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Abstract

We propose Lagrangian formulation for the particle with value of spin
fixed within the classical theory. The Lagrangian turns out to be invari-
ant under non-abelian group of local symmetries. As the gauge-invariant
variables for description of spin we can take either the Frenkel tensor
or the BMT vector. Fixation of spin within the classical theory implies
O(h̄) -corrections to the corresponding equations of motion.

1 Introduction

Classical theories of spin are widely used (see [1-4] and references
therein) in analysis of spin dynamics in various circumstances and
are known to agree with the calculations based on the Dirac the-
ory. The spin variables of the Frenkel and BMT theories obey the
first-order equations of motion. On this reason, construction of the
corresponding action functional represents rather nontrivial prob-
lem. Various sets of auxiliary variables have been suggested and
discussed in attempts to solve the problem [5-11]. The present model
is based on the recently developed construction of spin surface [12].
This represents an essentially unique SO(n) -invariant surface of 2n -
dimensional vector space which can be parameterized by generators
of SO(n) -group1. In [13] it has been demonstrated that SO(3) spin
surface leads to a reasonable model of non-relativistic spin. SO(2, 3)
spin surface implies the model of Dirac electron [14], and represents
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1More exactly, (2n− 3) -dimensional spin surface has natural structure of fiber bundle. Its
base can be parameterized by SO(n) -generators.
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an example of pseudoclassical mechanics [15]. Here we demonstrate
that SO(1, 3) spin surface can be used to construct variational prob-
lem for unified description of both the Frenkel and BMT theories of
relativistic spin.

In the Frenkel theory [5] we include the three-dimensional spin-

vector Si, (Si)2 = 3h̄2

4
, into the antisymmetric tensor Jµν = −Jνµ.

This required to obey the constraint

Jµνuν = 0, (1)

where uν represents four-velocity of the particle. In the rest-frame,
uν = (u0, 0, 0, 0), this implies J0i = 0, so only three components of
the Frenkel tensor survive, they are J ij = ǫijkSk. Besides, we can
impose the covariant constraint

JµνJµν =
3h̄2

2
. (2)

As in the rest frame JµνJµν = 2(Si)2, this implies the right value of
three-dimensional spin, as well as the right number of spin degrees
of freedom.

Frenkel tensor is equivalent to the four-vector2 Sµ ≡ 1
2
ǫµναβuνJαβ ,

the latter obeys

Sµuµ = 0. (3)

This has been taken by Bargmann, Michel and Telegdi as the basic
quantity in their description of spin [16]. In terms of the BMT-
vector, spin can be fixed fixed by the constraint3

(Sµ)2 = −
1

2
u2J2 + (Ju)2 = −

3h̄2

4
u2. (4)

Equations for the BMT-vector can be fixed [16] from the require-
ments of relativistic covariance, the right non-relativistic limit and
from the compatibility with above mentioned constraints. Using the
proper time as the evolution parameter, they read4

Ṡµ = −
µe

mc2
[(FS)µ + (SFu)uµ]− (u̇S)uµ, (5)

2We use the Minkowski metric ηµν = (−,+,+,+) and the Levi-Civita symbol with ǫ0123 =
+1.

3We point out that Sµ, being the Casimir operator of the Poincare group, has fixed value
for the Poincare IRREPs as well.

4Our µ = g

2
of BMT, and the sign of our charge e is the negative of theirs.
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where µ stands for the anomalous magnetic moment, mu̇µ = fµ,
and fµ is four-force.

We are interested in to formulate a variational problem for the
Frenkel and BMT classical spin theories. As compare with the previ-
ous attempts [5-11], we look for the action functional which, besides
of the transversality constraints (1), (3), implies also the value-of-
spin constraints (2), (4). We point out that mainly due to the ab-
sence of variational problem, canonical quantization of the Frenkel
and BMT theories is not developed to date. We hope the present
work may be a step towards this direction.

We construct the Frenkel tensor starting from angular momen-
tum

Jµν = 2(ωµπν − ωνπµ), (6)

of the spin ”phase” space with the coordinates ωµ and the conju-
gate momenta πµ. To achieve this, we restrict dynamics of the basic
variables on the spin surface determined by SO(1, 3) -invariant equa-
tions

π2 = a2, ω2 = a5, ωπ = 0. (7)

As JµνJµν = 8(ω2π2 − (ωπ)2) = 8a2a5, an appropriate choice of the
numbers a2 and a5 in Eq. (7) fixes the value of spin. Besides, we
impose the constraints

pω = 0, pπ = 0, (8)

where pµ stands for conjugate momentum to the world-line coordi-
nate xµ. Eqs. (8) guarantee the transversality (1) of the Frenkel ten-
sor. The set (7), (8) contains one first-class constraint (see below).
Taking into account that each second-class constraint rules out one
phase-space variable, whereas each first-class constraint rules out
two variables, we have the right number of spin degrees of freedom,
8− (4 + 2) = 2.

Dynamics of the position variable xµ(τ) is restricted by the stan-
dard mass-shell condition

p2 +m2c2 = 0. (9)

Our next task is to formulate the variational problem which implies
these constraints. Since they are written for the phase-space vari-
ables, it is natural to start from construction of an action functional
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in the Hamiltonian formalism. We introduce the canonical pairs
(gi, πgi), i = 1, 2, 3, 4, 5, of auxiliary variables associated with the
constraints. Then the Hamiltonian action can be taken in the form

SH =
∫

dτ pµẋ
µ + πµω̇

µ + πgiġi −H, (10)

H =
1

2
g1(p

2 +m2c2) +
1

2
g2(π

2 + a2) + g3(pπ)+

g4(pω) +
1

2
g5(ω

2 + a5) + λgiπgi. (11)

We have denoted by λgi the Lagrangian multipliers for the primary
constraints πgi = 0. Variation of the action with respect to gi im-
plies5 the desired constraints (7), (8) and (9).

2 Lagrangian of a theory with quadratic con-

straints

Lagrangian of a given Hamiltonian theory with constraints can be
restored within the extended Lagrangian formalism [17]. Our con-
straints (7), (8) and (9) are either linear or quadratic with respect
to momenta. For this case, the general formalism can be simplified
as follows. Consider mechanics with the configuration-space vari-
ables Qa(τ), gab(τ) = gba, ha

b(τ) and kab(τ) = kba and with the
Lagrangian action

S =
∫

dτ
1

2
gabDQaDQb −

1

2
kabq

aQb −
1

2
M(g̃, h, k). (12)

We have denoted DQa ≡ Q̇a − ha
bQ

b, and g̃ab is the inverse matrix
of gab This action can be used to produce any desired quadratic
constraints of the variables Q,P . Indeed, denoting the conjugate
momenta as Pa, πg, πh and πk, the equations for Pa can be solved

Pa =
∂L

∂Q̇a
= gabDQb, ⇒ Q̇a = g̃abPb + ha

bQ
b, (13)

while equations for the remaining momenta turn out to be the pri-
mary constraints πg = πh = πk = 0. The Hamiltonian reads

H =
1

2
g̃abPaPb + Pah

a
bQ

b +
1

2
kabQ

aQb +
1

2
M+

5The equation ωπ = 0 appears as the third-stage constraint, see Eq. (19) below.
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λgπg + λkπk + λhπh. (14)

Then preservation in time of the primary constraints implies the
quadratic constraints PaPb +

∂M
∂g̃ab

= 0, and so on.

Comparing the Hamiltonian of our interest (11) with the expres-
sion (14), let us take Qa = (xµ, ων), Pa = (pµ, πν),

g̃ab =

(

g1 g3
g3 g2

)

, ha
b =

(

0 g4
0 0

)

, kab =

(

g5 0
0 0

)

,

where g1 = g1η
µν and so on. Besides, we take the ”mass” term in

the form M = g1m
2c2 + g2a2 + g5a5. With this choice, the equation

(14) turns into the desired Hamiltonian (11). So the corresponding
Lagrangian action reads from (12) as follows

S =
∫

dτ
1

2A

[

g2(Dx)2 − 2g3(Dxω̇) + g1ω̇
2
]

−

1

2
g1m

2c2 −
1

2
g2a2 −

1

2
g5(ω

2 + a5). (15)

We have denoted A = det g̃ = g1g2 − g23, Dxµ = ẋµ − g4ω
µ.

3 Free theory

Equations for the canonical momenta pµ and πµ of the theory (15)

pµ =
g2

A
Dxµ −

g1

A
ω̇µ, πµ = −

g3

A
Dxµ +

g1

A
ω̇µ, (16)

can be resolved as follows

ẋµ = g1p
µ + g3π

µ + g4ω
µ, ω̇µ = g3p

µ + g2π
µ, (17)

while equations for the remaining momenta imply the primary con-
straints, πgi = 0. Using these equations in the expression pẋ+πω̇−L,
we immediately obtain the Hamiltonian (11). Preservation in time
of the primary constraints implies the following chains of higher-
stage constraints:

πg1 = 0 ⇒ p2 +m2c2 = 0. (18)

πg2 = 0, ⇒ π2 + a2 = 0
πg5 = 0, ⇒ ω2 + a5 = 0

}

⇒ πω = 0,⇒
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g5 =
a2

a5
g2, ⇒ λg5 =

a2

a5
λg2. (19)

πg3 = 0 ⇒ pπ = 0, ⇒ g4 = 0, ⇒ λg4 = 0.
πg4 = 0 ⇒ pω = 0, ⇒ g3 = 0, ⇒ λg3 = 0. (20)

The constraints p2 + m2c2 = 0 and π2 + a2 + a2
a5
(ω2 + a5) = 0

form the first-class subset. This indicates that the action (10) is
invariant under the two-parametric group of local transformations.
It is composed by the standard reparametrizations as well as by the
following transformations with the parameter γ(τ):

δωµ = γg2π
µ, δπµ = −γg5ω

µ,

δg2 = (γg2)̇, δg5 = (γg5)̇, δg3 = −γg4g2,

δg4 = γg3g5, δλgi = (δgi)̇. (21)

Note that xµ, Jµν and Sµ = 1
2
ǫµναβpνJαβ are γ -invariant quantities.

Besides the constraints, the action implies the Hamiltonian equa-
tions

ẋµ = g1p
µ, ṗµ = 0,

ω̇µ = g2π
µ, π̇µ = −g2

a2

a5
ωµ. (22)

Obtaining these equations, we have used the constraints (19) and
(20). The functions g1(τ) and g2(τ) can not be determined nei-
ther with the constraints nor with the dynamical equations. It
implies the functional ambiguity in solutions to the equations of
motion (22): besides the integration constants, solution depends on
these arbitrary functions. The ambiguity of xµ due to g1 reflects the
reparametrization invariance, while the ambiguity of ωµ and πµ due
to g2 is related with the γ -symmetry. According to the general the-
ory of singular systems [18, 19, 20], the variables with ambiguous dy-
namics do not represent the observable quantities. So, our next task
is to find candidates for observables, which are variables with unam-
biguous dynamics. Equivalently, we can look for the gauge-invariant
variables. As the physical variables of the spin-sector, we can take
either the Frenkel tensor or the BMT-vector, both turn out to be γ -
invariant quantities. The ambiguity related with reparametrizations
can be removed in the standard way: we assume that the functions
xµ(τ) represent the physical variables xi(t) in the parametric form.
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As it should be, dynamics of the physical variables is unambiguous

dxi

dt
= c

pi

p0
,

dpi

dt
= 0,

dJµν

dt
=

dSµ

dt
= 0. (23)

According to the equations (18)-(20), the variables obey also the
constraints p2 + m2c2 = 0, Jµνpµ = 0, J2 = 8a2a5, Sµpµ = 0,
S2 = 4m2c2a2a5.

4 Interaction with uniform electromagnetic field

Let us consider the spinning particle with electric charge e and the
anomalous magnetic moment µ. We take the Hamiltonian of inter-
acting theory in the form

H =
1

2
g1(P

2 +
eµ

2c
FµνJ

µν +m2c2) +
1

2
g2(π

2 + a2)+

g3(Pπ) + g4(Pω) +
1

2
g5(ω

2 + a5) + λgiπgi. (24)

We have denoted Pµ ≡ pµ + e
c
Aµ. In contrast to pµ, the U(1) -

invariant quantities Pµ have non-vanishing Poisson brackets. We
restrict ourselves to the case of uniform electromagnetic field, Fµν =
∂µAν − ∂νAµ = const, then {Pµ,Pν} = −e

c
F µν .

We point out that the γ -symmetry survives in the interacting
theory even for nonuniform field.

The Hamiltonian (24) implies the constraints (19), the mass-shell
condition

P2 +
eµ

2c
FµνJ

µν +m2c2 = 0, (25)

as well as the chains

Pπ = 0, ⇒ g4 = −g1
e(µ− 1)

c3M2
(πFP), ⇒ λg4 ∼ λg1.

Pω = 0, ⇒ g3 = g1
e(µ− 1)

c3M2
(ωFP), ⇒ λg3 ∼ λg1. (26)

We have denoted M2 = m2 + e(2µ+1)
4c3

FµνJ
µν . The constraints imply

the useful consequence

g3(πFP) + g4(ωFP) = 0. (27)
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This equation can be used to verify that the quantities FµνJ
µν , M2

and P2 represent the integrals of motion.
Hamiltonian equations for the basic variables read

ẋµ = g1u
µ, Ṗµ = −g1

e

c
(Fu)µ, (28)

ω̇µ = −g1
eµ

c
(Fω)µ + g2π

µ + g3P
µ,

π̇µ = −g1
eµ

c
(Fπ)µ −

a2

a5
g2ω

µ − g4P
µ, (29)

where the four-velocity uµ is (see Eq. (26))

uµ = Pµ +
g3

g1
πµ +

g4

g1
ωµ = Pµ −

e(µ− 1)

2c3M2
(JFP)µ. (30)

Hence the interaction leads to modification of the Lorentz-force
equation. Only for the ”classical” value of anomalous momentum,
µ = 1, the constraints (26) would be the same as in the free the-
ory, g3 = g4 = 0. Then the four-velocity coincides with P. When
µ 6= 0, the difference between u and P is proportional to J

c3
∼ h̄

c3
. All

the basic variables have ambiguous evolution. xµ and Pµ have one-
parametric ambiguity due to g1 while ω and π have two-parametric
ambiguity due to g1 and g2.

The quantities xµ, Pµ and the Frenkel tensor Jµν are γ -invariants.
Their equations of motion form a closed system

ẋµ = g1

[

Pµ −
e(µ− 1)

2c3M2
(JFP)µ

]

, Ṗµ = −
e

c
(F ẋ)µ, (31)

J̇µν = −g1
e

c

[

µF [µ
α Jαν] −

µ− 1

c2M2
P [µJν]α(FP)α

]

. (32)

The remaining ambiguity due to g1 presented in these equations re-
flects the reparametrization symmetry of the theory. Assuming that
the functions xµ(τ), pµ(τ) and Jµν(τ) represent the physical vari-
ables xi(t), pµ(t) and Jµν(t) in the parametric form, their equations

read dxi

dt
= c ui

u0 ,
dpµ

dt
= −e

(Fu)µ

u0 , dJµν

dt
= c J̇µν

g1u0 . As it should be, they

have unambiguous dynamics.
Since JµνPν = 0, the Frenkel tensor is equivalent to the BMT-

vector constructed as follows:

Sµ =
1

2
ǫµναβPνJαβ ≡

1

2
ǫµναβuνJαβ . (33)
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So the physical dynamics can be described using Sµ instead of Jµν .
Using the identities

Jµν =
1

P2
ǫµναβPαSβ, ǫµναβJαβ =

2

P2
S [µPν], (34)

to represent Jµν through Sµ in Eq. (31), we obtain the closed system
of equations for γ -invariant quantities

ẋµ = g1

[

Pµ −
e(µ− 1)

2c3M2
ǫµναβ(FP)νPαSβ

]

,

Ṗµ = −
e

c
(F ẋ)µ, (35)

Ṡµ = −g1
eµ

c

[

(FS)µ +
1

P2
(SFP)Pµ

]

−
1

P2
(ṖS)Pµ. (36)

These equations are written in an arbitrary parametrization of the
world-line. The choice of proper time as the evolution parameter
corresponds to g1 = mc.

5 Conclusion

In this work we have specified the construction of spin surface [12]
for the case of SO(1, 3) -group. On this base, we have constructed
the Lagrangian action (15) which describe the particle with fixed
value of spin interacting with uniform electromagnetic field. Due to
the constraints (7), (8), the number of physical degrees of freedom
in the spin-sector is equal to 2, as it should be. The basic spin-space
coordinates ωµ, πν are gauge non-invariant variables, hence they do
not correspond to the observable quantities. We can take the anti-
symmetric tensor (6) as an observable quantity. For an appropriate
choice of the parameters a2, a3, this obeys both the transversality
constraint (1) and the value-of-spin constraint (2). Its dynamics is
governed by the Frenkel-type equation (32). Equivalently, we can
take the vector (33) as an observable quantity. This is subject to the
constraints (3), (4) and obeys the Bargmann-Michel-Telegdi equa-
tions of motion (36).
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