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Abstract A new apoproach to solving two of the cosmological constant
problems (CCPs) is proposed by introducing the Abbott-Deser (AD) method
for defining global energy and Killing charges in asymptotic de Sitter space
as the only consistent means for defining the ground-state vacuum for the
CCP. That granted, Einstein gravity will also need to be modified at short-
distance scales, using instead a nonminimally coupled scalar-tensor theory
of gravitation that provides for the existence of QCD’s two-phase vacuum
having two different zero-point energy states as a function of temperature.
Einstein gravity alone cannot accomplish this. The scalar field will be taken
from bag theory in hadron physics. A small graviton mass mg ∼10−33 eV
naturally appears as a secondary effect, induced by the existence of a non-
zero CC (λ 6= 0), with a smooth zero-mass limit mg → 0 as λ → 0. This
mass is shown to be related to the cosmological event horizon in asymptotic
de Sitter space.

Keywords Cosmological constant problem; vacuum energy density; hadron
physics, asymptotic de Sitter space, zero-point energy.

1 Introduction

The cosmological constant problem (CCP) continues to represent a serious
circumstance for the unification of gravity with quantum field theory (QFT)
on curved backgrounds, quantum gravity (QG), zero-point energy fluctua-
tions, and our understanding of vacuum energy density ρV in particle physics
as well as cosmology. The point of view to be taken here is that the CCP(s)
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cannot be fixed without two things: (a) a consistent definition and usage of
global energy (Killing charge) in asymptotic spacetime; and (b) a modifica-
tion to Einstein gravity (EG) where the cosmological constant (CC) λ was
first introduced and discovered [1,2]. It has been subsequently identified as
a vacuum energy density (VED) [3–5] which is a gravitational effect result-
ing in a curved de Sitter spacetime referred to as cosmological gravity (CG)
(metrics with λ 6= 0). The dilemma presented by various proposed CCP′s
today is the disparity between cosmological measurements of ρV [6–8] and
those calculated in particle [9] and hadron physics.1

In parallel with EG, relativistic QFT has pursued VED physics in flat
Minkowski space, resulting for example in the remarkable spontaneous sym-
metry breaking (SSB) mechanism that will be used later in Sect. 3. Even
though EG is nonrenormalizable, its gravitational field gµν couples mini-
mally and universally to all of the fields of QFT′s renormalizable standard
model [10]. To turn on gravity one simply introduces EG along with co-
variant derivatives in QFT that represent the transition from flat to curved
background metrics. This ties together everything except for one major short-
coming, the gravitational versus flat-space VED problem usually referred to
as the CCP. Hence there are dramatic differences in QFT and its renormal-
ization when cosmological gravity becomes involved.2

The literature [11,12] speaks of using Minkowski counterterms to subtract
from the bare ρV in Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmol-
ogy in order to derive the physical, renormalized VED ρren in curved space-
time. This creates major confusion. It uses flat metrics to fix the asymptotic
states of cosmological metrics that are never flat. One theme here will be to
take this reasoning a step further to preclude cross-comparison of asymptotic
spacetimes. This will involve the Abbott-Deser (AD) method of identifying
mass and energy [13] and their Killing-charge successors as the unique quan-
tities associated with the asymptotic geometry at spatial infinity of de Sitter
spacetime.

As mentioned, it has been said that there are at least two CCP′s [14,
15]. (a) The old one is to understand why ρV measured by current Type Ia
supernova observations [6–8],

λ < 10−56cm−2 ∼ 10−29g cm−3 ∼ 10−47GeV 4 , (1)

(where λ is positive) is orders of magnitude smaller than values suggested
by particle physics where < ρQCD >∼ 10−6GeV 4 appears in QCD [9] or
the bag constant B ∼ (145MeV )4 in hadron physics. This is the fine-tuning
problem of reconciling (1) with expectations from particle physics. It also is
illustrated by the cutoff Λc in effective field theory represented by the Planck

1 Note that this study does not address “the” CCP because it is becoming in-
creasingly apparent that we still do not seem to understand what “the CCP” is.
Instead, the approach here is to try and define two CCPs, and devise a consistent
method for eventually solving them when satisfactory theories of QG and QCD
(quantum chromodynamics) confinement exist.

2 Double-counting is commonplace in current methods, introducing ρV in both
(9) and (11)-(14) that follow. This affects the renormalization loop equations. An
attempt to preclude double-counting will be made here.
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mass as < ρPl >∼ Λ4
c ∼ 1071GeV 4.3 (b) In contrast, the second CCP [14,

15] is to understand why ρλ is of the same order of magnitude as the present
mass density of the universe ρM in Freidmann-Lemaitre-Robertson-Walker
(FLRW) cosmology.

We will paraphrase the CCP(s) differently here with the goal of identifying
a well-posed statement of two of the problem(s). Then an attempt will be
made to show how they can be approached in hadron physics using scalar-
tensor theory.

The original CCP assumed here (CCP-1) is to explain how gravity the-
ory can have two different vacuum energy states or two different cosmological
constant (CC) values when Einstein gravity only permits one as a universal
constant throughout all of spacetime. The second (CCP-2) is to understand
how quantum fluctuations relate to the ground-state energy of curved space-
time in order to define the zero-point energy of the gravitational background
in a consistent fashion. Resolving CCP-2 is essential to defining the ground-
state energy for investigating CCP-1.

We will take these in reverse order, addressing the zero-point fluctua-
tion issue in Sect. 2, then developing the scalar-tensor model in Sect. 3 and
identifying its assumptions there (Sect. 3.5). Experimental questions will be
addressed in Sect. 4, and conclusions follow in Sect. 5. A simple Appendix
gives the derivation of the cosmological constant as a graviton mass mg in
the weak-field limit, a result that is directly related to the AD formalism and
the cosmological event horizon present in asymptotic de-Sitter spacetime and
the FLRW universe (Sect. 4). At late times the latter presently behaves like
an accelerating de-Sitter spacetime [6–8], discussed in Sect. 2.

The appearance of a graviton mass (Appendix) is natural and mandatory,
following directly from EG with λ 6= 0 and having a smooth zero-mass limit
mg → 0 as λ → 0. It is not introduced ad hoc in the usual manner based
upon adding the Pauli-Fierz (P-F) Lagrangrian with a mass mg = mPF

(mPF = 0 here), and it does not suffer from the vDVZ discontinuity - as
discussed further in the Appendix.

2 Zero-Point Vacuum Fluctuations

2.1 A Digression on Asymptotic de Sitter Space

It is well known that the Schwarzschild-de-Sitter metric (SdS) [16]

ds2 = c(r)dt2 + c−1(r)dr2 + r2dΩ2 , (2)

where

c(r) = 1− 2m

r
− λ

3
r2 , (3)

3 Note that the quartic cut-offs Λ4
c are QFT values derived in flat Minkowski

space. These imply a gravitational curvature 10118 times that in (1) in EG where
the Ricci scalar R = 4λ is not flat. Curvature and EG are ignored completely. This
is the inconsistent cross-comparison problem that will be addressed in Sect. 2.
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represents important global properties that relate to the definition of energy
and energy conservation in Einstein theory. In (2) and (3), we have m =
GM/c2 with dΩ2 = (dθ2 + sinθdφ2) a unit 2-sphere metric, and M the
Schwarzschild mass.4

Arnowitt, Deser, and Misner (ADM) [17] were first to derive a canoni-
cal formulation of general relativity (GR) as a Hamiltonian system for the
simple Schwarzschild case (λ = 0) in (3). They determined the ADM energy,
momentum, and mass defined by the asymptotic symmetries of (2) and (3)
at spatial infinity. Conserved charge (mass, energy, etc.) is associated with
a conserved vector (Noether) current which is determined by reducing the
stress tensor density conservation law ∇µTµν in EG to a conserved vector
current law using Killing vectors ξµ. The ADM mass results and is equivalent
to the Schwarzschild mass M , MADM = M in (3).

Note that the Schwarzschild metric, (2) and (3) with (λ = 0), is asymptot-
ically flat as r →∞. Note also that assuming M = 0 results in flat Minkowski
space. In either case, the energy of Minkowski space is zero as expected. Clas-
sically speaking, it likewise has no VED. In this sense, the natural vacuum
of EG without λ is flat space with all its Poincaré symmetries.

Re-instating λ 6= 0 in (3), however, changes circumstances significantly.
The full SdS metric (2) is not asymptotically flat and becomes an asymp-
totic de Sitter space as r →∞ that is forever distinguished from Minkowski
space.5 When a CC λ is present, flat Minkowski space is no longer a relevant
background because it is not a solution of the Einstein equations [13]. The
vacuum is now either de Sitter [SO(4,1)] or anit-de Sitter [SO(3,2)] depending
upon whether λ is positive or negative.6

Abbott and Deser[13,19] extended the fundamental ADM approach used
in the Schwarzschild case and defined the AD Killing charges for the full
SdS metric when it asymptotically becomes de Sitter (dS), as opposed to the
asymptotic flat case above. These AD charges have become very important
because of their direct relevance to cosmological gravity and, as will be shown
here, the CCP. This work has been extended by Deser and Tekin [20–23], and
the collective results will be referred to as the ADT formalism.

There is an apparent singularity in (3) for m = 0 at rEH =
√

3/λ, that
keeps the observer from proceeding smoothly to infinity. Gibbons & Hawking
(G-H) [24] developed rEH as a cosmological event horizon characterizing
asymptotic dS whose surface gravity is κc = r−1EH . AD [13] further pointed out
that the Killing vector ξµ is timelike only within the background cosmological
event horizon r < rEH . The usual meaning of global energy E and the
timelike Killing vector are lost on the super-horizon scale for r > rEH . This
will be discussed further in Sect. 4.

Adding Weyl and Gauss-Bonnet quadratic curvature terms7 (scaled by
α and β respectively) to the Einstein-Hilbert Lagrangian [20,21], Deser and

4 In general, natural units h̄ = c = 1, metric signature (–,+,+,+), and a 4-
dimensional spacetime are assumed.

5 For a different interpretation, see [18].
6 Negative λ will not be considered, for reasons given later in Sect. 4.2.
7 These have been characterized as improving the renormalizability of QG [25,

26] although at the price of sacrificing unitarity [27,28].
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Tekin generalized the AD mass to

E = M + 8λMκ−1GB(4α+ β) + κ−1EGλVdS , (4)

where the term VdS is the volume of the spacetime and has been added here
to account for the pure dS case with M = 0 in (3) and (4), involving higher-
order terms not addressed by ADT. Dividing (4) by VdS to create an energy
density, this same term has been found by Padmanabhan [29] using different
methods.

Obviously, an empty dS with a VED due to κ−1EGλ will contain a vacuum

energy of that amount, E ∼ κ−1EGλVdS . In an infinite dS space with finite
VED, there is an infinite E. For a finite VdS , then E is finite such as within
the G-H cosmological horizon rEH .8

In summary, the total global gravitational energy E of spacetime is well-
defined using ADM and ADT methods, provided it is being compared with
a metric that has the same asymptotic structure. However, there is a caveat.
Comparison of energies between asymptotically flat Minkowski and asymp-
totically de Sitter metrics is a misleading exercise because the concepts of
global energy and energy conservation become ill-defined in EG. Insistence
upon comparison will result in an infinite energy between the two space-
times.9

Cross-comparison of cosmological gravity with flat metrics contributes to
the disparity in the old CCP where conclusions are being drawn based upon
a comparison of incompatible asymptotic spacetime vacuum states in EG
for dS versus flat QFT. Such comparison breaks the compatibility principle.
Yet this procedure is commonplace in the CCP literature, an example be-
ing the fine tuning problem [9] where quadratic and quartic divergences in
flat Minkowski space are being compared with asymptotically pure de Sitter
(APdS) spacetime in cosmological gravity.

2.2 Ground State Vacua in Asymptotic de Sitter Space

First and foremost, we must recognize that FLRW cosmology is the basis for
conclusion (1). The metric is

ds2 = dt2 + a(t)2dΩ2
K , (5)

where a is the scale factor and

dΩ2
K =

(dr2)

(1−Kr2)
+ r2dΩ2 , (6)

with Gaussian curvature K = 0 [31–33]. In its late stages (current epoch),
(5) is asymptotically an accelerating de Sitter space determined by the cos-
mological parameter q = −äa/ȧ2 as derived from the Einstein-Friedmann
equations [33].

8 There is no coordinate invariant gravitational energy or energy density of a
finite volume. The global energy of the total spacetime is well-defined but only
with respect to another spacetime having the same asymptotic structure [30].

9 This subject will be elevated to a principle of compatible asymptotic structure
or states (Sect. 3.5).
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The global energy of this universe is determined by the ADT charges for
APdS spacetime with M = 0 in (2), (3), and (4) (no ADM mass). This is a
critical point to make when defining the zero-point vacuum fluctuations and
renormalization issues in general for the CCP.

The suggestion by Maggiore et al. [11,12] for re-defining the counter-term
subtraction scheme to eliminate the quartic divergence Λ4

c is a promising idea.
However, it is beset with at least one problem. It violates the compatibility
principle of Sect. 2.1. Renormalization counter-term methods must conform
with the ADT prescription for APdS spacetimes involving cosmological grav-
ity having metric gµν . Flat Minkowski space is not relevant because there is
no gµν in that metric.

The metric gµν of cosmological gravity is decomposed into a background
ηµν plus a fluctuation or perturbation hµν of arbitrary strength,

gµν ≡ ηµν + hµν , (7)

where the background ηµν is often defined symbolically as ηµν → ḡµν . Fol-
lowing ADM and AD, the energy E can be obtained from the Hamiltonian
in cosmological gravity HCG by

E = HCG[gµν ]−HCG[ηµν ] , (8)

where ηµν must be the APdS spacetime representing FLRW cosmology in
the current epoch, an accelerating dS with λ 6= 0. That granted, assuming
that ηµν is flat Minkowski space violates the principle of compatiblity. The
ground-state vacuum of nonflat APdS spacetime has little to do with the
ADM charges that derive from the asymptotically flat Schwarzschild metric
and flat Minkowski spacetime.

The standard textbook procedure for analyzing quantum vacuum fluc-
tuations inspired by inflation in cosmology is given by Weinberg [34] and is
the same method that appears in the ADT procedure discussed above, while
adopting (7) [13,20–23]. The gravitational field equations [below in (9)] are
separated into a part linear in hµν plus all of the nonlinear terms that con-
stitute the total source, the stress tensor Tµν which is conserved using the
Bianchi identities. Hence, global conservation of energy-momentum in the
universe is assumed in these derivations. However, the catch like the caveat
is that the global Killing charges may not be understood or consistently
defined.

Having made the point that the origin of the CCP originates in (1), which
derives from FLRW cosmology and which is currently in an accelerating de
Sitter phase, the asymptotically pure de Sitter metric is the vacuum ground
state for addressing this problem, as depicted in (8). This is not an assump-
tion. It is the only conclusion that seems to follow from consistency and the
principle of compatible asymptotic states (Sect. 2.1 and 3.5). Flat Minkowski
spacetime is not relevant because it has no gµν , breaks the principle, and in-
vokes the caveat.

We are now prepared to advance to CCP-1 which in our opinion is the
original and most important problem to address.
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3 Modifying Einstein Gravity

Attempts to modify EG are nothing new. The real issue is the motivation
for doing so. Einstein′s theory10

Rµν −
1

2
gµνR+ λgµν = −κTµν . (9)

is remarkably successful on long-distance scales from binary pulsars [35] and
planetary orbits [36] to short-distances of 1 mm [37].

However, one of the lessons from particle physics and QFT has been that
SSB clearly involves a scalar field (below in Sect. 3.2) which generates a VED
contribution to the CCP. Furthermore, SSB is involved in the bag model
whose scalar has been proposed as responsible for confinement in hadron
physics (below in Sect. 3.3) since there is no scalar in QCD [38] save for
gluon and quark condensates.

Because hadrons comprise most of the matter in the universe, such a
scalar field must be a gravitational one since only gravity is coupled univer-
sally to all physics. It couples attractively to all hadronic matter in proportion
to mass and therefore behaves like gravitation similar to the scalar Spin-0
component of a graviton. Also, hadrons are a primary example of SSB known
to exist experimentally and whose VED is determinable in the laboratory.

This means that a JFBD-type scalar-tensor theory of gravitation [39–41]
should be an obvious candidate for modifying (9) in order to incorporate the
SSB features of bag theory and hadron physics into gravitation theory at sub-
mm scales. Einstein gravity has prevailed experimentally over JFBD scalar-
tensor theory since the parameter Ω appearing in the latter has planetary
time-delay measurements that place it at best as Ω ≥ 500 while Cassini data
indicates it may be Ω ≥ 40,000 [42–44]. Therefore Ω ∼ ∞ and JFBD→ EG,
although there are exceptions to this limit [45].

Hence EG and the Newtonian inverse-square law are the correct theory
of gravity above 1 mm. The use of JFBD theory here will only introduce new
experimental possibilities at sub-mm scales involving hadrons where Ω has
never been measured. This modification will not change experimental EG as
we currently understand it.

3.1 Breaking Lorentz Invariance

A remarkable property of (9) is its cosmological term λgµν , a fact that did
not go unnoticed by Zel′dovich [5]. The energy level of the vacuum state
(as in Sect. 2) must be defined. The first obvious point is that the Einstein
vacuum in (9) is Lorentz invariant. Its stress tensor Tµν must be the same
in all frames. As a consequence, its vacuum average value can only be of the
type like the Einstein term λgµν ,

< 0|Tµν |0 >= εvac gµν . (10)

10 R is the scalar curvature, Rµν is the Ricci tensor, gµν is the spacetime metric,
Tµν is the energy-momentum tensor, and κ = 8πG/c4 with κ̂ = κc2 where G is
Newton′s gravitation constant, c is the speed of light, and x = (x, t).
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That the QFT vacuum is Lorentz invariant as in (10) is a fundamental cor-
nerstone of QCD [46]. Similarly, the vacuum fluctuations (again Sect. 2) in
QCD have infinitely many degrees of freedom, contributing an infinite en-
ergy to (10). These are gotten rid of by renormalization; physicists are rarely
interested in the very high-frequency modes, so their zero-point energy is
assumed to be an unimportant additive constant which can be set to zero
[46].

Now consider the APdS vacuum in (7). Physicists as observers can never
see beyond the Gibbons-Hawking event horizon rEH . But the global Killing
charges in (4) are typically conserved, and this guarantees that the vacuum
fluctuations on the APdS vacuum for r < rEH can likewise be set to zero by
the same convention as in the flat Minkowski case for QCD. Regardless of
their vacuum fluctuations, their vacuum averaged value εvac must be zero,
in spite of the uncertainty principle, else the Killing charges representing the
background spacetime are not conserved.

Next we come to another important point in this picture. In modern
cosmology, the notion of phase transitions plays a fundamental role. These
involve SSB and contribute to the VED ρV . The consequence is that the
effective vacuum potential U(φ) responsible for SSB has two phases [47] and
takes on two vacuum states. In hadron physics, there is the bag constant
B 6= 0 which represents an internal negative pressure p = −B that subtends
the hadron. It is not the same as < ρvac > for the background ηµν in (7).

These multiple values of the gravitational APdS vacua are not space-time-
dependent. Rather they are temperature-dependent. They occur because the
vacuum exists at a finite temperature produced by curvature-induced quan-
tum corrections in gauge theories with scalar fields [48]. Spacetime thus has
a chemical potential and is temperature-dependent in these asymptotic met-
rics for temperature T . It is the presence of thermal matter (hadrons) that
breaks the Lorentz invariance of these vacuum states [49].

Hence, during a phase transition in the early FLRW universe, the for-
mation of hadrons has locally broken the Lorentz invariance of the global
vacuum in (10). A local Lorentz boost from the outside of the hadron, into
its interior does not result in the same vacuum. This will become evident
later in Sect. 3.2.

Therefore, the fundamental basis for (9) and (10) cannot explain the
existence of hadrons in the universe today. For this reason, we turn here to the
original standard scalar-tensor theory [39–41] for an answer. The historical
motivation for the JFBD theory was to create a time-dependent, variable
gravitation constant G = G(t). That is not the purpose here. Rather, the
self-interacting scalar field φ will be regulated by the SSB process and must
allow both G and λ to have two different states or values, one inside and
one outside the hadron, that are temperature-dependent. EG in (9) cannot
accomplish this.
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3.2 Symmetry Breaking Potentials U(φ)

Examples of symmetry breaking potentials U(φ) include the quartic Higgs
potential for the Higgs complex doublet φ→ Φ

U(Φ) = −µ2(Φ†Φ) + ζ(Φ†Φ)2 , (11)

where µ2 > 0 and ζ > 0. (11) has minimum potential energy for φmin =
1√
2

(
0
ν

)
with ν =

√
µ2/ζ. Viewed as a quantum field, Φ has the vacuum ex-

pectation value < Φ >= Φmin. Following SSB, one finds Φmin = 1√
2

(
0

ν+η(x)

)
,

indicating the appearance of the Higgs particle η. In order to determine the
mass of η one expands (11) about the minimum Φmin and obtains

U(η) = Uo + µ2η2 + ζνη3 +
1

4
ζη4 , (12)

where Uo = − 1
4µ

2ν2 is negative definite (wrong sign for solving the CCP),

and η acquires the mass mη =
√

2µ2. Another example is the more general
self-interacting quartic case

U(φ) = Uo + κφ+
1

2
m2φ2 + ζνφ3 +

c

4!
φ4 , (13)

investigated by [50,51] to examine the ground states of nonminimally cou-
pled, fundamental quantized scalar fields φ in curved spacetime. Uo is arbi-
trary. (13) is based upon the earlier work of T.D. Lee et al. [38,52–54] and
Wilets [55] for modelling the quantum behavior of hadrons in bag theory

U∗(σ) = Uo +
d

2
T ∗σ +

a

2
σ2 +

b

3!
σ3 +

c

4!
σ4 , (14)

where φ→ σ represents the self-interacting scalar σ-field as a nontopological
soliton (NTS).11 Uo = B is the bag constant and is positive. The work of
Friedberg, Lee, and Wilets (FLW) is reviewed in [55–58]. See also [59].

In all cases (11)-(14), Uo represents a cosmological term, and all are un-
related except that they represent the VED of the associated scalar field.
The terms in U(φ) have a mass-dimension of four as required for renormal-
izability. In the case of (11)-(12), it is the addition of the Higgs scalar η that
makes the standard electroweak theory a renormalizable gauge theory. Also,
the electroweak bosons obtain a mass as a result of their interaction with the
Higgs field η if it is present in the vacuum.

Note finally that (11)-(14) all have the same basic quartic form. The focus
here will be on the hadron bag (14) in FLW theory. As pointed out by Creutz
[60,61] the bag is an extended, composite object subject to nonlocal dynamics
and not subject to perturbation theory. Following symmetry breaking, the
soliton bag potential is depicted in Figure 1. The ground-state vacuum <
ρvac > at < σ >=< σvac > is the APdS background defined by ηµν in (7) as
argued in Sect. 2 and is given by (1). The second vacuum state at < σ >= 0

11 The asterisk in (14) is used to indicate that d 6= 0. T ∗σ is a chiral SB term that
represents the cloud of pions surrounding the bag. d = 0 restores the symmetry.
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is internal to the hadron and is given by the bag constant B = κ̂−1λBag.
Uo = B in (14) is not a bare parameter determinable by a calculation, any
more than Uo in (12) derives a Higgs mass. B is a fundamental parameter
of FLW bag theory, determinable by experimental hadron spectroscopy that
models all hadrons.

On the other hand, quark and gluon confinement is generally attributed
to the nonperturbative structure of the QCD vacuum. This is the basis for the
MIT bag model [62,63] which first introduced B and visualized hadrons as
bubbles of perturbative (PT) vacuum immersed in the nonperturbative (NP)
QCD vacuum. In that case, a truly NP VED in Yang-Mills theory has been
derived [64,65]. The difference between PT and NP vacua is by definition
B, provided of course that someday backreaction of the APdS spacetime is
properly accounted for in QFT and QCD [66].

Fig. 1 In the scalar-tensor model, the cosmological constant λ = λ(σ) has two
values because the scalar σ-field has undergone a phase transition and breaks the
symmetry of the temperature-dependent vacuum, creating two vacuum states λBag,
and λvac. Inside the hadron at < σ >= 0, λ = λBag, Outside the hadron at
< σ >=< σvac >, the gravitational ground-state energy density of the vacuum Evac
is defined by the background metric ηµν in (7) with λ = λF−L for the Friedmann-
Lemaitre accelerating universe. Both are a de Sitter space.

In what follows, we will show how to resolve CCP-1 in hadron physics
using (14). This will be done in the fashion of a modified JFBD scalar σ
nonminimally coupled to the tensor field gµν in (9).
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3.3 Merging Hadrons With Gravity

As discussed regarding (14), λ in (9) is actually a potential term λ(σ) that
contributes to U∗(σ). In that manner it couples to the SSB self-interacting
quartic scalar field σ added to give QCD a scalar field [38] in the FLW bag
model. However, here σ will be treated as a gravitational field in order to
address CCP-1, as follows.

Matter will be limited to hadron bags and λ = λ(σ) will be moved to
become a part of the bag potential in (14) as Uo = B = κ̂−1λBag . This
transposes λ to the right-hand side12 of (9) and gives the scalar-tensor field
equations

Rµν −
1

2
gµνR = −κT ∗µν , (15)

T ∗µν = TMµν + Tσµν , (16)

λBag = κ̂B , (17)

where now λ = λ(σ) contributes to the σ-field tensor Tσµν . The matter tensor

is TMµν = Tµν in (1), and their sum T ∗µν in (16) is conserved by the Bianchi
identities. We will derive Tσµν below using scalar-tensor methods. Note that
(17) resolves the mass dimensionality of λ and B in that both sides of the
equation have mass dimension two.

This amounts to moving λ about within the total Lagrangian £ = T −
U for the action involved, S = SGravity + SMatter + SG,M . Recalling that
the Lagrangian for the FLW bag model £FLW is that for QCD (£q + £C)
supplemented by the nonlinear σ-field £∗σ plus a quark-σ mixing term £q,σ ,

£FLW = £q + £∗σ + £q,σ + £C , (18)

the £∗σ term here will become the σ-field interaction term with scalar-tensor
gravity £∗σ = £G,σ in the total Lagrangian that includes a nonminimally
coupled Einstein-Hilbert term £λJFBD as

£Total = £λJFBD + £∗σ + £q + £q,σ + £C , (19)

where

£∗σ =
1

2
∇µσ∇µσ − U∗(σ) = £G,σ , (20)

and £λJFBD will be introduced shortly as (27).
The σ-field may be interpreted as a gluon condensate arising from non-

linear interactions of the color fields £C [56]. Regardless of its origin and
composition, this scalar is the basis for the model under discussion.

For quarks ψ, scalar σ, and colored gluons C, these terms in (18) and
(19) are

£q = ψ̄(iγµDµ −m)ψ , (21)

£q,σ = −fψ̄σψ , (22)

12 Geometry in EG is determined by gµν - not which side of the equation λ is
on. Also λ can only be introduced once, not both in (9) and (14) else there is
double-counting.
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£C = −1

4
ε(σ)FµνF

µν − 1

2
gsψ̄λ

cAµcψ , (23)

where counterterms are not shown. m is the quark flavor mass matrix, f
the σ-quark coupling constant, gs the strong coupling, Fµν the non-Abelian
gauge field tensor, Dµ the gauge-covariant derivative, and∇µ the gravitation-
covariant derivative (also in Fµν) with the spin connection derivable upon
solution of (15) above, defining the geodesics. ε(σ) is the phenomenological
dielectric function introduced by Lee et al. [52], where ε(0)=1 and ε(σvac)=0
in order to guarantee color confinement. The SU3 Gell-Mann matrices and
structure factors are λc and fabc respectively.

Variation of (18) which neglects gravity in (19), using (20)-(23), gives the
FLW equations of motion for σ and ψ,

utσ = U∗′(σ) + fψ̄ψ , (24)

(iγµDµ −m− fσ)ψ , (25)

if one neglects the gluonic contribution (23). ut is the curved-space Laplace-
Beltrami operator, and U∗′ = dU∗/dσ is

U∗′ =
d

4
T ∗ + aσ +

b

2
σ2 +

c

3!
σ3 . (26)

A variant adopts d = 0 to simplify (26) when pion physics is not involved.
In the same fashion that λ(σ) is a function of the σ-field, κ is likewise

as κ(σ). For purposes here, the original JFBD ansatz κ = σ−1 is adopted
although there are others. This ansatz directly relates to (17). Taking into
account (20), the nonminimally coupled scalar-tensor Lagrangian is

£λJFBD =
1

2

√
−g[−σR+

Ω

σ
∇µσ∇µσ − U∗(σ)] + 8π£matter . (27)

The task now is to complete the scalar-tensor picture and derive Tσµν in
(16). The energy-momentum tensor in (15) is comprised of two terms. The
first is the usual matter contribution TMµν which includes all matter fields in
the universe except gravitation,

TMµν =
2√
−g

[
∂(
√
−g£M )

∂gµν
− ∂α ∂(

√
−g£M )

∂(∂αgµν)
] . (28)

It is thereby independent of the gravitational σ-field.
The second term in (16) Tσµν = ∇µσ∇νσ − gµν£σ∗ is new and must in-

clude the effects of £G,σ in (20). Consolidating all of the σ terms and intro-
ducing a superscript “R” for renormalizable, we have in short-hand derivative
notation

RTσµν = σ;µσ;ν −
1

2
gµνσ

α
; σ;α + gµνU

∗(σ) . (29)

With (28) and (29), variation of (27) will now give the final equations of
motion.

A principal assumption follows Brans and Dicke (BD). In order not to
sacrifice the success of the principle of equivalence in Einstein′s theory [10],
only gµν and not σ enters the equations of motion for matter consisting
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of particles and photons. The interchange of energy between matter and
gravitation thus must follow geodesics as assumed by Einstein [67]. Therefore,
the energy-momentum tensor for matter is assumed to be conserved in the
standard fashion, TM µ

µν; = 0.13

The derivation of Tσµν is a textbook problem [67] except that the latter
was a classical treatment following BD – both of which neglected λ, any
potential U∗(σ), and the renormalization restrictions on U∗(σ) in (14).

The most general symmetric tensor of the form (29) which can be built
up from terms each of which involves two derivatives of one or two scalar
σ-fields, and σ itself, is

Tσµν = A(σ)σ;µσ;ν+B(σ)δµνσ;ασ
;α+C(σ)σ;µ;ν+D(σ)δµνutσ+E(σ)gµνU

∗(σ) .
(30)

We want to find the coefficients A, B, C, D, and E.
Taking the covariant divergence of (29) gives

RTσ µ
ν;µ = σ;νutσ − σµ; ;νσ;µ + U∗′(σ)σ;ν , (31)

and that of (30) results in

Tσ µ
ν;µ = [A(σ) +B′(σ)]σµ; σ;νσ;µ

+ [A(σ) +D′(σ)]σ;νutσ
+ [A(σ) + 2B(σ) + C ′(σ)]σµ; ;νσ;µ

+ [D(σ)](utσ);ν

+ [C(σ)]ut(σ);ν)

+ [E(σ)U∗′(σ) + U∗(σ)E′(σ)]σ;ν . (32)

Next multiply (15) by σ and take its divergence,

(Rµν −
1

2
gµνR);µ σ + (Rµν −

1

2
gµνR)σµ; = −8πTM µ

µν; − 8πTσ µ
µν; . (33)

The first term on the l.h.s. of (33) is zero by the Bianchi identities; the first
on the r.h.s is zero by the principle of equivalence. The net result is

(Rµν −
1

2
gµνR)σµ; = −8πTσ µ

µν; . (34)

Using an identity [67] involving the Riemann tensor Rγανβ , the first term in

(34) is
Rµνσ

µ
; = σ α

; ;α;ν − σ α
;ν; ;α = (utσ);ν − ut(σ;ν) . (35)

Take the trace of (15) and (16) for R. Next modify (24) to include the
gravitational coupling with σ (still assuming f = 0) to produce the trace for
TM . Lastly obtain the remaining trace for Tσ from (30). These three traces
are

R = κTM + κTσ , (36)

13 Exceptions can be made, but will not be entertained here. See the earlier study
in Ref. 68.
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TM = 2κ−11 (utσ − U∗′(σ)) , (37)

Tσ = [A(σ) + 4B(σ)]σ;ασ;α+ [C(σ) + 4D(σ)]utσ+ 4[E(σ)gµνU
∗(σ)] . (38)

It follows that the collective trace for R is

R = 2κ−11 (utσ+U∗′(σ))+κ([A(σ)+4B(σ)]σ;ασ;α+[C(σ)+4D(σ)]utσ+4[E(σ)U∗(σ)]).
(39)

Placing (39) into the left-hand-side of (34) with some re-arrangement gives

(Rµν −
1

2
gµνR)σµ; = −1

2
κ[A′(σ) + 4B(σ)]σ µ

;

− 1

2
κ[2κ−11 + C(σ) +D(σ)]σ;νutσ

+ [0]σ µ
; ;νσ;µ

+ [1](utσ);ν

+ [−1]ut(σ;nu)

− 1

2
κ[2κ−11 U∗′(σ) + 4E(σ)U∗(σ)]σ;ν . (40)

In order that (34) be true, the bracketted coefficients in (32) and (40) must be
equal term by term. Renormalization problems created by E(σ) are addressed
in Ref. 68. These include the insolvability of a quintic and the Galois-Abel
theorem.14 Finally, one encounters the result A(σ) = 1

2κ[κ−11 − 3
2 ] which

prompts the definition

Ω = κ−11 −
3

2
, (41)

whereby κ1 in (37) is

κ1 =
2

3 + 2Ω
. (42)

The desired energy-momentum tensor for the σ-field follows as

κTσµν =
Ω

σ2
[σ;µσ;ν−

1

2
gµνσ;ασ

;α]− 1

σ
[σ;µσ;ν−gµνutσ]− 1

σ
[gµνU

∗(σ)] . (43)

Inserting (43) into (15) and (16) gives the full field equations

(Rµν−
1

2
gµνR) = −8π

σ
TMµν−

Ω

σ2
[σ;µσ;ν−

1

2
gµνσ;ασ

;α]− 1

σ
[σ;µσ;ν−gµνutσ]− 1

σ
[gµνU

∗(σ)]

(44)
while (43) in (37) gives the scalar wave equation (for f = 0) for the σ-field

utσ =
8π

3 + 2Ω
T ∗ + U∗′(σ) , (45)

where Ω = (κ−11 − 3
2 ) and κ1 is the source of σ-coupling to the traditional

trace TM in JFBD theory. There is now coupling to the trace T ∗ in (45)
compared to (24). If Ω = -3/2, (44) is a conformally mapped set of Einstein
field equations. For Ω →∞, EG results.

14 Hence E(σ) must be E(σ) = 1.
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3.4 Charaterizing Scalar-Tensor Gravity and Hadrons

In order to visualize the results (44), (45), and (25), Figure 2 illustrates this
scalar-tensor approach to CCP-1.

Fig. 2 The existence of two vacuum states for λ = λ(σ) characterized by equations
(16) and (44). The exterior is traditional Einstein gravity where λ = λF−L. (a) A
single hadron bag is depicted with B = κ̂−1λBag. (b) The general interior solution
is depicted as a many-bag problem using a Swiss-cheese (modified Einstein-Straus)
model with zero pressure on the bag surfaces. Applicable boundary conditions are
in [69–73].

Bag Boundary Conditions. Bag surface boundary conditions are discussed
in Ref. 69, p. 103, where the following can be adopted: Fµνnν = 0 for gauge
fields; and ψ = 0 for quark fields. As a problem in bubble dynamics, one
uses − 1

4F
µνFµν = ΣJ−1∇ν(Jnν)+B for a quark current J and surface ten-

sion Σ. Alternatively the more recent Lunev-Pavlovsky bag with a singular
Yang-Mills solution on the bag surface [70–73] can be utilized (also probably
eliminating the need for ε(σ) in (23), a point that is yet to be addressed).

From the dimensionality of U∗(σ) in (14), we see that a has mass-dimension
two or m2. Taking the derivative U∗′(σ) as in (26) along with (45), the σ-field
has mass

mσ =
√
a . (46)

Therefore it is a short-range field with only short-range interaction. (45)
can be re-written

(ut −mσ2) = δU∗′(σ) +
8π

3 + 2Ω
TM + fψ̄ψ , (47)
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where δU∗′ is the remainder of (26) after moving the aσ term to the left-
hand side. Hence a static solution must have a Yukawa cutoff σ ∼ (e−µr)m/r
where µ ∼ mσ.

This is characterized in Figure 2 by indicating that the energy-momentum
tensor Tσµν is confined to the hadron which is consistent with the original
conjecture of FLW that the σ-field be related to confinement.

Bag Interior Conditions. By virtue of the bag condition (17), several new
features come into play. First, this relation is specific to the interior of the
bag. Second, the BD ansatz σ ∼ κ−1 ∼ G−1 is now tied to the cosmological
parameter λ too.15 This means that when the phase transition and SSB
occur, there exist two de Sitter spaces in Figures 1 and 2. Both λ and G can
differ between the two vacuum states. When B = 0 (no bags), λ → λvac in
Figure 1, restoring itself to the ground-state vacuum of the APdS background
(Sect. 2). Similarly, G ∼ σ−1 is not guaranteed in theory to be the same in
the hadron interior as GNewton outside. This is a matter for experimental
investigation (Sect. 4.2 below).

Summary. Semi-classically speaking, the scalar-tensor theory of gravity
in the presence of the QCD Lagrangian representing FLW bag theory in (19)
has no apparent problem associated with the existence of two vacuum states,
one in the exterior and one in the interior of hadrons.

This model has been done entirely in de Sitter space, whereby the princi-
ple of compatible asymptotic Killing charges (Sect. 2) has not been broken.
Thus, CCP-1 does not appear to apply to scalar-tensor gravity when nonmin-
imally coupled to hadron physics. The model allows for two vacuum states,
as bags indicate experimentally. One is the F-L ground state and the other
is the hadron interior.

However, the issue of vacuum stability for this model is a crucial assump-
tion because one can argue that it is unstable to radiative corrections. But
radiative corrections have long been suggested as the origin of SSB to begin
with [74]. These similarly are important for dynamical SB (DSB) models
as well [75,76]. Since SSB has been adopted for the basic quartic poten-
tial U∗(σ) in (13)-(14), then there has been an implicit assumption that the
scalar-tensor configuration presented here is stable to radiative corrections.
Vacuum stability of this model is a subject for further study, in particular
when QCD confinement is more thoroughly understood.

3.5 Assumptions and Postulates

At this point the fundamental postulates that have been made are summa-
rized. These have been discussed and alluded to throughout but are now
recapitulated.

1) Einstein gravity is the true theory of gravity at length scales above 1
mm.

2) The gravitational field gµν couples minimally and universally to all of
the fields of the Standard Model, as does Einstein gravity [10]. However, gµν
also couples nonminimally to the composite features of £FLW and £QCD.

15 λ as a VED is thereby possibly related to the origin of G.



17

The £FLW term represents hadron physics which includes QCD in the exact
limit £FLW → £QCD (see Ref. 56, p. 19). The JFBD ansatz κ = σ−1 is
assumed.

3) The nonlinear self-interacting scalar σ-field represented by Lagrangian
£∗σ is a gravitational field, because it couples universally to all hadronic
matter. Since σ has a mass (46) it and Tσµν in (16) have a cutoff and are
confined to the hadron in Fig. 2a.

4) General covariance is necessary in order that the Bianchi identities
determine conservation of energy-momentum from T ∗µν in (15). In the hadron

exterior however, T ∗µν → TMµν . That means matter follows Einstein geodesics
and obeys the principle of equivalence there.

5) Stability must be assumed for δTµν in the Appendix. Use of the har-
monic gauge, fµ = 0 in (54), gives rise to a tiny graviton mass, but breaks
general covariance. The consequence is not measurable within the observer′s
cosmological event horizon.

6) Temperature-dependent quantum vacuum fluctuations result in a bro-
ken vacuum symmetry, producing two distinct vacua containing two different
vacuum energy densities λ. Lorentz invariance is broken by Tσµν in the interior
of hadrons. Because λ = λ(T ), this broken symmetry is subject to restora-
tion.

7) The relation (68) between graviton mass mg and λ(T ) in the weak-field
approximation (Sect. 4) survives in the hadron interior (the strong-field and
strong-force cases).

8) The stability of the bag is assured by the vacuum energy density B
which is a negative vacuum pressure. Similary, the scalar-tensor representa-
tion of the hadron interior is stable against radiative corrections.

9) The principle of compatible asymptotic states (Killing charges) is as-
sumed. This means that the global energies of flat ADM metrics are not
compatible with those of APdS metrics. ADM energies cannot be consistently
compared globally with AD energies in the definition of ground-state vacua
for de Sitter space, lest infinities be introduced. Hence, derivations in flat
Minkowski space are not relevant to the CCP if (1) is accepted as evidence
for λ contributing to the acceleration of the universe in FLRW cosmology
whose current phase is an APdS metric.

4 Cosmological Event Horizons, Finite Temperature, and
Experiment

The connection between λ and graviton mass (Appendix) may appear extra-
neous to the CCP discussion here, except that the whole basis for rectifying
CCP-2 in Sect. 2 identified the APdS spacetime as the ground state vacuum
for the CCP with its associated Killing charges in the AD formalism. Because
there exists the G-H event horizon in such spacetimes, any association of λ
with a graviton mass is very pertinent.

In the Appendix as (68), it is shown in the weak-field approximation that

a graviton mass mg =
√
λ/3 is associated with a small λ such as (1) for de

Sitter spacetime. It is equivalent to the surface gravity κC =
√
λ/3 found
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by G-H [24]. These in turn relate directly to the radius of the event horizon
rEH defined by the singularity in (2) and (3) at rEH = κ−1C .

Experimental aspects of this relationship will be discussed below in Sect.
4.2.

4.1 Finite Temperature Effects

A digression on the effect of finite temperature T upon U∗(σ) is pertinent
because it is relevant to experiment. The subject is also pertinent to the
basic concept of a temperature-dependent spacetime in gravitation theory,
and equally so to the topic of cosmological event horizons.

The subject is treated in the usual fashion [78–80]. The classical, zero
temperature potential U∗(σ) in (14) becomes V ∗(σ) = U∗(σ) + VS(σ, T ) +
VF (σ, T, σ). This involves scalar VS and fermionic VF correction terms for
chemical potential µ, by shifting σ as σ = σ′+ν(T ). The result is a temperature-
dependent cosmological bag parameter [81] λBag = λBag(µ, T ) = κ̂B(µ, T )
which decreases with increasing temperature T until the bag in Figure 2
dissolves and symmetry is restored (B = 0) in Figure 1.

In such a case and in simplest form [82], the bag model equations of state
are

ε(T ) = kSBT
4 +B , (48)

p(T ) = kSBT
4/3−B , (49)

kSB =
π2

30
(dB +

7

8
dF ) , (50)

where energy density ε and pressure p now have a temperature dependence
(T 6= 0). The Stefan-Boltzmann (SB) constant kSB is a function of the de-
generacy factors dB for bosons (gluons) and dF for fermions (quarks and
antiquarks). The absence of the baryonic chemical potential µ in (48) is a
valid approximation for ongoing experiments involving nucleus-nucleus colli-
sions. All are relevant to quark-hadron phase transitions and the quark-gluon
plasma (QGP).

4.2 Experimental Aspects

As mentioned previously (Sect. 3), EG seems to be the correct theory of
gravity above 1 mm. The subject here is below that scale in the Large Hadron
Collider (LHC) realm of particle physics. Granted, the treatment in this paper
has neglected the standard model in order to present a tractable discussion
of hadrons, gravity, and the CCPs.

The following are recapitulated in Table I.
Within the hadron bag. Here one has mg 6= 0 due to (17) and (68). Adopt-

ing a simplified view of the hadron interior and a bag constant value from one
of the conventional bag models, the MIT bag [62,63] where B1/4 = 146 MeV
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or B = 60MeV fm−3, then λBag = κ̂B = 2x10−13cm−2 follows from (17).16

Using (68), a graviton mass mg = 2.6x10−7cm−1 or 5.2x10−12eV is found
within the bag. Although this appears to represent a Compton wavelength
of m−1g ∼ 4x106cm or range of 1

2m
−1
g ∼ 2x106cm, it is derived from λBag

and is only applicable for the interior solution. This is depicted in Figure 2.
It has no range outside of the bag where λBag = 0.

A similar calculation for the Yang-Mills condensate [64,65]BYM ∼ 0.02GeV 4

gives λYM ∼ 8.7x10−12cm−2 and mg ∼ 1.7x10−6cm−1 or 3x10−11eV , and
1
2m
−1
g ∼ 3.5x105 cm.
Regarding G, adopting GBag = GNewton is the conservative assumption

to make. However, GBag is a free parameter, independent of B. It has never
been experimentally measured. For any B determined in Table I, GBag can
be anything except zero.

The bag per se. The σ-field has a mass (46) in Table 1 subject to experi-
mental measurement, perhaps at the LHC in scalar gluon jets.

External to the hadron. By taking the well-known JFBD limit Ω → ∞
in (44) and (45), we in fact obtain Einstein gravity (for exceptions see Ref.
45) due to the experimental limits [42–44]. The small graviton mass mg

in (68), on the other hand, results in a finite-range gravity whose mass is
mg ∼ 0.6x10−28cm−1 or 1.1x10−33eV . This follows from the vacuum energy
density (∼ 2x10−3eV )4 which is equivalent to λ ∼ 10−56cm−2, for the de
Sitter background ηµν (7) in the F-L accelerating universe [6,7].

Obviously, G = GNewton in the exterior.
Summary. The results for this model are as follows. In the exterior we

have a graviton mass mg ∼ 0.6x10−28cm−1 and a range of 1
2m
−1
g ∼ 8x1027cm

which is approximately the Hubble radius. That is, gravitation within the bag
is short-ranged, and gravitation outside of the bag is finite-ranged reaching
to the G-H cosmological event horizon rEH = κ−1C .

Clearly the sign of λ must be positive (de Sitter space) in (68) in order
that an imaginary mass not be possible. The latter represents an unstable
condition with pathological problems such as tachyons and negative proba-
bility. (68) is a physical argument against such a circumstance.

Table 1 Summary of the masses, vacuum energy densities (VEDs), and λ′s in
spacetime.

Spacetime mg mg mσ VED,B λ
Region (cm−1) (eV ) (GeV ) (GeV )4 (cm−2)

Hadron Exterior
λ ≡ λF−L 6= 0 0.6x10−28 1.1x10−33 2x10−47 0.7x10−56

Hadron Interior
MIT bag [62] 2.6x10−7 5.2x10−12 √

a 0.0045 2x10−13

Y-M cluster [64] 1.7x10−6 3x10−11 √
a 0.02 9x10−12

16 In terms of units, the following conversions are helpful:
1MeV 4 = 2.3201x105gcm−3, then κ̂ = 1.8658x10−27cm g−1 or
κ̂ = 4.3288x10−22cm−2MeV −4. Thus λBag = κ̂B = 2x10−13cm−2 for
B[g cm−3] = 2.3201x105B[MeV 4]. This assumes G = GNewton.
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5 Conclusions

According to the development in Section 3, a scalar-tensor treatment of gµν
nonminimally coupled to hadrons using the nonlinear self-interacting field σ
results in a model of gravity that has two different ground-state vacua. Such
a theory exists and resolves CCP-1 adopting the assumptions made here.
Experiment and theory must eventually settle the differences between the
MIT bag model and the Yang-Mills condensate solution for bag constant B
in Sect. 3.2, but this does not alter these results. As a model, this point of
view represents a tenable strategy for reconsidering CCP-1 and CCP-2 from
hadron physics to cosmology. Without directly relating the bag constant to
the global energy in APdS spacetime, any of the other proposed “solutions”
of the CCP(s) are incomplete.

There is little surprise regarding CCP-2 for the large disparity between
ground-state VEDs when derivations in flat Minkowski spacetime are being
directly compared with those from APdS in cosmological gravity. This breaks
the principle of compatible asymptotic states, by comparing energies derived
from spacetimes that have entirely different Killing charges and global energy
properties. A great deal of work on APdS structure and its relation to VEDs
is therefore required before we will truly understand the CCP.

Finally, conventional massive gravity mg = mPF has not been used in
the strategy proposed here to address the CCP (mPF = 0). The strategy
involves only λ and its relationship to asymptotic infinity, with a graviton
mass appearing as a secondary effect.

Appendix: The Cosmological Constant as a Gravitational Mass

It was shown some time ago by this author [77] that the cosmological term λ
in General Relativity can be interpreted as a graviton mass in the weak-field
approximation, a result that will be briefly reviewed here. Note with caution
that an unqualified graviton mass is beset with numerous problems in QFT.
It has Spin 2 and possesses five degrees of freedom which can lead to negative
energy states and ghosts17.

However, these will be averted below because the Pauli-Fierz [83] mass
mPF is never introduced. Furthermore, graviton propagators involving mPF

have a controversial result in the massless limit mPF → 0 known as the
vDVZ discontinuity. Again, mPF ≡ 0 in this study but that can later be
relaxed as discussed in Sect. A.3.

More detail on how these problems are delt with is given in Sect. A.3
below and throughout Ref. 68, in particlular Sect. 3.3.2.

17 Since a ghost has a negative degree of freedom, more ghosts must be introduced
due to perturbative Feynman rules that over-count the correct degrees of freedom
[84,85].
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A.1 Weak-Field Limit, Schwarzschild-de-Sitter Metric

The curved background adopted will be the Schwarzschild-de-Sitter (SdS)
metric (2)-(3) applied to the Regge-Wheeler-Zerilli (RWZ) problem [86–89]
of gravitational radiation perturbations produced by a particle falling onto a
large mass M∗.

One considers a small perturbative expansion of EG (9) about a known
exact solution ηµν subject to the boundary condition that gµν becomes ηµν
as r →∞. The metric tensor gµν is thus assumed to be (7) gµν = ηµν + hµν

where hµν is the dynamic perturbation such that hµν << ηµν = g
(0)
µν .

The wave equation for gravitational radiation hµν follows as (66) and (68)
below, derived exactly from the formalism developed for studying the RWZ

problem. Perturbation analysis of (9) for a stable background ηµν = g
(0)
µν

produces the following

[h ;α
µν;α − h ;α

µα;ν − h ;α
να;µ + h α

α ;µ;ν ] + ηµν [h ;α;γ
αγ − h α ;γ

α ;γ ] (51)

+hµν(R− 2λ)− ηµνhαβRαβ = −2κδTµν . (52)

Stability must be assumed in order that δTµν is small. This equation can be
simplified by defining the function (introduced by Einstein himself)

h̄µν ≡ hµν −
1

2
ηµνh (53)

and its divergence

fµ ≡ h̄ ;ν
µν . (54)

Substituting (53) and (54) into (51)-(52) and re-grouping terms gives

h̄ ;α
µν;α − (fµ;ν + fν;µ) + ηµνf

;α
α − 2h̄αβR

α β
µν − h̄µαRαν − h̄ναRαµ (55)

+hµν(R− 2λ)− ηµνhαβRαβ = −2κδTµν . (56)

Now impose the Hilbert-Einstein-de-Donder gauge which sets (54) to zero
(fµ = 0), and suppresses the vector gravitons. (fµ 6= 0 can be retained for
further simplification in some cases of ηµν , although problematic negative
energy states may be associated with these vector degrees of freedom.) Wave
equation (55)-(56) now reduces to

h̄ ;α
µν;α −2h̄αβR

α β
µν −h̄µαRαν−h̄ναRαµ−ηµνhαβRαβ+hµν(R−2λ) = −2κ δTµν .

(57)
In an empty (Tµν = 0), Ricci-flat (Rµν = 0) space without λ(R = 4λ = 0),
(57) further reduces to

h̄ ;α
µν;α − 2Rα β

µν h̄αβ = −2κ δTµν , (58)

which is the starting point for the RWZ formalism.
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A.2 Weak-Field Limit, de Sitter Metric

Since λ 6= 0 is of paramount interest here, we know that the trace of the field
equations (9) gives 4λ−R = −κT , whereby they become

Rµν − λgµν = −κ[Tµν −
1

2
gµνT ] . (59)

For an empty space (Tµν = 0 and T = 0), (59) reduces to de Sitter space

Rµν = λgµν , (60)

and the trace to R = 4λ.
Substitution of R, and Rµν from (60) into (57) using (53) shows that the

contributions due to λ 6= 0 are now of second order in hµν . Neglecting these
terms (particularly if λ is very, very small) simplifies (57) to

h̄ ;α
µν;α − 2Rα β

µν h̄αβ = −2κ δTµν . (61)

One can arrive at (61) to first order in hµν by using gµν as a raising and
lowering operator rather than the background ηµν – a result which incorrectly
leads some to the conclusion that λ terms cancel in the gravitational wave
equation.

Furthermore, note with caution that (61) and the RWZ equation (58) are
not the same wave equation. Overtly, the cosmological terms have vanished
from (61), just like (58) where λ was assumed in the RWZ problem to be
nonexistent in the first place. However, the character of the Riemann tensor
Rα β

µν is significantly different in these two relations.
Now simplify the SdS metric by setting the central mass M∗ in ηµν to

zero. This produces the de Sitter space (60) of constant curvature K = 1/R2,
where we can focus on the effect of λ. The Riemann tensor is now

Rγµνδ = +K(gγνgµδ − gγδgµν), (62)

and reverts to
Rα β

µν = +K(gανg
β
µ − gαβgµν), (63)

for use in (61). This substitution (raising and lowering with ηµν) into (61)
now gives a K and a λ term contribution

−2K[(h̄µν−ηµν h̄)+(h̄αµh
α
ν+h̄νβh

β
µ−h̄hµν−ηµνhαβh̄αβ)]+λ[2h̄µαh

α
ν+ηµνh

2
αβ ],

(64)
to second order in hµν . Recalling that curvatureK is related to λ byK = λ/3,
substitution of (64) back into (61) gives to first order

h̄ ;α
µν;α −

2

3
λh̄µν +

2

3
ληµν h̄ = −2κ δTµν . (65)

There is no cancellation of the λ contributions to first order. Noting from
(53) that h̄ = h(1 − 1

2η), then a traceless gauge h̄ = 0 means either that
h = 0 or η = 2. Since η = 4, (65) reduces to

h̄ ;α
µν;α −

2

3
λh̄µν = −2κ δTµν (66)
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in a traceless Hilbert-Einstein-de Donder gauge where h̄ ;ν
µν =0 and h̄ µ

µ =0.

(66) is a wave equation involving the Laplace-Beltrami operator term h̄ ;α
µν;α

for the Spin-2 gravitational perturbation h̄µν bearing a mass

mg =
√

2λ/3 , (67)

similar to the Klein-Gordon equation (ut−m2)φ = 0 for a Spin-0 scalar field
φ in flat Minkowski space. By rescaling h̄ as h̄2 → 1

2 h̄1 in (61) and (66), (67)
becomes

mg =
√
λ/3 , (68)

which is the surface gravity κC = mg of the cosmological event horizon
identified by G-H [24].

A.3 Problems with the Pauli-Fierz (P-F) Lagrangian, and Averting the vDVZ
Discontinuity

The traditional method for introducing a graviton mass in Spin-2 QG is
using the P-F Lagrangian £PF = 1

4m
2
PF (hµνh

µν−hµ 2
µ ) because it does not

introduce ghosts and its Spin-0 helicity survives in the massless limit, leading
to a JFBD scalar-tensor theory of gravitation [90].

Problems with the P-F Lagrangian. Unfortunately, P-F was originally
done on a flat background ηµν in (7) which violates the principle of com-
patible asymptotic states discussed earlier in Sect. 2.1. Secondly, P-F totally
ignored λ (λ = 0). The work-around for this oversight is to conduct the P-
F method with ηµν representing a de Sitter space. This has been done by
Higuchi [91] who obtains (68) above when one assumes mPF = 0.

vDVZ Discontinuity. The subject of finite-range gravitation resulted in
what is known as the vDVZ discontinuity [92–98,90]. In the linear approxi-
mation to EG with mPF 6= 0, the zero-mass limit mPF → 0 does not produce
the same one-graviton propagator as the mPF = 0 case. The consequence of
the one-graviton approximation is that giving a nonzero mass mg = mPF to
a graviton results in a bending angle of light near the Sun that is 3/4 that of
Einstein′s value, and the difference may be measurable [90]. The resolution of
this QG dilemma is making mg small enough and not using perturbative ap-
proximations [99]. It has since been found that there is no mass discontinuity
in the full nonlinear theory [96]. The one-graviton exchange approximation
does not produce the correct result for the full nonlinear QG problem [99].

Bag exterior, free graviton. From the discussion in Sect. A.2 and without
the use of a P-F mass, the free graviton has a tiny mass mg ∼ 10−33 eV in
the hadron exterior that appears naturally with a smooth zero-mass limit
mg → 0 as λ → 0 as can be seen in (68) above. It has a range equal to the

cosmological event horizon radius rEH = κ−1C (Sect. 4). Such a small mass
makes mg immeasurable.

Bag interior, confined graviton. Within the bag interior in Figure 2, the
vDVZ discontinuity is not relevant because there is no massless limit since
λBag cannot be zero. In fact, the fundamental premise of the scalar-tensor
theory used here is that quantum symmetry breaking has resulted in a finite
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discontinuity in Figure 1 between the two vacua - and gravity via λ plays a
role in this. The result is two discontinuous values of λ and one can even con-
jecture that a similar thing happens to G. One-graviton propagators are not
applicable, cautioning once more that propagators derived from perturbative
Feynman techniques cannot reflect the nonperturbative physical properties
of confinement and strong interactions. Again [99], the vDVZ discontinuity
is an artifact of perturbation theory.

Obviously, there is need to analyze the strong interaction physics within
hadrons (Figure 2) utilizing massivemPF Spin-2 dynamics such as for mesons.
This type of analysis can easily be carried out following the work of Higuchi
[91]. In the interior case the vector gravitons are coupled to the gluon fields
via fµ in (54), and the Spin-0 graviton component is coupled to the σ-field
via the trace T ∗ in (45). This will be analyzed further in a subsequent study.
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