
(
H⊗n ⊗H

) (
|0⟩⊗n|1⟩

)

56

Note that H = 1√
2

(
(|0⟩+ |1⟩)⟨0|+ (|0⟩ − |1⟩)⟨1|

)
. By induction we have

H⊗n =
1√
2n

∑
x,y

(−1)x·y|x⟩⟨y|

where i.e. x · y ≡
⊕
i

xi ∧ yi. So we get:

ψ1 =
(
H⊗n ⊗H

)
(|0⟩⊗n|1⟩)

= 1√
2n

(∑
x,y

(−1)x·y|x⟩⟨y|
)
|0⟩⊗n

[
|0⟩−|1⟩√

2

]
(by orthogonality)

= 1√
2n

∑
x
(−1)0|x⟩

[
|0⟩−|1⟩√

2

]
= 1√

2n

2n−1∑
x=0

|x⟩
[
|0⟩−|1⟩√

2

]
Now use the oracle Uf : |x, y⟩ → |x, y ⊕ f(x)⟩ onto the state ψ1 to get ψ2

ψ2 = Uf

(
1√
2n

2n−1∑
x=0

|x⟩
[
|0⟩−|1⟩√

2

])
= 1√

2n

2n−1∑
x=0

|x⟩
(
f(x)⊕ |0⟩−|1⟩√

2

)

= 1√
2n

2n−1∑
x=0

(−1)f(x)|x⟩
[
|0⟩−|1⟩√

2

]
At last we use H⊗n ⊗ I onto ψ2to getψ3:

ψ3 =
(
H⊗n ⊗ I

)(
1√
2n

2n−1∑
x=0

(−1)f(x)|x⟩
[
|0⟩−|1⟩√

2

])
=

∑
z

∑
x

(−1)x·z+f(x)|z⟩
2n

[
|0⟩−|1⟩√

2

]
The observer is supposed to check the first n qubits, note that the amplitude of

|0⟩⊗n is
∑
x(−1)f(x)/2n. If f ∈ A, f(x) is constant and the amplitude of |0⟩⊗n

is +1 or −1. So the amplitude of another cases should be zero and the observer

will get |0⟩⊗n. On the other hand, if f ∈ B, the amplitude of |0⟩⊗n will be zero.

So the observer will always get a non-zero vector.

In our opinion, the procedure could be written as follows.

∇ ≡ Initialize the state|0⟩⊗n ⊗ |1⟩
Generate the whole circuit

H1 ≡ H⊗n ⊗H

H2 ≡ Uf

H3 ≡ H⊗n ⊗ I

∆ ≡
∑
i

|Pi⟩⟨Pi|

57

Let H = H3 ◦ H2 ◦ H1

(∆ ◦ H ◦ ∇) (|x⟩) =
(
∆ ◦ H3 ◦ H2 ◦ H1 ◦ ∇

)
(|x⟩) = P (f ∈ B)

Though Deutsch-Jozsa Algorithm is great, someone still think it is not very

useful. In addition to the fact that the problem they studied is not very impor-

tant, there does exist an efficient classical probabilistic algorithm to solve the

problem with high probability.

5.1.3 Grover’s Algorithm

Quantum Search Algorithm[13], also known as Grover’s Algorithm, is another

quite successful quantum algorithm. Though this algorithm is not faster than

the fastest classical search algorithms super-polynomially, one can proof it is

the fastest one considering quantum mechanics. Therefore, the complexity of

the algorithm is the complexity of the problem it deals with.

The crucial subroutine of Grover’s Algorithm is the Grover iteration, often

denoted by G:

• Apply Oracle O : |x⟩|−⟩ → (−1)f(x)|x⟩|−⟩;

• Apply Hadamard Gates:H⊗n;

• Perform a conditional phase shift(2|0⟩⟨0|−I) on the computer, with every

non-zero bases receiving a phase shift of −1.

• Perform Hadamard transformation H⊗n.

Note that H⊗n(2|0⟩⟨0| − I)H⊗n = 2|ψ⟩⟨ψ| − I One can proof that Grover

iteration can be looked as a rotation in the plane spanned vectors which denoted

the right answers and the wrong answers.

Let Σ′
x be the sum of all the vectors which indicate a solution to the search

problem, Σ′′
x the rest. Define normalized states:

|α⟩ ≡ 1√
N−MΣ′′

x|x⟩

|β⟩ ≡ 1√
M
Σ′
x|x⟩

thus the initial state |ψ⟩ = 1
N1/2Σ

N−1
x=0 |x⟩ could be represented as

|ψ⟩ =
√
N −M

N
|α⟩+

√
M

N
|β⟩

The action of Operator O is O(a|α⟩ + b|β⟩) = a|α⟩ − b|β⟩, which could be

looked as perform a reflection in αβ− plane. Similarly Operator 2|ψ⟩⟨ψ| − I

also performs a reflection in αβ−plane. Thus both two reflections which could

be looked as a rotation occur in the αβ−plane. Let cos θ/2 =
√

(N −M)/N ,

s.t.|ψ⟩ = cos θ/2|α⟩+ sin θ/2|β⟩, apply the iteration once makes |ψ⟩ become

G|ψ⟩ = cos
3θ

2
|α⟩+ sin

3θ

2
|β⟩

58

k times use of Grover’s Iteration will lead to the following result:

Gk|ψ⟩ = cos

(
2k + 1

2
θ

)
|α⟩+ sin

(
2k + 1

2
θ

)
|β⟩

Since |ψ⟩ =
√

(N −M)/N |α⟩ +
√
M/N |β⟩, we just need to rotate |ψ⟩

arccos
√
M/N radians to the one which is parallel to vector |β⟩. So repeat-

ing G for R = [
arccos

√
M/N

θ] times will get |ψ⟩ to within an angle θ/2 ≤ π/4 of

|β⟩. This is a ’good’ state, for people only have to repeat the experiment for

expected constant times to get the solution to the problem(Consider geometric

probability distribution: EJXK = 1/(1/2) = 2).

Apparently R ≤ ⌈π/2θ⌉, suppose M ≤ N/2 then we have θ
2 ≥ sin θ

2 =
√

M
N .

Thus, we obtain:

R ≤

⌈
π

4

√
N

M

⌉

in other words we need repeat G for R = O(
√
N/M) times.

In our framework, Grover’s Algorithm could be expressed as:

∇ ≡ initialize |0⟩⊗n ⊗ |0⟩⊗o

the number o depends on the implementation of the oracle O.

H ≡ H′O(
√
N)

where

H′ ≡ (2|ψ⟩⟨ψ| − I)O)

= H⊗n ⊗ I⊗o ◦ (2|0⟩⟨0| − I)⊗ I⊗o ◦H⊗n ⊗ I⊗o ◦O

and

ψ =
1

N1/2

N−1∑
x=0

|x⟩

∆ ≡
∑

|Pi⟩⟨Pi|

In Grover’s scenes, just like the case in Deutsch’s algorithm, we never need to

consider any complexity cost by constructing the oracle. H⊗n costs n = log(N)

operations and 2|0⟩⟨0|−I costs O(n) operations. Therefore, the whole procedure

costs about O(
√
N log(N)) operations which is superior to the lower bound for

Turing machines which is O(N).

5.1.4 Shor’s Algorithm

Shor’s Algorithms for prime factorization and discrete logarithms[10, 11] is so

far the most exciting quantum algorithms. The appearance of Shor’s Algorithms

is the greatest challenge to strong Church Turing Thesis.

59

Shor’s Algorithms depends on a technique of so called ”quantum Fourier

Transform”. But of course QFT is not enough. Shor’s Algorithm is totally

non-trivial and marvelous, and few people can produce any algorithms like that

easily.

In order to understand Shor’s Algorithm, it may be enough to gain a clear

idea of quantum ordering algorithm. This is the only subprogram in the Shor’s

Algorithm which has to be implemented by quantum computers so far, and it

is really the most important subprogram.

First, note that
r−1∑
s=0

exp(−2πisk/r) = rδk0

and define |us⟩ as follows

|us⟩ ,
1√
r

r−1∑
k′=0

e−2πisk′/r
∣∣∣xk′modN

⟩
According to the fact above, we can get

1√
r

r−1∑
s=0

e2πisk/r|us⟩ =
∣∣∣xkmod N

⟩
In fact

1√
r

r−1∑
s=0

e2πisk/r|us⟩ =
1√
r

r−1∑
s=0

(
e2πisk/r

1√
r

r−1∑
k′=0

e−2πisk′/r
∣∣∣xk′modN

⟩)

=
1

r

r−1∑
s=0

(
e2πisk/r

r−1∑
k′=0

e−2πisk′/r
∣∣∣xk′modN

⟩)

=
1

r

r−1∑
k′=0

r−1∑
s=0

exp

(
2πis(k − k′)

r

) ∣∣∣xk′modN
⟩

=
1

r

r−1∑
k′=0

rδkk′
∣∣∣xk′modN

⟩
=
∣∣∣xkmod N

⟩
In particular, when k = 0, we have

1√
r

r−1∑
s=0

|us⟩ = |1⟩⊗L

where L ≡ ⌈log(N)⌉.
Suppose Ux,N satisfies Ux,N |y⟩ , |xy(modN)⟩. Considering Z∗

N and the

fact that the permutation on orthnormal basis can be represented as a unitary

operator, one can know for sure that Ux,N is unitary. What’s more us is a

60

eigenvector of Ux,N , the corresponding eigenvalue is e
2πis

r since

Ux,N |us⟩ =
1√
r

r−1∑
k=0

e
−2πisk

r

∣∣∣xk+1modN
⟩
= e

2πis
r |us⟩

Reverse the results above, we get the first half of the quantum ordering

Algorithm, which complete the following task:

|1⟩⊗L =
1√
r

r−1∑
s=0

|us⟩
U

zt2
t−1

x,N ···Uz120

x,N−−−−−−−−−−−−−−−→
Modular exponentiation

1√
r

r−1∑
s=0

e2πisk/r|us⟩ =
∣∣∣xkmod N

⟩

where the state 1√
r

∑r−1
s=0 e

2πisk/r|us⟩ is the one we desire. Apparently the eigen-

value contains the information of r. So as to extract the information, we need a

sub-progress named ”quantum phase estimation” which based on inverse quan-

tum fourier transformation. One can verify that if t is large enough, such like

t = 2L + 1 + ⌈log
(
2 + 1

2ε

)
⌉, for each s ∈ {0, . . . , r − 1}, we will obtain the

estimation of φ ≈ s/r accurate to 2L+1 bits with probability at least (1−ε)/r.
Through the continued fractions algorithm, we will get r with high probabil-

ity(According to PNT).

In our opinion, the procedure above could be written as:

∇ ≡ Initialize the state|0⟩⊗t ⊗ |1⟩⊗L

Generate the whole circuit

H1 ≡ H⊗n ⊗H

H2 ≡ CUx,N

H3 ≡ FT † ⊗ I⊗L

H4 ≡ CF ⊗ I⊗L

∆ ≡
∑
i

|Pi⟩⟨Pi|

It is easy to check that except the H3, all operators cost polynomial time with

respect to logN . The complexity of operator modular exponentiation and con-

tinued fraction are both O(L3), which are two most time-consuming subproce-

dure of the whole algorithm except the H3(inverse quantum fourier transform).

Note that H3 is indeed not an operator which could be implemented by

polynomial universal gates. Consider a family of gates used in H3 which is

usually noted by Rk(k ∈ {2, . . . , L})

Rk =

(
1 0

0 e2πi/2
k

)

In other words, the original Shor’s Algorithm is not a algorithm with super-

polynomial acceleration. In order to overcome this, Coppersmith created a new

algorithm called the AFFT(Approximate Fast Fourier transform) [12] which can

61

substitute for the procedure QFT.

5.2 Quantum Simulation and Quantum

Algorithm

Quantum Lattice Celluar Automata(QLCA) and Quantum Gas Automata(QG-

A) are two familiar ideal models in the research of quantum simulation[15] .

Meyer, Boghosian[15, 16, 17] have obtained their results respectively by using

these models, that is, they construct some quantum algorithms which demon-

strate exponentially speedup in such models. For Bohosian, the object they

tried to simulated is a QGA which obey lattice Boltzman distribution, where

arbitrary fields can be concerned with. They have proofed that the complex-

ity of simulation is only related to the dimension of the lattice, but almost

has nothing to do with the number of the particles. However, the number of

particle always cause exponentially hardness on a classical computer. In fact,

Boghosian’s results imply that it is almost impossible for a classical computer to

simulate one evolution step of a quantum system including dozens of particles.

We’ve mentioned that it is the difficulty of quantum simulation that makes

people believe quantum mechanics can provide enormous power of computation

in the early years.

Note that in this article we do not care about the hardness of simulations.

Generally speaking, the hardness of simulation has nothing to do with the one

of computation. For instance, people may find it difficult to simulate some

classical celluar automaton according to the given regulations, however once the

tedious work has been completed there often exists some more simple methods

to produce the series. A typical example is that the regulations of an automata

actually cause a circle with a finite period in the series. The same thing can

happens to quantum simulations too.

However, it is important to know that there must exists some cases in which

simulations and computations are equivalent. These extreme cases often ap-

pears when the length of regulations is near the Kolmogorov complexity(lower

bound of description) of a series. Still, strictly speaking, at present no one

can proof that polynomially universal unitary operators really cause exponen-

tially difficulty in classical computation. To understand this, just consider an

easy but helpful fact that almost all the problems we want to efficiently solved

on a quantum computer are in the class BQP, and we have BQP⊆PSPACE.

Unfortunately PSPACE=P is not totally impossible. Of course most people

don’t believe this is true, since this would imply that Shor’s Algorithms can be

polynomially simulated on a classical computers.

Now we discuss how to extract a corresponding quantum algorithm from

a method of quantum simulation, which is believed to be exponentially faster

than any classical one of the same target.

62

On a high level, we should do following things:

• Find a family of experiments of quantum mechanics which can be effi-

ciently simulated by quantum computers but are believed to be hardly to

simulate and compute by classical computers;

• Design a ’good’ problem about some non-trivial properties of the last state

of the system, which makes quantum computers able to present the answer

to the observer quickly.

Designing the problem is a crucial step. In most cases, though we may have

quickly obtained the probabilistic distribution very close to the real experiments,

we can not know the whole information in short time. So first we have to ask

a question which can be easily verified by any quantum computers containing

the whole quantum information of the system.

For example, we can ask a question such like:

• What the number of the n0−th digit of the probability of a certain system

arriving in Ω′(Ω′ ⊂ Ω)?

The problem of this method is that in high dimensional spaces, it is very

likely that the probability of the set Ω′ is exponentially close to zero, which

actually enables a classical computers to guess zero without running and get

the right answer in most cases.

Now we propose our version: Suppose ϕ is the wave function of the system

we’ve simulated and |ϕ(X)|2, X ⊂ Ω is the probability of x⃗ appear in X. Try

to find two subsets A,B ⊂ Ω s.t.

3

7
≤ |ϕ(A)|2

|ϕ(B)|2
≤ 4

7

and determine the value of the n0−th digit of ϕ(A).

For the systems which (probabilistic)Turing machine cannot simulate in

polynomial time, the question above is intuitively hard to answer, though up

till now no one can proof or disproof it.

On the other hand, if these systems can be efficiently simulated by quan-

tum computers, repeating following procedure will ensure us to find the answer

relatively much faster than any probabilistic Turing machine of the same aim.

Definition 5.2.1. (Vector of normal vectors x⃗)

x⃗ ≡




0

0
...

1

 ,


0
...

1

0

 , . . . ,


1
...

0

0




Definition 5.2.2. (Procedure PQ) PQ(In pseudo-code):

while(find the answer)

63

{
. Mid-cut the space Ω by super-plane whose normal vector is xi.

. Suppose the two spaces is Ω1 and Ω2

. if(the condition is satisfied(verifies by testing))

. {

. halt

. }

. else

. {

. Ω = min|ϕ|{Ω1,Ω2}

. i++

. }
}

5.3 Conclusions and Future Works

We formally propose the theory of physical computation, define the concepts

of resource and complexity. Several examples, including classic mechanics and

quantum mechanics, are discussed and analyzed under the framework of physical

computation. A technique, which is used to converse a method of quantum

simulation into a quantum algorithm, is discussed.

This is an exciting field, we believe that there is more exciting topic to study.

A very interesting question is: can we find a physical mechanism as the fastest

implementation of an arbitrary functions?[55]

In chapter III, we talk about the question of calculating the centroid of an

object. We thought it is the limitation of dimensions(only three dimensions)

hide the advance of the method we mentioned. We conjecture that this method

has a excellent counterpart in high dimensional cases. We’ll have a try in the

(quantum)statistics mechanism.

In chapter V, we talked about quantum simulations and how to construct a

clever problem to induced a quantum algorithm. Actually, we conjecture that

the problem we construct is a hard one in class #P , for these questions have a

counting style. However, we are not sure about whether the designed questions

could be in #P − hard under some specific statistical models. We shall try to

work on this in the future.

We’ve mentioned that we assume that polynomial qubits is polynomially

hard to prepare. However, it is harder to control the qubits as the number of

them increase[18] so far. So one can still conjecture that preparing qubits itself

is a ”complicated computing”, and the results up till now can be explained as

someone displace the resource consuming procedure, just like DNA Algorithms.

64

Bibliography

[1] P.Benioff. The computer as a physical system: A microscopic quantum
mechanical Hamiltonian model of computers as represented by Turing
machines J. Stat. Phys.,22(5):563-591,1980

[2] Richard P.Feynman. Simulating Physics with Computers Int. J. Theor.
Phys. 21(1982)467-888

[3] D.Deutsch. Quantum theory, the Church-Turing Princple and the uni-
versal quantum computer. Proc. R. Soc. Lond. A,400:97,1985

[4] E.Bernstein and U.Vazirani. Quantum complexity theory. SIAM J. Com-
put., 26(5): 1411-1473, 1997.

[5] A.C.Yao. Quantum circuit complexity. Proc. of the 34th Ann. IEEE
Symp. on Foundations of Computer Science,pages 352-361,1993

[6] J.Myhill. A Recursive Function,Defined On a Compact Interval and
Having a Continuous Derivative that is Not Recursive. Michigan
Math.J.18(1971)

[7] Itamar Pitowsky. The Physical Church Thesis and Physical Compu-
tational Complexity A Jerusalem Philosophical Quarterly 39(January
1990)

[8] Marian B.Pour-El and Ning Zhong. The Wave Equation with Com-
putable Initial Data Whose Unique Solution Is Nowhere Computable
Mathematical Logic Quarterly ©Johann Ambrosius Barth 1997

[9] D.Deutsch and R.Jozsa. Rapid solution of problems by quantum compu-
tation. Proc. R.Soc. London A, 439:553, 1992

[10] P.W.Shor. Algorithms for quantum computation:discrete logarithms and
factoring. In Prodeedings, 35th Annual Symp. on Foundations of Com-
puter Sciece, IEEE press, Los Alamitos, CA, 1994

[11] P.W.Shor. Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer.SIAM. J. Comp.,26(5):1484-
1509,1997

[12] D.Coppersmith. An approximate Fourier transform usefulin quantum
factoring. IBM Research Report RC 1994

[13] L.K.Grover. Quantum mechanics helps in searching for a needle in a
haystack. Phys. Rev. Lett., 79(2):325,1997

[14] L.M.Adleman. Molecular computation of solutions to combinatorial
problems. Science, 266:1021, 1994

65

[15] D.A.Meyer, J.Stat.Phys.85,551(1996)

[16] B.M.Boghosian and W. Taylor, Phys. Rev. E 57, 54(1998)

[17] B.M.Boghosian and W.Taylor, Intl. J.Mod. Phys. C8, 705(1997).

[18] M.A.Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press (2000)

[19] Edwin Beggs, José Félix Costa, and John V. Tucker Computational Mod-
els of Measurement and Hempel’s Axiomatization

[20] Edwin Beggs, José Félix Costa, and John V. Tucker Physical Oracles:
The Turing machine and the Wheatstone Bridge

[21] Edwin Beggs, José Félix Costa, Bruno Loff, and John V. Tucker Oracles
and Advice as Measurements

[22] Edwin Beggs, José Félix Costa, Bruno Loff, and John V. Tucker On the
Complexity of Measurement in Classical Physics

[23] Edwin Beggs, José Félix Costa, Bruno Loff, and John V. Tucker Com-
putational complexity with experiments as oracles. II. Upper bounds

[24] J.Gerver, “The existentce of pseudocollisions in the plane”, J.Differential
Equations, 89(1991),1-68

[25] Z.Xia “The existentce of noncollision singularities in the n-body prob-
lem”, Annals Math, 135(3)(1992),411-468

[26] P.Painlevé, “Lecons sur la theorie analytic des equatons differentielles”,
Hermann, Paris, 1897.

[27] P.Penrose, “The emperor’s New Mind”, Oxford University Press, 1989.

[28] P.Penrose, “Shadows of the Mind”, Oxford University Press, 1994.

[29] W.Smith, “Church’s thesis meets the N -body problem”, manuscript,
1993(http://www.neci.nec.com/homepages/wds/works.html).

[30] W.Smith, “Church’s thesis meets quantum mechanics”, manuscript,
1999(http://www.neci.nec.com/homepages/wds/works.html)

[31] A.M.Turing, “On computable numbers, with an application to the
Entscheidungproblem,”, Proc. London Math. Soc., Series 2, 42(1936-
37),230-265.

[32] Mac Lane, “Categories for the Working Mathematician”, Springer (Grad-
uate Texts in Mathematics) ISBN 0-387-98403-8, 1998 (1972).

[33] Heinz-Otto Peitgen, Hartmut Jürgens, Dietmar Saupe, “Chaos and Frac-
tals ”, Springer Press, 1992,2004.

[34] C.D.GODSIL,M.GRÖTSCHEL, D.J.A.WELSH“Combinatorics in Sta-
tistical Physics ”©ELsevier Science B.V.1995.

[35] D.J.A.WELSH“The Computational Complexity of Some Classical Prob-
lems from Statistical Physics ”

[36] Christos H.Papadimitriou “Computational Complexity ”Addison-Wesley

66

[37] T.H.Cormen, C.E.Leiserson, and R.L.Rivest “introduction to Algo-
rithms”MIT Press, Cambridge, Mass.,1990

[38] R.Motwani and P.Raghavan. “Randomized Algorithms”Cambridge Uni-
versity Press, Cambridge,1995

[39] A.Y.Kitaev. “Quantum measurements and the Abelian stabilizer prob-
lem” arXive e-print quant-ph/9511026,1995

[40] M.Mosca.“Quantum Computer Algorithms”Ph.D. thesis, University of
Oxford,1999

[41] A.Ekert and R.Jozsa. “Quantum computation and Shor’s factoring algo-
rithm”Rev. Mod. Phys., 68:1, 1996

[42] G.H.Hardy and E.M.Wright. “An Introduction to the Theory of Num-
bers, Fourth Edition”Oxford University Press, London,1990

[43] D.P.DiVincenzo. “Quantum computation.” Science, 270:255, 1995, arX-
ive e-print quantu-ph/9503016

[44] D.P.DiVincenzo. “Two-bit gates are universal for quantum computa-
tion.” Phys. Rev. A, 51(2):1015-1022, 1995

[45] D.P.DiVincenzo. “Quantum Gates and circuits.” Proc. R. Soc. London
A, 454:261-276,1998

[46] A.K.Lenstra and H. W. Lenstra Jr. editors. “The Development of the
Number Field Sieve.” Springer-Verlag, New York, 1993

[47] P.O.Boykin, T.mor, M.pulver, V.Roychowdhury, and F.Vatan “On uni-
versal and fault-tolerant quantum computing” arXiave e-print quant-
ph/9906054,1999

[48] A.T.Kitaev “Quantum Computations: algorithms and error correction.”
Russ. Math. Surv. 52(6):1191-1249,1997

[49] A. Church. “An unsolvable problem of elementary number theory .” Am.
J. Math, 58:345,1936

[50] M.D. Davis “The Undecidable.” Raven Press, Hewlett, New York, 1965

[51] W.Greiner “Classical Mechanics Systems Of Particles And Hamiltonian.”
Springer-Verlag, New York, 2003

[52] Herbert Goldstein, Charles Poole, John Safko “Classical Mechanics .”
American Journal of Physics – July 2002 – Volume 70, Issue 7, pp. 782

[53] Sanjeev Arora, Boaz Barak “Computational Complexity:A Modern Ap-
proach.”Draft of a book, 2007

[54] Michael Sipser “Introduction to the Theory of Computation.”©2006
Thomson Course Technology, a division of Thomson Learning, Inc.

[55] Stephen Wolfram “Undecidability and Intractability in Theoretical
Physics.”1985 Physical Review Letters

[56] Song Fangmin “Introduction to Models of Computation.” handbook

[57] H.P.Barendregt “The Lambda Calculus: Its Syntax and Semantics.” 2nd
edition, North-Holland, 1984

67

[58] S.C.Kleene “Introduction to MetaMathematics.” North-Holland, 1967

[59] George S. Boolos, Richard C.Jeffrey, John Burgess “Computability and
Logic.” Cambridge University Press, 2002

[60] Daniel E. Cohen “Computability and Logic.” Ellis Horwood, 1987

[61] A.M.Turing “Computability and λ−Definability.” The Journal of Sym-
bolic Logic, Volume 2, Number 4, 1937

[62] Andrew Chi-Chih Yao “Classical Physics and the Church Turing Thesis.”
ISSN 1433-8092

[63] F.Harary“Graph theory.” Addison-Wesley 1969

68

Publications

Some results of the paper are published in “physical computation theory”, Jour-

nal of Wuhan University(Natural Science Edition) vol.58, 2012

69

Acknowledgements

I am grateful to my supervisor Prof. Dr. Song Fangmin, who introduced me to

the marvelous palace of mathematical logic and encouraged me to do research

in physical computation. Some interesting examples are also due to him.

Also, without the thoughtful remarks and helpful suggestions of Nan Wu,

Haixing Hu, Jiasen Wu and Kun Wang, many valuable things will be missed in

this paper.

Finally, great thanks to my dear parents. Your love ensures that I will never

be misled by books, someone else or myself during my journey through the great

ocean of truth.

70

Vita

Zheng Huimin was born on Nov. 06th 1985, in Bengbu, a city in An Hui

Province. In 2005, he was admitted into Nanjing University, majoring at Com-

puter Science and Technology. In 2009, he was admitted into master program,

supervised by Prof. Song Fangmin.

Now, his research interests are in the fields of quantum computation and

mathematical logic.

71

	List of Tables
	List of Figures
	Chapter 1 Introduction
	Quantum Computation
	`Physical Computation'

	Chapter 2 Models of Quantum Computation
	Quantum Turing machine
	Quantum Circuit Model

	Chapter 3 The Theory of Physical Computation
	Observer
	Physical States
	Physical processes and the operation
	Physical Operator and the operation of operator
	Physical Computability
	Deterministic Physical Computation
	Non-deterministic Physical Computation

	Complexity
	Resource and Complexity

	Some Common Examples
	Mean of Three Numbers
	Compass and straightedge constructions
	Sorting Without Repeat
	Volume of irregular shape
	The centroid of Irregular Shape

	Graph Isomorphism, Graph Spectrum and Oscillators
	Spectrum of Graph
	Harmonic Oscillator of multi-freedom
	The characteristic oscillators for a Graph
	Comments

	Steiner Tree Problem
	DNA Computation
	N-body System and ECT
	Chaotic systems
	Chaotic systems with singularities

	Chapter 4 Computability
	Turing computable is physical computable
	PLATO Machine
	N-body System and PHCT
	classical mechanics
	Smith's idea

	Is N-body system too complex?

	Recursive function whose derivative is not recursive
	Physical States which is not computable
	A few Comments
	Examples in Quantum Mechanics
	Measure Reals
	Existence

	Chapter 5 Quantum Computation
	Quantum Algorithms
	Quantum Computability and Quantum Complexity
	Deutsch-Josza Algorithm
	Grover's Algorithm
	Shor's Algorithm

	Quantum Simulation and Quantum Algorithm
	Conclusions and Future Works

	Bibliography
	Publications
	Acknowledgements
	Vita

