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Abstract: Using a smooth triangulation and a Riemannian metric on a 

compact, connected, closed manifold M
n
 of dimension n we claim that every such 

M
n
 can be represented as a union of a n–dimensional cell C

n
 and a connected union 

K
n–1

 (dim K
n–1
 n – 1) of some finite number of subsimplexes of the triangulation.  

A sufficiently small closed neighborhood of K
n–1

 is called a geometric black hole. 

Any smooth tensor field K (a fiber bundle) can be deformed into a continuous and 

sectionally smooth tensor field K  where K  has a very simple construction out of 

the black hole. 
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0. About the term of a geometric black hole (GBH) 

The following variants of the term were considered for GBH: topological 

black hole, topologically– geometric black hole, generalized black hole, geometric 

black object etc. We have to underline that every word of the term is important to 

distinguish a GBH from the famous black holes in the theory of relativity (further, 

classical black holes or CBH). 

I had the following reasons to use the term above for a GBH. 

1) A GBH exists in any smooth compact manifold M and determines topological 

and sectionally–smoth properties of M. 

2) Any smooth tensor field K (for example a pseudoRiemannian or Finsler metric) 

or other structure can be deformed towards a GBH into a continuous and 

sectionally–smooth tensor field or structure where a parameter t of the deformation 

can be considered as a time. 

3) A behavior of a GBH is very familiar to that of a CBH. 

Hypothesis: if we consider a CBH defined by a pseudoRiemannian (Finsler) metric 

on a compact manifold M then after some deformation of the metric towards the 

GBH the CBH has to belong the GBH. 

4) Example. If we consider a sphere then a GBH is simply a small black closed 

ball in the sphere. After deformations of all the tensor fields towards the GBH we 

have obtained a situation reminding us that of the «big explosion». 

5) I have used the term GBH in abstracts of several conferences on topology and 

geometry of manifolds. 
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Thus, I think that the object GBH could be useful for researchers in 

mathematics and theoretical physics. 

 

1. On extension of coordinate neighborhood  

 

1°. Let nM  be a connected, compact, closed and smooth manifold of 

dimension n and C
n
 be a cell (coordinate neighborhood) on nM . We can fix some 

Riemannian metric g on the manifold nM  which defines the length of arc of a 

piecewise smooth curve and the continuous function  yx;  of the distance 

between two points x, y nM . The topology defined by the function of distance 

(metric)   is the same as the topology of the manifold nM , [3]. 

A standard simplex 
n
 of dimension n is the set of points  

x=(x1, x2, ..., xn)
n

R  defined by conditions 

0xi1,  i= n,1 ,  x1+x2+...+xn1. 

 

We consider the interval of a straight line connected the center of some face 

of 
n
 and the vertex which is opposite to this face. It is clear that the center of 

n
 

belongs to the interval. We can decompose 
n
 as a set of intervals which are 

parallel to that mentioned above. If the center of 
n
 is connected by intervals with 

points of some face of 
n
 then a subsimplex of 

n
 is obtained. All the faces of 

n
 

considered, 
n
 is seen as a set of all such subsimplexes. Let U(

n
) be some open 

neighborhood of 
n
 in R

n
. A diffeomorphism φ :  nU М

п   nn   is called 

a singular n–simplex on the manifold M
 n

. Faces, edges, the center, vertexes of the 

simplex n  are defined as the images of those of 
n
 with respect to . 

The manifold M
 n
 is triangulable, [7]. It means that for any nll 0,  such 

a finite set Ф
l
 of diffeomorphisms φ : l М

п
 is defined that  

a) M
 n
 is a disjunct union of images   llInt Ф,   ; 

b) if lФ  then 1Ф  l
i   for every і where i : kk  1  is the 

linear mapping transferring the vertexes 10 ,..., kvv  of the simplex 1k  in the 

vertexes ki vvv ,...€,...,0  of the simplex k . 

2°. Let n
0  be some simplex of the fixed triangulation of the manifold М

п
. 

We paint the inner part nInt 0  of the simplex n
0  in white and the boundary n

0  of 
n
0  in black. There exist coordinates on nInt 0  given by diffeomorphism φ0. A 

subsimplex nn
0

1
01    is defined by a black face nn

0
1

01    and the center с0 of 
n
0 . We connect с0 with the center d0 of the face 1

01
n  and decompose the 

subsimplex n
01  as a set of intervals which are parallel to the interval с0d0. The face 

1
01
n  is a face of some simplex n

1  that has not been painted. We draw an interval 
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between d0 and the vertex 1v  of the subsimplex n
1  which is opposite to the face 

1
01
n  then we decompose n

1  as a set of intervals which are parallel to the interval 

d0 1v . The set nn
101    is a union of such broken lines every one from which 

consists of two intervals where the endpoint of the first interval coincides with the 

beginning of the second interval (in the face 1
01
n ) the first interval belongs to n

01  

and the second interval belongs to n
1 . We construct a homeomorphism (extension) 

1
01 :  nnn IntInt 10101   . Let us consider a point х nInt 01  and let x belong to a 

broken line consisting of two intervals the first interval is of a length of s1 and the 

second interval is of a length of s2 and let x be at a distance of s from the beginning 

of the first interval. Then we suppose that  x1
01  belongs to the same broken line 

at a distance of s
s

ss




1

21  from the beginning of the first interval. It is clear that 

1
01  is a homeomorphism giving coordinates on  nnInt 101   . We paint points of 

 nnInt 101    white. Assuming the coordinates of points of white initial faces of 

subsimplex n
01  to be fixed we obtain correctly introduced coordinates on 

 nnInt 10   . The set nn
101    is called a canonical polyhedron. We paint 

faces of the boundary 1  black.  

We describe the contents of the successive step of the algorithm of extension 

of coordinate neighborhood. Let us have a canonical polyhedron 1k  with white 

inner points (they have introduced white coordinates) and the black boundary 

1 k . We look for such an n–simplex in 1k , let it be n
0  that has such a black 

face, let it be 1
01
n  that is simultaneously a face of some n–simplex, let it be n

1 , 

inner points of which are not painted. Then we apply the procedure described 

above to the pair n
0 , n

1 . As a result we have a polyhedron k  with one simplex 

more than 1k  has. Points of kInt  are painted in white and the boundary k  is 

painted in black. The process is finished in the case when all the black faces of the 

last polyhedron border on the set of white points (the cell) from two sides. 

After that all the points of the manifold М
п
 are painted in black or white, 

otherwise we would have that М
п
 = nn MM 10   (the points of nM0  would be painted 

and those of nM1  would be not) with nM 0  and nM1  being unconnected, which 

would contradict of connectivity of М
п
.  

Thus, we have proved the following 

Theorem 1. Let М
п
 be a connected, compact, closed, smooth manifold of 

dimension n. Then М
п
 =  11, nnnn KCKC  , where С

п
 is an п–dimensional 

cell and К
п–1 

is a union of some finite number of (п–1)–simplexes of the 

triangulation. 
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3°. We consider the initial simplex n
0  of the triangulation and its center с0. 

Drawing intervals between the point с0 and points of all the faces of n
0  we obtain 

a decomposition of n
0  as a set of the intervals. In 2° the homeomorphism Ψ: 

nInt 0 С
п
 was constructed and Ψ evidently maps every interval above on a 

piecewise smooth broken line   in С
п
. We denote  

nM
~

=М
п
 \{c0}. nM

~
 is a connected and simply connected manifold if М

п
 is that. Let 

І=[0;1], we define a homotopy F: nM
~

×І nM
~

: (х; t)  у=F(x;t) in the following 

way 

a) F(z; t)=z for every point zK
n-1

; 

b)  if a point x belongs to the broken line   in С
п
 and the distance between x 

and its limit point zK
n-1

 is s(x) then у=F(x; t) is on the same broken line   at a 

distance of (1–t)s(x) from the point z. 

It is clear that F(x;0)=х, F(x;1)=z and we have obtained the following 

Theorem 2. The spaces nM
~

 and К
п–1 

are homotopy–equivalent, in 

particular, the groups of singular homologies Hk  nM
~

 and Hk  1nK  are 

isomorphic for every k.  

Corollary 2.1. The space К
п–1 

is connected and if М
п
 is simply connected 

then К
п–1

 is simply connected too. 

Remark. The white coordinates are extended from the simplex n
0  in the 

simplex n
1  through the face 1

01
n  hence 1

01
nInt  has also the white coordinates. 

On the other hand there exist two linear structures (intervals, the center etc) on 
n
01  induced from n

0  and n
1  respectively. Further, we set that the linear structure 

of 1
01
n  is the structure induced from n

0 . 

 

2. Deformation of a tensor field and a fibre bundle towards a geometric 

black hole of a compact manifold 

 

1°. Let  nML  and  nCL  be the principal fibre bundles of linear frames of 

the manifolds nM  and nC . The diffeomorphism 0  (where  nn  00  ) defines 

the coordinates (x1, ..., xn) in some neighborhood of the simplex n
0  and the 

corresponding vector fields 
nxx 






,...,

1

 on this neighborhood (a local cross–section 

of  nML ). Similarly, the diffeomorphism 1  (where  nn  11  ) defines the 

coordinates (y1, ..., yn) in some neighborhood of the simplex n
1  and the vector 

fields 
nyy 






,...,

1

 on this neighborhood. We have assumed that the white face 1
01
n  
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has the equation: y1=0 (it can always be obtained by corresponding linear change 

of variables in R
n n ). The vector fields ,,1,,, nji

yx
X

ji

i 







  are defined on 

the face 1
01
n  therefore for any point 1

01
 nx   we have  

i

n

j
iji

y
xfX



 

1

 where the 

functions  xfij  are smooth. We decompose n
1  as a union of the intervals having 

the following equations: y1=t, y2=c2, y3=c3,…, yn=cn, where 0, c2,…, cn are the 

coordinates of the beginning y0 of the corresponding interval. For any point ny 1  

we assume    0yfyf ijij   where 1
010
 ny   is the beginning of the interval where 

the point y is situated. The vector fields ,,1, niX i   are defined on n
1  by the 

formula  
i

n

j
iji

y
yfX



 

1

. It is obvious that the constructed vector fields 

,,1, niX i   are continuous on nn
10    and smooth in any point 

1
0110 ,  nnn xx  . 

For the process of the extension of a coordinate neighborhood (1, 2°) we can 

consider the process of the extension of the vector fields X1,…, Xn. If these fields 

are defined on a polyhedron 1k  and in order to get a polyhedron k  we use 

simplexes nn
10 ,   then we apply the procedure described above to obtain the vector 

fields on k . As a result we obtain correctly defined vector fields X1,…, Xn on C
n
 

i.e. a cross–section of L(C
n
). 

So, we come to the following 

Proposition 3. Let 1 nnn KCM  be the decomposition from the theorem 1. 

Then there exists a continuous cross–section of L(C
n
): x (X1,…, Xn)x, 

nCx . If a 

point nCx  does not belong to the subsimplexes of the triangulation then the 

cross–section above is smooth at the point x. 

We consider a tensor of type (r, s) on R
n
: 

  ,......0 1

1

...1

...1

0 s

r

r

s
eeeekK




   

where e1,…,en is the standard basic of R
n 
and

 
e

1
,…,e

n
 is the dual basis of R

n
*. 

A tensor field of type (r, s) is defined on nC :
 

  s

r

r

s
XXXXkK





  ......0 1

1

...1

...1

0                   (1) 

Since the functions r

s
k




. . .1

...1
 are constant on C

n
 we obtain that the tensor field K

0
 is 

O–deformable on C
n
 i.e. some G–structure on C

n
 is defined by K

0
 (see [1], [5]).  

If the cross–section (X1,…, Xn)x is smooth at a point xC
n
 then the tensor field K

0
 

is also smooth at the point. 

2°. For any point zK
n–1

 we can consider the closed geodesic ball  ,zB  of 

a small radius   0. Let Tb(K
n-1

, ) )(),(
1

 GBHzB
nKz




 . 
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Definition 1. We call the set GBH() a geometric black hole of radius 0 of 

the manifold M
n
 if M

n
\ GBH() is a cell (it is true for some small ). We paint the 

points of GBH() in black. 

Any piecewise smooth broken line  considered in 1, 3° can be represented 

as = 10    where   GBH1 , 10 \   . The points of 0 are painted in 

white and the points of 1  are painted in black. Let the segment 0 have a length s0 

and the segment 1  have a length s1 then (s0+s1) is a length of the broken line  

from c0 to zK
n–1

. 

Let K(x), x M
n
, be a tensor field of type (r, s) and K

0
=K(c0) where c0 is the 

center of the initial simplex n
0  of the triangulation of M

n
. Deformations of 

structures was considered in [2]. So, we shall construct a deformation )(xK  of the 

tensor field )(xK on the manifold M
n
. 

1) If a point zK
n–1

 then )(zK = )(zK . 

2) If a point xM
n
\ GBH() then )( 0

0 cKKK   where K
0
 is defined by 

the formula (1). 

3) We assume that   ,......)( 1...1

...1 1
s

r

r

s
XXXXxkxK





   

nCx , where X1,…, Xr are the vector fields from the proposition 3, a point x 

belongs a broken line  and s(x) is the distance from x to c0 along the broken line . 
For any point 1y  we define the tensor field 

  s

r

r

s
XXXXykyK





  ......)( 1...1

...1 1  

in the following way:    xkyk r

s

r

s







...1

...1

...1

...1
  where  10

1

0)(
)( ss

s

sys
xs 


 , s(y) is 

the distance from y to c0 along the broken line . 

It is easy to see that the constructed tensor field K  is continuous and 

sectionally smooth, K  is not smooth on the boundary of GBH() and in the points 

of C
n
 where the cross–section (X1,…, Xn)x is not smooth. 

Let L be some operator defined on the algebra (or some subalgebra) of all 

the tensor fields on the manifold M
n
 and L(K)=K1 for a tensor field K. 

Definition 2. An operator L  is called a deformation of L towards GBH() if 

it is defined by condition  L (K)= K 1. 

3°. Further, we follow [4], [6]. 

A fiber bundle (E, π, M
n
, F) consists of manifolds (spaces) E, M

n
, F and a 

smooth (continuous) mapping nME : , furthemore each nMx  has an open 

neighborhood U such that E |u )(1 U  is diffeomorphic (homeomorphic) to 

FU   via a fiber respecting diffeomorphism (homeomorphism): 
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               

E |u      FU   

                                                   

    π    pr1 

 

 

      U        U 

 

E is called the total space, M
n
 is called the base space, π is called  the 

projection, F is called standard fiber,  ,U  is called a fiber chart. 

A collection of fiber charts   ,U , such that  U  is an open cover of 

M
n
, is called a fiber bundle atlas. If we fix such an atlas, then 

    axxax ,,,1
   , where :   FFUU   is smooth 

(continuous) and  ,...x is a diffeomorphism (homeomorphism) of F for each 

 UUUx  : . Thus, we may consider the mappings  FGU  :  

with values in the group G(F), G(F)=Diff(F) is the group of all diffeomorphisms of 

F or G(F)=Homeo(F) is the group of all homeomorphisms of F. Mappings   

are called the transition functions of the bundle. They satisfy the cocycle 

conditions:      xxx     for Ux and   FIdx   for Ux . 

The collection }{  is called a cocycle of transition functions. 

Given an open cover  U  of manifold M
n
 and cocycle of transition 

functions we may construct a fiber bundle (E, π, M
n
, F). 

Principal fiber bundles and vector bundles are the most important cases of 

fibre bundles. 

4°. If )(\ GBHMW n  and  WW 1
0

Ψ  then nIntW 00  . We consider 

any piecewise smooth broken line 10    from 2°. If  0
1

01  Ψ  and 

1002 \    then 10201   . We define a homeomorphism nn MM :Ψ  

by the following conditions: 

a) 
00 || WW ΨΨ   i.e.   001  Ψ  and   WW 0Ψ ; 

b) Ψ  maps every segment 102    on the segment 1  by the length as it was 

shown above; 

c) Ψ (z)= z  for every 1 nKz . 

It is evident that Ψ  is a sectionally–smooth homeomorphism. 

Let (E, π, M
n
, F) be a smooth fibre bundle with a collection fibre charts 

  ,U . We can choose such a triangulation, let it be initial one, that 00 UW  . 

We define   UU Ψ  and     xx 1 Ψ  . 

The open cover }{ U of the manifold M
n
 and the cocycle }{   defines a 

continuons and sectionally–smooth fiber bundle  FME n ,,, . 



8 

 

Since   WUU  00 Ψ  it follows that the fiber bundle  FME n ,,,  is 

trivial over W i.e. FWE w |0 : . 

Difinition 3. The fiber bundle  FME n ,,,  is called a deformation of the 

fibre bundle (E, π, M
n
, F) towards the  GBH . 

Such characteristics of (E, π, M
n
, F) as connections, curvatures etc play an 

important role in the gauge theory, [6]. 

Problem. It seems to be interesting to consider good defined deformations 

of the characteristics above towards the  GBH i.e. to obtain some similar 

characteristics of  FME n ,,, . 
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